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Abstract

A proof of a sufficient condition for a strongly continuous semigroup
{T (t)}t≥0 on a Banach space X to be uniformly exponentially stable is given.
This result is a simplification of an earlier theorem by van Neerven, and con-
cludes that a semigroup is uniformly exponentially stable provided
sup||x||≤1 J(||T (·)x||) < ∞ ; here J is a certain nonlinear functional with
certain natural properties. A non-autonomous version of this theorem for
evolution families is also given. This implies the well-known Datko-Pazy and
Rolewicz Theorems. This result is connected to the uniform asymptotic sta-
bility of the well-posed linear and non-autonomous abstract Cauchy problem{

u̇(t) = A(t)u(t), t ≥ s ≥ 0,
u(s) = x ∈ X.
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346 C. Buşe – N.S. Barnett – P. Cerone – S.S. Dragomir

1 Introduction

Let X be a real or complex Banach space and L(X) the Banach algebra of all linear
and bounded operators acting on X. The norm of vectors in X and operators in
L(X) is denoted by || · ||. Let T := {T (t)}t≥0 be a semigroup of operators acting on
X, that is, T (t) ∈ L(X) for every t ≥ 0, T (0) = I the identity operator in L(X) and
T (t+ s) = T (t) ◦T (s) for every t ≥ 0 and s ≥ 0. The semigroup T is called strongly
continuous if for each x ∈ X the map t 7→ T (t)x : [0,∞) → X is continuous. Every
strongly continuous semigroup is locally bounded, that is, there exist h > 0 and
M ≥ 1 such that ||T (t)|| ≤ M for all t ∈ [0, h]. It is easy to see that every locally
bounded semigroup is exponentially bounded, since there exist ω ∈ R+ and M ≥ 1
such that

||T (t)|| ≤ Meωt for all t ≥ 0.

It is well-known that if T = {T (t)}t≥0 is a strongly continuous semigroup on a
Banach space X and there exists p ∈ [1,∞) such that for each x ∈ X,∫ ∞

0
||T (t)x||pdt = M(p, x) < ∞, (1.1)

then T is uniformly exponentially stable, that is, its uniform growth bound

ω0(T) := inft>0
ln ||T (t)||

t

is negative. This result is usually referred to as the Datko-Pazy theorem, see [5,
11]. An important application of the Datko-Pazy theorem can be found in [15]. A
quantitative version of this theorem states that if M(p, x) from (1.1) is less than
or equal to C||x||p, where C is some positive constant, then ω0(T) < − 1

pC
. See [9]

Theorem 3.1.8 for details. An important generalization of the Datko-Pazy theorem
was given by S. Rolewicz, [12]. In the autonomous case, the Rolewicz theorem reads
as follows. Let T = {T (t)}t≥0 be a strongly continuous semigroup on a Banach space
X. If there exists a continuous non-decreasing function φ : [0,∞) → [0,∞) such that
φ(t) > 0 for each t > 0 and if∫ ∞

0
φ(||T (t)x||)dt := Mφ(x) < ∞ for each x ∈ X, (1.2)

then the semigroup T is uniformly exponentially stable. The same result was ob-
tained independently by Littman [7]. In particular, from Rolewicz’s theorem, it
follows that the Datko-Pazy theorem remains valid for p ∈ (0, 1). The condition
(1.1) indicates that for each x ∈ X the map t 7→ ||T (t)x|| belongs to Lp(R+). Jan
van Neerven has shown in [8] that a strongly continuous semigroup T on X is uni-
formly exponentially stable if there exists a Banach function space over R+ := [0,∞)
with the property that

lim
t→∞

∥∥∥||1[0,t]||
∥∥∥

E
= ∞, (1.3)

such that
||T (·)x|| ∈ E for every x ∈ X. (1.4)

He has also shown that the autonomous variant of the Rolewicz theorem can be
derived from his result by taking for E a suitable Orlicz space over R+. In another



Integral Characterizations For Exponential Stability 347

paper, [10], Jan van Neerven has come to the same conclusion by replacing either
(1.1), (1.2) or (1.4) by the hypothesis that the set of all x ∈ X for which the following
inequality holds

J(||T (·)x||) < ∞,

is of the second category in X. Here J is a certain lower semi-continuous functional
as defined in Theorem 2 from [10]. The proof of this latter result is based on a
non-trivial result from operator theory given by V. Müler, see Lemma 1 from [10],
for further details. We give here a surprisingly simple proof for a result of the same
type, moreover, we do not require the lower semi-continuity of J.

In order to introduce some non-autonomous results of this type we recall the
notion of an evolution family.

A family U = {U(t, s)}t≥s≥0 of bounded linear operators on a Banach space X
is a strongly continuous evolution family if

1. U(t, t) = I and U(t, s) = U(t, r)U(r, s) for t ≥ r ≥ s ≥ 0.

2. The map t 7→ U(t, s)x : [s,∞) → X is continuous for every s ≥ 0 and every
x ∈ X.

The family U is exponentially bounded if there exist ω ∈ R and Mω ≥ 0 such
that

||U(t, s)|| ≤ Mωeω(t−s) for t ≥ s ≥ 0. (1.5)

Then ω(U) := inf{ω ∈ R : there is Mω ≥ 0 such that (1.5) holds} is called the
growth bound of U . The family U is uniformly exponentially stable if its growth
bound is negative.

In [1] it is proved that an exponentially bounded evolution family U is uniformly
exponentially stable if there exists a Banach function space E satisfying (1.3) such
that for each s ≥ 0 and each x ∈ X the map ||U(s + ·, s)x|| belongs to E and

sups≥0

∥∥∥||U(s + ·, s)x||
∥∥∥

E
:= K(x) < ∞.

The non-autonomous Datko theorem, [6], follows from this by taking E = Lp(R+).
The theorem of Rolewicz, [13], can be derived as well by taking for E a suitable Orlicz
space over R+, see Theorem 2.10 from [1]. New guidelines about the proof of the
Datko theorem can be found in [4] and [14]. In this paper we propose a more natural
generalization of the theorems of Datko and Rolewicz which can also be extended
to the general non-autonomous case. For some recently obtained autonomous or
periodic versions of the above; see [3], [10].
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2 A Generalization of the Datko-Pazy Theorem

We begin by stating and proving a lemma which is useful later.

Lemma 1. Let T = {T (t)}t≥0 be a locally bounded semigroup such that for each
x ∈ X the map t 7→ ||T (t)x|| is continuous on (0,∞). If there exist a positive h and
0 < q < 1 such that for all x ∈ X there exists t(x) ∈ (0, h] with

||T (t(x))x|| ≤ q||x||, (2.1)

then the semigroup T is uniformly exponentially stable.

Proof. Let x ∈ X be fixed and t1 ∈ (0, h] such that ||T (t1)x|| ≤ q||x||, then there
exists t2 ∈ (0, h] such that

||T (t2 + t1)x|| ≤ q||T (t1)x|| ≤ q2||x||.

By mathematical induction it is easy to see that there exists a sequence (tn), with
0 < tn ≤ h such that ||T (sn)x|| ≤ qn||x||, where sn := t1 + t2 + · · ·+ tn.

If sn →∞, then for each t ∈ [sn, sn+1] we have that t ≤ (n + 1)h and

||T (t)x|| ≤ ||T (t− sn)||||T (sn)x|| ≤ Mqn||x|| ≤ Me− ln(q)e
ln(q)

h
t||x||;

here M := sups∈[0,h] ||T (s)||.
If the sequence (sn) is bounded, let t(x) be the limit of (sn). By the inequality

||T (sn)x|| ≤ qn||x|| and the assumption of continuity it follows that T (t(x))x = 0.
This shows that the orbit T (·)x is eventually zero. Thus all orbits of the semigroup
T are of negative exponential type and the desired result follows immediately. �

We can now state the main result of this section.

Theorem 1. Let Mloc([0,∞)) be the space of all real valued locally bounded func-
tions on R+ = [0,∞) endowed with the topology of uniform convergence on bounded
sets and M+

loc(R+) its positive cone.
Let J : M+

loc(R+) → [0,∞] be a map with the following properties:

1. J is nondecreasing.

2. For each positive real number ρ,

lim
t→∞

J(ρ · 1[0,t]) = ∞.

If T is a locally bounded semigroup on a Banach space X such that for each
x ∈ X the map t 7→ ||T (t)x|| is continuous on (0,∞) and if

sup
||x||≤1

J(||T (·)x||) < ∞, (2.2)

then T is uniformly exponentially stable.
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Proof. Suppose that T is not uniformly exponentially stable. For all h > 0 and all
0 < q < 1 then there exists x0 ∈ X of norm one such that

||T (t)x0|| > q for every t ∈ [0, h],

as proved in Lemma 1. It follows then that

J(||T (·)x0||) ≥ J(q · 1[0,h]),

which is a contradiction. �

We remark here that the van Neerven theorem is an easy corollary of Theorem
1. Indeed, if J is lower-semicontinuous then the boundedness condition follows by a
standard Baire category argument. We mention however that our second hypothesis
about J is stronger than the similar one used by van Neerven in [10].

Corollary 1. Let T = {T (t)}t≥0 be a locally bounded semigroup on a Banach space
X such that for each x ∈ X the map t 7→ ||T (t)x|| is continuous on (0,∞). If there
exists a non-decreasing function φ : [0,∞) → [0,∞) such that φ(t) > 0 for each
t > 0 and (1.2) holds, then the semigroup T is uniformly exponentially stable.

Proof. The natural proof uses the Fatou lemma in order to prove that the integral
(1.2) defines a lower semi-continuous functional J. Application of van Neerven’s
version of Theorem 1 completes the proof. This argument is used in [10]. We
mention here only the fact that it is possible to check directly that the boundedness
condition (2.2) is satisfied and then apply our Theorem 1. �

3 The Non-autonomous Case

We say that the evolution family = {U(t, s)}t≥s≥0 verifies the hypothesis (H) if it is
exponentially bounded and for each x ∈ X and each s ≥ 0, the map ||U(s + ·, s)x||
is continuous on (0,∞).

We state and prove a lemma that will be used in the sequel.

Lemma 2. Let U = {U(t, s)}t≥s≥0 be an evolution family on a Banach space X
which verifies the hypothesis (H). If there exist positive real numbers h and q < 1
such that for every x ∈ X there exists t(x) ∈ (0, h] with the property that

sup
s≥0

||U(s + t(x), s)x|| ≤ q||x||,

then the family U is uniformly exponentially stable.

Proof. Is similar to that of Lemma 1 and so we omit the details. �
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Theorem 2. Let U = {U(t, s)}t≥s≥0 be an evolution family on a Banach space X
verifying the hypothesis (H) and let J a functional satisfying the conditions 1. and
2. from Theorem 1. If there exists r > 0 such that

sup
s≥0

sup
||x||≤r

J(||U(s + ·, s)x||) < ∞, (3.1)

then the evolution family U is uniformly exponentially stable.

Proof. Suppose that the family U is not uniformly exponentially stable. Under such
circumstances as proved in Lemma 2, for every positive real number h and every
q ∈ (0, 1) there exist x0 ∈ X of norm one and s0 ≥ 0 such that

||U(s0 + t, s0)x0|| > q for all t ∈ [0, h].

Thus
J(||U(s0 + t, s0)rx0||) ≥ J(rq · 1[0,h])

for each h > 0, which is a contradiction. �

Theorem 3. We suppose, in addition, that J is lower semi-continuous and convex
in the sense of Jensen (or sub-additive, that is, J(f + g) ≤ J(f) + J(g) for every f
and g in Mloc(R+)). Let U be an evolution family satisfying the hypothesis (H). If
the set X of all x ∈ X for which

sup
s≥0

J(||U(s + ·, s)x||) < ∞

is of the second category in X, then the family U is uniformly exponentially stable.

Proof. Let s ≥ 0 be fixed. The map x 7→ ||U(s + ·, s)x|| : X → Mloc(R+) is
continuous. As a consequence, the map

x 7→ Φs(x) := J(||U(s + ·, s)x||) : X → [0,∞]

is lower semi-continuous as well. For each positive integer k, the set

Xk(s) := {x ∈ X : J(||U(s + ·, s)x||) ≤ k}

is closed, because it is the reverse image of the real closed interval [0, k] by the map
Φs. It is clear that the set

Xk :=

{
x ∈ X : sup

s≥0
J(||U(s + ·, s)x||) ≤ k

}
= ∩s≥0Xk(s)

is also closed and, moreover, that X is the union of all sets Xk. Because X is of
the second category in X, there exists a set Xk0 whose interior is non empty. Let

x0 ∈ X and r0 > 0 such that B(x0, r0) belongs to Xk0 . It is easy to see that B
(
0, 1

2
r0

)
belongs to Xk0 , that is,

sup
s≥0

sup
||x||≤ 1

2
r0

J(||U(s + ·, s)x||) ≤ k0.
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Indeed for every x ∈ X with ||x|| ≤ r0 we have:

J
(∥∥∥∥U(s + ·, s)

(
1

2
x

)∥∥∥∥)
= J

(
1

2
||U(s + ·, s)[(x + x0)− x0]||

)
≤ J

(
1

2
[||U(s + ·, s)(x + x0)||+ ||U(s + ·, s)x0||]

)
≤ 1

2
J(||U(s + ·, s)(x + x0)||) +

1

2
J(||U(s + ·, s)x0||)

≤ k0.

Application of Theorem 2 completes the proof. �

Corollary 2. Let U = {U(t, s)}t≥s≥0 be an exponentially bounded evolution family
on a Banach space X such that for each x ∈ X the map t 7→ ||U(s + t, s)x|| is
continuous on (0,∞) for every s ≥ 0. Consider the following three inequalities:

1. There exists p ∈ [1,∞) such that

sup
s≥0

∫ ∞

0
||U(s + t, s)x||pdt < ∞

for every x ∈ X.

2. There exists a Banach function space E satisfying (1.3) such that for each
s ≥ 0 and each x ∈ X the map U(s + ·, s)x belongs to E and for every x ∈ X
we have

sup
s≥0

|||U(s + ·, s)x|||E < ∞.

3. There exists a non-decreasing function φ : [0,∞) → [0,∞) with φ(t) > 0 for
each t > 0 such that

sup
s≥0

∫ ∞

0
φ(||U(s + t, s)x||)dt < ∞

for every x ∈ X.

If any one of these statements is true then the family U is uniformly exponentially
stable.
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