# On the Hochschild cohomology of Beurling Algebras 

E. Feizi

A. Pourabbas


#### Abstract

Let $G$ be a locally compact group and let $\omega$ be a weight function on $G$. Under a very mild assumption on $\omega$, we show that $L^{1}(G, \omega)$ is $(2 \mathrm{n}+1)$ weakly amenable for every $n \in \mathbb{Z}^{+}$. Also for every odd $n \in \mathbb{N}$ we show that $\mathcal{H}^{2}\left(L^{1}(G, \omega),\left(L^{1}(G, \omega)\right)^{(n)}\right)$ is a Banach space.


## 1 introduction

In this paper we shall be concerned with the structure of the first and second cohomology group of $L^{1}(G, \omega)$ with coefficients in the $n$th dual space $\left(L^{1}(G, \omega)\right)^{(n)}$. We begin by recalling some terminology.

Let $\mathcal{A}$ be a Banach algebra, and $X$ be a Banach $\mathcal{A}$-bimodule. The dual space $X^{\prime}$ is a Banach $\mathcal{A}$-bimodule where the products $a \cdot \lambda$ and $\lambda \cdot a$ are specified by

$$
\begin{equation*}
a \cdot \lambda(x)=\lambda(x \cdot a), \quad \lambda \cdot a(x)=\lambda(a \cdot x) \tag{1.1}
\end{equation*}
$$

for all $a \in \mathcal{A}, x \in X$ and $\lambda \in X^{\prime}$. The canonical embedding of $X$ in $X^{\prime \prime}$ is denoted by $\imath$ or ${ }^{\wedge}$. We denote higher duals by $X^{(n+1)}=X^{(n)^{\prime}}$ for all $n \in \mathbb{N}$; with the convention $X^{(0)}=X$. Then $X^{(n)}$ is also a Banach $\mathcal{A}$ - bimodule; the definitions are consistent in the sense that $\widehat{a \cdot x}=a \cdot \widehat{x}$. So that $X^{(n)}$ is a submodule of $X^{(n+2)}$. If $X$ is symmetric, then so is $X^{(n)}$. If $X$ is unital, then so is $X^{\prime}$. The adjoint of the

[^0]injective map $\imath: X^{(n-1)} \rightarrow X^{(n+1)}$ is the projective map $P: X^{(n+2)} \rightarrow X^{(n)}$, defined by $P(\Lambda)=\left.\Lambda\right|_{\imath\left(X^{(n-1)}\right)}$. Then $P$ is a $\mathcal{A}$-bimodule morphism, and so we may write
$$
X^{(n+2)}=X^{(n)} \oplus \operatorname{Ker} P=X^{(n)} \oplus \imath\left(X^{(n-1)}\right)^{\perp}
$$
as Banach $\mathcal{A}$-bimodules. We shall also consider the second dual $\mathcal{A}^{\prime \prime}$ of a Banach algebra $\mathcal{A}$ as a Banach algebra; indeed, two products are defined on $\mathcal{A}^{\prime \prime}$ as follows. Let $a \in \mathcal{A}, \lambda \in \mathcal{A}^{\prime}$ and $m, n \in \mathcal{A}^{\prime \prime}$. Then $m \cdot \lambda$ and $\lambda \cdot m$ are defined by
$$
m \cdot \lambda(a)=m(\lambda \cdot a), \quad \lambda \cdot m(a)=m(a \cdot \lambda)
$$
where $\lambda \cdot a$ and $a \cdot \lambda$ are defined by (1.1). Next $m \square n$ and $m \diamond n$ are defined in $\mathcal{A}^{\prime \prime}$ by
\[

$$
\begin{equation*}
m \square n(\lambda)=m(n \cdot \lambda), \quad m \diamond n(\lambda)=n(\lambda \cdot m) . \tag{1.2}
\end{equation*}
$$

\]

Then $\mathcal{A}^{\prime \prime}$ is a Banach algebra with respect to each of the products $\square$ and $\diamond$, which are called the first and second Arens products on $\mathcal{A}^{\prime \prime}$, respectively. For fixed $n$ in $\mathcal{A}^{\prime \prime}$, the map $m \rightarrow m \square n$ is weak* weak* continuous, but map $m \rightarrow n \diamond m$ in general is not weak* weak* continuous unless $m$ is in $\mathcal{A}$.

The cohomology complex is

$$
0 \longrightarrow X \xrightarrow{\delta^{0}} \mathcal{C}^{1}(\mathcal{A}, X) \xrightarrow{\delta^{1}} \mathcal{C}^{2}(\mathcal{A}, X) \xrightarrow{\delta^{2}} \cdots,
$$

where for $n \in \mathbb{Z}^{+}, \mathcal{C}^{n}(\mathcal{A}, X)$ is the set of all bounded $n$-linear maps from $\mathcal{A}$ to $X$. The map $\delta^{0}: X \longrightarrow \mathcal{C}^{1}(\mathcal{A}, X)$ is given by $\delta^{0}(x)(a)=a \cdot x-x \cdot a$ and for $n \in \mathbb{Z}^{+}$, the map $\delta^{n}: \mathcal{C}^{n}(\mathcal{A}, X) \longrightarrow \mathcal{C}^{n+1}(\mathcal{A}, X)$ is given by

$$
\begin{aligned}
\delta^{n} T\left(a_{1}, \ldots, a_{n+1}\right)= & a_{1} \cdot T\left(a_{2}, \ldots, a_{n+1}\right)+\sum_{i=1}^{n}(-1)^{i} T\left(a_{1}, \ldots, a_{i} a_{i+1}, \ldots a_{n+1}\right) \\
& +(-1)^{n+1} T\left(a_{1}, \ldots, a_{n}\right) \cdot a_{n+1},
\end{aligned}
$$

where $T \in \mathcal{C}^{n}(\mathcal{A}, X)$ and $a_{1}, \ldots, a_{n+1} \in \mathcal{A}$. The space ker $\delta^{n}$ of bounded $n$-cocycle is denoted by $\mathcal{Z}^{n}(\mathcal{A}, X)$ and the space $\operatorname{Im} \delta^{n-1}$ of bounded $n$-coboundary is denoted by $\mathcal{B}^{n}(\mathcal{A}, X)$. We recall that $\mathcal{B}^{n}(\mathcal{A}, X)$ is a subspace of $\mathcal{Z}^{n}(\mathcal{A}, X)$ and that the $n$th cohomology group $\mathcal{H}^{n}(\mathcal{A}, X)$ is defined by the quotient

$$
\mathcal{H}^{n}(\mathcal{A}, X)=\frac{\mathcal{Z}^{n}(\mathcal{A}, X)}{\mathcal{B}^{n}(\mathcal{A}, X)},
$$

which is called the $n$th Hochschild (continuous) cohomology of $\mathcal{A}$ with coefficients in $X$.

The $n$-cochain $T$ is called cyclic if

$$
T\left(a_{1}, a_{2}, \ldots, a_{n}\right)\left(a_{0}\right)=(-1)^{n} T\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)\left(a_{n}\right),
$$

and we denote the linear space of all cyclic $n$-cochains by $\mathcal{C}_{\lambda}^{n}\left(\mathcal{A}, \mathcal{A}^{\prime}\right)$. It is well known (see [9]) that the cyclic cochains $\mathcal{C}_{\lambda}^{n}\left(\mathcal{A}, \mathcal{A}^{\prime}\right)$ form a subcomplex of $C^{n}\left(\mathcal{A}, \mathcal{A}^{\prime}\right)$, that is $\delta^{n}: \mathcal{C}_{\lambda}^{n}\left(\mathcal{A}, \mathcal{A}^{\prime}\right) \rightarrow \mathcal{C}_{\lambda}^{n+1}\left(\mathcal{A}, \mathcal{A}^{\prime}\right)$, and so we have cyclic versions of the spaces defined above, which we denote by $\mathcal{B}_{\lambda}^{n}\left(\mathcal{A}, \mathcal{A}^{\prime}\right), \mathcal{Z}_{\lambda}^{n}\left(\mathcal{A}, \mathcal{A}^{\prime}\right)$ and $\mathcal{H}_{\lambda}^{n}\left(\mathcal{A}, \mathcal{A}^{\prime}\right)$. Note that
it is usual to denote the cyclic cohomology group by $\mathcal{H}_{\lambda}^{n}(\mathcal{A})$, as there is only one bimodule used, namely $\mathcal{A}^{\prime}$.

To show that $\mathcal{H}^{n}(\mathcal{A}, X)=0$, we must show that every $n$-cocycle from $\mathcal{A}$ to $X$ is an $n$-coboundary. In particular case for $n=1, \mathcal{Z}^{1}(\mathcal{A}, X)$ is the space of all continuous derivations from $\mathcal{A}$ to $X$, and $\mathcal{B}^{1}(\mathcal{A}, X)$ is the space of all inner derivations from $\mathcal{A}$ to $X$. Thus $\mathcal{H}^{1}(\mathcal{A}, X)=0$ if and only if each continuous derivation from $\mathcal{A}$ to $X$ is inner.

The space $\mathcal{Z}^{n}(\mathcal{A}, X)$ is a Banach space, but in general $\mathcal{B}^{n}(\mathcal{A}, X)$ is not closed; we regard $\mathcal{H}^{n}(\mathcal{A}, X)$ as a complete seminormed space with respect to the quotient seminorm. This seminorm is a norm if and only if $\mathcal{B}^{n}(\mathcal{A}, X)$ is a closed subspace of $\mathcal{C}^{n}(\mathcal{A}, X)$, which means that $\mathcal{H}^{n}(\mathcal{A}, X)$ is a Banach space.

There have been very extensive studies devoted to calculation of the cohomology group $\mathcal{H}^{1}(\mathcal{A}, X)$ and the higher dimensional groups $\mathcal{H}^{n}(\mathcal{A}, X)$ for various classes of Banach algebras $\mathcal{A}$ and Banach $\mathcal{A}$-bimodules $X$. Our purpose here, being particularly concerned with the cohomology groups $\mathcal{H}^{1}\left(\mathcal{A}, X^{(n)}\right)$ and $\mathcal{H}^{2}\left(\mathcal{A}, X^{(n)}\right)$ for $n \in \mathbb{N}$.

A Banach algebra $\mathcal{A}$ is called $n$-weakly amenable if $\mathcal{H}^{1}\left(\mathcal{A}, \mathcal{A}^{(n)}\right)=0$. Note that 1-weakly amenable Banach algebras are called weakly amenable.

It was shown in [13] that $L^{1}(G)$ is weakly amenable for every locally compact group $G$; see also [6] for a shorter proof. Dales, Ghahramani and Grønbæk [5] showed that $L^{1}(G)$ is always $(2 n+1)$-weakly amenable for $n \in \mathbb{Z}^{+}$. Johnson [14] for the free group on two generators, proved that $\mathcal{H}^{1}\left(\ell^{1}\left(\mathbb{F}_{2}\right),\left(\ell^{1}\left(\mathbb{F}_{2}\right)\right)^{(n)}\right)=0$ for every $n \in \mathbb{N}$ and in [12] he proved that $\mathcal{H}^{2}\left(\ell^{1}\left(\mathbb{F}_{2}\right), \mathbb{C}\right) \neq 0$ which by [19, Theorem 8.3.1] implies that $\mathcal{H}^{2}\left(\ell^{1}\left(\mathbb{F}_{2}\right), \ell^{1}\left(\mathbb{F}_{2}\right)\right) \neq 0$ and $\mathcal{H}^{2}\left(\ell^{1}\left(\mathbb{F}_{2}\right), \ell^{\infty}\left(\mathbb{F}_{2}\right)\right) \neq 0$.

In [11] Ivanov and in [15] Matsumoto and Morita showed that $\mathcal{H}^{2}\left(\ell^{1}(G), \mathbb{C}\right)$ is a Banach space for every discrete group $G$ with trivial action on $\mathbb{C}$. A. Pourabbas [18] showed that the second cohomology group of $L^{1}(G)$ with coefficients in $L^{1}(G)^{(2 n+1)}$ is a Banach space for every locally compact group $G$ and every $n \in \mathbb{Z}^{+}$. Meanwhile Soma [20] showed that $\mathcal{H}^{3}\left(\ell^{1}\left(\mathbb{F}_{2}\right), \mathbb{R}\right)$ is not a Banach space. In [4] Burger and Monod showed that for a compactly generated locally compact second countable group $G$, the second continuous cohomology $\mathcal{H}_{c b}^{2}(G, F)$ is a Banach space, where $F$ is a separable coefficient module.

In this paper for every locally compact group $G$ and every $n \in \mathbb{Z}^{+}$, first we show that $\mathcal{H}^{1}\left(L^{1}(G, \omega), L^{1}(G, \omega)^{(2 n+1)}\right)=0$. Next we show that the second cohomology group of $L^{1}(G, \omega)$ with coefficients in $L^{1}(G, \omega)^{(2 n+1)}$ is a Banach space, where $\omega$ is a weight function with $\sup \left\{\omega(g) \omega\left(g^{-1}\right): g \in G\right\}<\infty$. At the end we will give examples which show dependence of cohomology on the weight $\omega$.

## 2 The first cohomology group

Let $G$ be a locally compact group. A weight on $G$ is a continuous function $\omega$ : $G \rightarrow(0, \infty)$ satisfying $\omega(e)=1, \omega(x y) \leq \omega(x) \omega(y)$ for all $x, y \in G$. We say that the weight $\omega$ is diagonally bounded if $\sup \left\{\omega(g) \omega\left(g^{-1}\right): g \in G\right\}<\infty$. Throughout for a diagonally bounded weight $\omega$ we set $D b(\omega)=\sup \left\{\omega(g) \omega\left(g^{-1}\right): g \in G\right\}$. The

Beurling algebra $L^{1}(G, \omega)$ is defined as below,

$$
L^{1}(G, \omega)=\left\{f: G \rightarrow \mathbb{C}: f \text { is measurable and }\|f\|_{1}^{\omega}=\int|f(x)| \omega(x) d(x)<\infty\right\}
$$

$L^{1}(G, \omega)$ is a Banach algebra with convolution product and norm $\|\cdot\|_{1}^{\omega}$. The dual space $L^{\infty}\left(G, \omega^{-1}\right)=L^{1}(G, \omega)^{\prime}$ consists of all measurable functions $\varphi$ on $G$ with

$$
\|\varphi\|_{\omega}^{\infty}=\operatorname{ess} \sup \left\{\frac{|\varphi(g)|}{\omega(g)}: g \in G\right\}<\infty .
$$

$L^{1}(G, \omega)$ has a bounded approximate identity $\left\{e_{\alpha}\right\}$, and by [2, Proposition 28.7], the Banach algebra $\left(L^{1}(G, \omega)^{\prime \prime}, \square\right)$ has a right identity element $E$ such that $\|E\| \leq M$, where $M=\sup _{\alpha}\left\|e_{\alpha}\right\|_{1}^{\omega}$.

The space $M(G, \omega)$ of all complex, regular Borel measures $\mu$ on $G$ such that $\mu \cdot \omega \in M(G)$ with the convolution product and norm

$$
\|\mu\|_{\omega}=\int \omega(x) d|\mu|(x)
$$

is a Banach algebra. The weighted measure algebra $M(G, \omega)$ has a unit element $\delta_{e}$ and contains $L^{1}(G, \omega)$ as a closed two sided ideal. Also $M(G, \omega)_{*}=C_{0}\left(G, \omega^{-1}\right)$ consists of all continuous functions on $G$ such that $\frac{f}{\omega} \in C_{0}(G)$.

Lemma 2.1. The multiplier algebra of $L^{1}(G, \omega)$ is isometrically isomorphic with $M(G, \omega)$.

Proof. The proof is similar to the proof $\Delta\left(L^{1}(G)\right)=M(G)[10$, p. 276].
Let $\left\{\mu_{\alpha}\right\}$ be a net in $M(G, \omega)$ and $\mu \in M(G, \omega)$. We say that $\left(\mu_{\alpha}\right)$ tends to $\mu$ in so-topology if for every $f \in L^{1}(G, \omega)$, we have

$$
\mu_{\alpha} * f \rightarrow \mu * f \quad \text { and } \quad f * \mu_{\alpha} \rightarrow f * \mu
$$

Lemma 2.2. Let $G$ be a locally compact group. Then the so-closed convex span of

$$
\left\{\frac{\lambda}{\omega(g)} \delta_{g}: g \in G, \lambda \in \mathbb{C},|\lambda|=1\right\}
$$

is the unit ball in $M(G, \omega)$.

Proof. The proof is the same as the unweighted case [8, 1.1.1-1.1.3].

Note. By the previous Lemma every measure $\mu$ in $M(G, \omega)$ is the so-limit of a net $\left\{\mu_{\alpha}\right\}$, where each $\mu_{\alpha}$ is a linear combination of point masses.

Now for every $n \in \mathbb{Z}^{+}$we will show that $L^{1}(G, \omega)_{\mathbb{R}}^{(2 n+1)}$, the real-valued functions in $L^{1}(G, \omega)^{(2 n+1)}$, is a complete lattice in the sense that every non-empty subset of $L^{1}(G, \omega)^{(2 n+1)}$ which is bounded above has a supremum.

Proposition 2.3. The Banach space $L^{\infty}\left(G, \omega^{-1}\right)$ with the product

$$
f \cdot g(x)=\frac{f(x) g(x)}{\omega(x)}, \quad f, g \in L^{\infty}\left(G, \omega^{-1}\right)
$$

and complex conjugate as involution is a commutative $C^{*}$-algebra.

Proof. Define $\varphi: L^{\infty}\left(G, \omega^{-1}\right) \rightarrow L^{\infty}(G)$ by $\varphi(f)=f \omega^{-1}$. Then $\varphi$ is a $*$-isometrical isomorphism from $L^{\infty}\left(G, \omega^{-1}\right)$ onto $L^{\infty}(G)$. Thus $L^{\infty}\left(G, \omega^{-1}\right)$ is a commutative C*-algebra.

Remark 2.4. Set $X=L^{1}(G, \omega)^{(2 n)}(n \geq 1)$. We note that $L^{1}(G, \omega)^{\prime}=L^{\infty}\left(G, \omega^{-1}\right)$ is a commutative $\mathrm{C}^{*}$-algebra. Because the second dual of a commutative $\mathrm{C}^{*}$-algebra is a commutative von Neumann algebra, then $X^{\prime}=L^{1}(G, \omega)^{(2 n+1)}$ is the underlying space of a commutative von Neumann algebra, and hence it is an $L^{\infty}$-space. The space $X_{\mathbb{R}}^{\prime}$ of real-valued functions in $X^{\prime}$ forms a complete lattice.

Throughout the rest of this section we set $\mathcal{A}=L^{1}(G, \omega)$ and $X=\mathcal{A}^{(2 n+2)}$, where $n \in \mathbb{Z}^{+}$. The map

$$
\theta: M(G, \omega) \rightarrow\left(\mathcal{A}^{\prime \prime}, \square\right), \quad \mu \mapsto E \square \mu
$$

is a continuous embedding. In fact for all $\mu \in M(G, \omega)$ we have

$$
\|\theta(\mu)\| \leq\|\mu\|_{\omega}\|E\| \leq\|\mu\|_{\omega} M
$$

We write $E_{s}$ for $E \square \delta_{s}$, where $s \in G$ and $E$ is a right identity for $\left(\mathcal{A}^{\prime \prime}, \square\right)$. If $D$ : $\mathcal{A} \longrightarrow X^{\prime}$ is a continuous derivation, then by [5, Proposition 1.7] $D^{\prime \prime}:\left(\mathcal{A}^{\prime \prime}, \square\right) \longrightarrow$ $X^{\prime \prime \prime}$ is a continuous derivation.

Lemma 2.5. Let $\omega$ be a diagonally bounded weight on $G$. Then
(i) For every subset $B$ of $X_{\mathbb{R}}^{\prime}$, and for every $r \in G$, we have

$$
E \cdot \sup \left\{E_{r} \cdot \Lambda: \Lambda \in B\right\}=E_{r} \cdot \sup \{E \cdot \Lambda: \Lambda \in B\}
$$

and

$$
\sup \left\{E_{r} \cdot \Lambda: \Lambda \in B\right\} \cdot E=\sup \{E \cdot \Lambda: \Lambda \in B\} \cdot E_{r}
$$

(ii) The set $\left\{E_{s^{-1}} \cdot \operatorname{Re} D^{\prime \prime}\left(E_{s}\right): s \in G\right\}$ is a bounded subset of $X_{\mathbb{R}}^{\prime}$.

Proof. (i) Let $\alpha=\sup \{E \cdot \Lambda: \Lambda \in B\}$ and $\gamma=\sup \left\{E_{r} \cdot \Lambda: \Lambda \in B\right\}$. For all $\Lambda \in B$ we have $E_{r} \cdot \Lambda=E_{r} \cdot(E \cdot \Lambda) \leq E_{r} \cdot \alpha$. So

$$
E \cdot \sup \left\{E_{r} \cdot \Lambda: \Lambda \in B\right\} \leq E_{r} \sup \{E \cdot \Lambda: \Lambda \in B\}
$$

Conversely

$$
\alpha=\sup \{E \cdot \Lambda: \Lambda \in B\}=\sup \left\{E_{r^{-1}}\left(E_{r} \cdot E \cdot \Lambda\right): \Lambda \in B\right\} \leq E_{r^{-1}} \cdot E \cdot \gamma
$$

Thus $E_{r} \cdot \alpha \leq E \cdot \gamma$. By the same method we have

$$
\sup \left\{E_{r} \cdot \Lambda: \Lambda \in B\right\} \cdot E=\sup \{E \cdot \Lambda: \Lambda \in B\} \cdot E_{r}
$$

(ii) Since $\left\|E_{s}\right\| \leq \omega(s) M$ for every $s \in G$, then

$$
\begin{aligned}
\left\|E_{s^{-1}} \cdot \operatorname{Re} D^{\prime \prime}\left(E_{s}\right)\right\| & =\left\|\operatorname{Re}\left(E_{s^{-1}} \cdot D^{\prime \prime}\left(E_{s}\right)\right)\right\| \\
& \leq\left\|E_{s^{-1}} \cdot D^{\prime \prime}\left(E_{s}\right)\right\| \leq\left\|E_{s^{-1}}\right\|\left\|D^{\prime \prime}\right\|\left\|E_{s}\right\| \\
& \leq \omega(s) \omega\left(s^{-1}\right)\left\|D^{\prime \prime}\right\| M^{2} \leq D b(\omega)\left\|D^{\prime \prime}\right\| M^{2}
\end{aligned}
$$

Thus $\left\{E_{s^{-1}} \cdot \operatorname{Re}\left(D^{\prime \prime}\left(E_{s}\right)\right): s \in G\right\}$ is a bounded subset of $X_{\mathbb{R}}^{\prime}$.

Theorem 2.6. Let $G$ be a locally compact group. Then $L^{1}(G, \omega)$ is a $(2 n+1)$ weakly amenable for every $n \in \mathbb{Z}^{+}$, whenever $\omega$ is a diagonally bounded weight on $G$.

Proof. Set $\mathcal{A}=L^{1}(G, \omega)$ and $X=L^{1}(G, \omega)^{(2 n)}$. The result in [17] establishes the case $n=1$ and we may suppose that $n \in \mathbb{N}$. Let $\left\{e_{\alpha}\right\}$ be a bounded approximate identity for $\mathcal{A}$. Then there exists a right identity $E$ for $\left(\mathcal{A}^{\prime \prime}, \square\right)$ such that $\|E\| \leq M$.

Since $\mathcal{A}$ is a closed ideal of $M(G, \omega)$, then by [7] $\left(\mathcal{A}^{\prime \prime}, \square\right)$ is a closed ideal of $\left(M(G, \omega)^{\prime \prime}, \square\right)$. Let $D \in \mathcal{Z}^{1}\left(A, X^{\prime}\right)$. Then $D^{\prime \prime}:\left(\mathcal{A}^{\prime \prime}, \square\right) \rightarrow X^{\prime \prime \prime}$ is a continuous derivation. For $r, s \in G$ we have

$$
D^{\prime \prime}\left(E_{s t}\right)=D^{\prime \prime}\left(E_{s}\right) \cdot E_{t}+E_{s} \cdot D^{\prime \prime}\left(E_{t}\right)
$$

and so

$$
\begin{equation*}
E_{(s t)^{-1}} \cdot D^{\prime \prime}\left(E_{s t}\right)=E_{t^{-1}} \cdot\left(E_{s^{-1}} \cdot D^{\prime \prime}\left(E_{s}\right)\right) \cdot E_{t}+E_{t^{-1}} \cdot D^{\prime \prime}\left(E_{t}\right) \tag{2.1}
\end{equation*}
$$

By Lemma $2.5($ ii $)$ the set $\left\{E_{s^{-1}} \cdot \operatorname{Re} D^{\prime \prime}\left(E_{s}\right): s \in G\right\}$ is bounded in $X_{\mathbb{R}}^{\prime \prime \prime}$. Since $X_{\mathbb{R}}^{\prime \prime \prime}$ is a complete lattice, then

$$
\begin{equation*}
\phi_{r}=\sup \left\{E_{s^{-1}} \cdot \operatorname{Re}\left(D^{\prime \prime}\left(E_{s}\right)\right): s \in G\right\} \tag{2.2}
\end{equation*}
$$

exists in $X_{\mathbb{R}}^{\prime \prime \prime}$. Let $t \in G$. Then from (2.1), (2.2) and Lemma 2.5(i) we have

$$
E \cdot \phi_{r} \cdot E=E_{t^{-1}} \cdot \phi_{r} \cdot E_{t}+E_{t^{-1}} \cdot \operatorname{Re} D^{\prime \prime}\left(E_{t}\right) \cdot E
$$

Hence

$$
E \cdot \operatorname{Re} D^{\prime \prime}\left(E_{t}\right) \cdot E=E_{t} \cdot \phi_{r} \cdot E-E \cdot \phi_{r} \cdot E_{t}
$$

Similarly, by considering imaginary parts we obtain $\phi_{i} \in X_{\mathbb{R}}^{\prime \prime \prime}$ such that

$$
E \cdot \operatorname{Im} D^{\prime \prime}\left(E_{t}\right) \cdot E=E_{t} \cdot \phi_{i} \cdot E-E \cdot \phi_{i} \cdot E_{t} .
$$

Thus if we define $\phi=\phi_{r}+\phi_{i}$, then $\phi \in X^{\prime \prime \prime}$ and for all $t \in G$,

$$
E \cdot D^{\prime \prime}\left(E_{t}\right) \cdot E=E_{t} \cdot \phi \cdot E-E \cdot \phi \cdot E_{t}
$$

If $\nu$ is a linear combination of point masses and $f, g \in \mathcal{A}$, then we have

$$
\begin{equation*}
f \cdot D^{\prime \prime}(E \square \nu) \cdot g=(f * \nu) \cdot \phi \cdot g-f \cdot \phi \cdot(\nu * g) \tag{2.3}
\end{equation*}
$$

Now take $h \in \mathcal{A}$. Then there is a net $\left\{\nu_{\alpha}\right\}$ of linear combination of point masses such that $\nu_{\alpha} \rightarrow h$ in the strong operator topology on $\mathcal{A}$, that is, $\lim _{\alpha}\left(f * \nu_{\alpha}\right)=f * h$ and $\lim _{\alpha}\left(\nu_{\alpha} * g\right)=h * g$ for every $f, g \in \mathcal{A}$.

Let $f, g \in \mathcal{A}$. Then

$$
\begin{aligned}
\lim _{\alpha} f \cdot D^{\prime \prime}\left(E \square \nu_{\alpha}\right) \cdot g & =\lim _{\alpha}\left(D^{\prime \prime}\left(f * \nu_{\alpha}\right) \cdot g-D^{\prime \prime}(f) \cdot\left(\nu_{\alpha} * g\right)\right) \\
& =D^{\prime \prime}(f * h) \cdot g-D^{\prime \prime}(f) \cdot(h * g) \\
& =f \cdot D^{\prime \prime}(h) \cdot g .
\end{aligned}
$$

So, from (2.3) we have

$$
\begin{aligned}
f \cdot D^{\prime \prime}(h) \cdot g & =(f * h) \cdot \phi \cdot g-f \cdot \phi \cdot(h * g) \\
& =f \cdot(h \cdot \phi-\phi \cdot h) \cdot g
\end{aligned}
$$

Let $P: X^{\prime \prime \prime} \rightarrow X^{\prime}=\mathcal{A}^{(2 k+1)}$ be the natural projection, so that $P$ is an $\mathcal{A}$-bimodule morphism. We have $D=P \circ D^{\prime \prime}$. Set $\phi_{0}=P(\phi)$. Then

$$
f \cdot D(h) \cdot g=f \cdot\left(h \cdot \phi_{0}-\phi_{0} \cdot h\right) \cdot g
$$

for every $f, g, h \in \mathcal{A}$, and so

$$
D(h)(f \cdot x \cdot g)=\left(h \cdot \phi_{0}-\phi_{0} \cdot h\right)(f \cdot x \cdot g)
$$

for every $f, g, h \in \mathcal{A}$ and $x \in X$. Now by [5, proposition 1.17] we have $D(h)(x)=$ $\left(h \cdot \phi_{0}-\phi_{0} \cdot h\right)(x)$. Then $D$ is an inner derivation and so $\mathcal{A}$ is $(2 k+1)$ - weak amenable.

## 3 The second cohomology group

In this section firstly we prove that $\mathcal{H}^{2}\left(\ell^{1}(G, \omega), \ell^{1}(G, \omega)^{(2 n+1)}\right)$ is a Banach space for every discrete group $G$. Secondly we will generalize this method to show that $\mathcal{H}^{2}\left(L^{1}(G, \omega),\left(L^{1}(G, \omega)\right)^{(2 n+1)}\right)$ is a Banach space for every locally compact group $G$. Recall that we set $D b(\omega)=\sup \left\{\omega(g) \omega\left(g^{-1}\right): g \in G\right\}$.
Theorem 3.1. $\mathcal{H}^{2}\left(\ell^{1}(G, \omega), \ell^{1}(G, \omega)^{(2 n+1)}\right)$ is a Banach space for every discrete group $G$ and for every diagonally bounded weight $\omega$.

Proof. Set $X=\ell^{1}(G, \omega)^{(2 n)}$. Let $\psi \in \mathcal{C}^{1}\left(\ell^{1}(G, \omega), X^{\prime}\right)$. Then for every $g, h \in G$ and $s \in X$ with $\|s\| \leq 1$ we have

$$
\begin{equation*}
|\delta \psi(g, h)(s)|=|\psi(g)(h s)-\psi(g h)(s)+\psi(h)(s g)| \leq\|\delta \psi\| \omega(g) \omega(h) . \tag{3.1}
\end{equation*}
$$

Since the set $\left\{\operatorname{Re} \psi(g) \cdot g^{-1}: g \in G\right\}$ is bounded above by $\|\psi\| D b(\omega)$ in $X_{\mathbb{R}}^{\prime}$. Then

$$
f_{r}(s)=\sup _{g \in G}\left\{\operatorname{Re} \psi(g)\left(g^{-1} s\right)\right\}
$$

exists in $X_{\mathbb{R}}^{\prime}$. For every $h \in G$ by (3.1) we have

$$
\begin{align*}
f_{r}(h s) & =\sup _{g \in G}\left\{\operatorname{Re} \psi(g)\left(g^{-1} h s\right)\right\} \\
& =\sup _{g \in G}\left\{\operatorname{Re} \psi(h g)\left(g^{-1} s\right)\right\} \\
& \leq \sup _{g \in G}\left\{\operatorname{Re} \psi(h)(s)+\operatorname{Re} \psi(g)\left(g^{-1} s h\right)+\|\delta \psi\| \omega(g) \omega\left(g^{-1}\right) \omega(h)\right\}  \tag{3.2}\\
& =\operatorname{Re} \psi(h)(s)+\sup _{g \in G}\left\{\operatorname{Re} \psi(g)\left(g^{-1} s h\right)\right\}+\|\delta \psi\| \omega(h) D b(\omega) \\
& =\operatorname{Re} \psi(h)(s)+f_{r}(s h)+\|\delta \psi\| \omega(h) D b(\omega) .
\end{align*}
$$

On the other hand

$$
\begin{align*}
f_{r}(h s) & =\sup _{g \in G}\left\{\operatorname{Re} \psi(g)\left(g^{-1} h s\right)\right\}  \tag{3.3}\\
& \geq \operatorname{Re} \psi(h)(s)+f_{r}(s h)-\|\delta \psi\| \omega(h) D b(\omega) .
\end{align*}
$$

¿From (3.2) and (3.3) we have

$$
\left|h \cdot f_{r}(s)-f_{r} \cdot h(s)+\operatorname{Re} \psi(h)(s)\right| \leq\|\delta \psi\| \omega(h) D b(\omega)
$$

Similarly, by considering imaginary parts we have

$$
\left|h \cdot f_{i}(s)-f_{i} \cdot h(s)+\operatorname{Im} \psi(h)(s)\right| \leq\|\delta \psi\| \omega(h) D b(\omega) .
$$

By putting $f=f_{r}+i f_{i}$ we obtain

$$
|h \cdot f(s)-f \cdot h(s)+\psi(h)(s)| \leq 2\|\delta \psi\| \omega(h) D b(\omega) .
$$

Now let us define

$$
\bar{\psi}(h)(s)=(\delta f)(h)(s)+\psi(h)(s),
$$

so $\delta \bar{\psi}=\delta \psi$ and $|\bar{\psi}(h)(s)| \leq 2\|\delta \psi\| \omega(h) D b(\omega)\|s\|$ for every $h \in G$ and $s \in X$. Thus $\|\bar{\psi}\| \leq 2\|\delta \psi\| D b(\omega)$ and this finishes the proof.

Lemma 3.2. The cyclic cohomology group $\mathcal{H}_{\lambda}^{2}\left(\ell^{1}(G, \omega)\right)$ is a Banach space for every discrete group $G$ and for every diagonally bounded weight $\omega$.

Proof. Let $\psi \in \mathcal{C}^{1}\left(\ell^{1}(G, \omega), \ell^{\infty}\left(G, \omega^{-1}\right)\right)$ such that $\psi(h)(g)=-\psi(g)(h)$ for $g, h \in G$, and let us consider $\bar{\psi}(h)(g)=(\delta f)(h)(g)+\psi(h)(g)$ as in Theorem 3.1. Then $\delta \bar{\psi}=\delta \psi$ and $\|\bar{\psi}\| \leq 2\|\delta \psi\| D b(\omega)$, further

$$
\begin{aligned}
\bar{\psi}(h)(g) & =(\delta f)(h)(g)+\psi(h)(g) \\
& =-(\delta f)(g)(h)-\psi(g)(h) \\
& =-\bar{\psi}(g)(h) .
\end{aligned}
$$

Hence $\mathcal{H}_{\lambda}^{2}\left(\ell^{1}(G), \omega\right)$ is a Banach space.

We can now state the final result of this paper, we show that the cohomology group $\mathcal{H}^{2}\left(L^{1}(G, \omega), L^{1}(G, \omega)^{(2 n+1)}\right)$ is a Banach space for every locally compact group $G$ and every diagonally bounded weight $\omega$.

We recall a construction that shows that $L^{\infty}\left(G, \omega^{-1}\right)$ is an $M(G, \omega)$-bimodule. For $f \in L^{\infty}\left(G, \omega^{-1}\right), a \in L^{1}(G, \omega)$ and $\mu \in M(G, \omega)$ define the module actions by

$$
(f \mu)(a)=f(\mu * a) \quad \text { and } \quad(\mu f)(a)=f(a * \mu)
$$

Throughout this section the notations lim sup and liminf are frequently simplified to $\varlimsup$ lim $\varliminf$ and. We denote by so- $\lim \mu_{\alpha}$ the limits of measures in the strong operator topology.

Proposition 3.3. Set $X=L^{1}(G, \omega)^{(2 n)}$. Let $\psi \in \mathcal{C}^{1}\left(L^{1}(G, \omega), X^{\prime}\right)$. Then there is a $\tilde{\psi} \in \mathcal{C}^{1}\left(M(G, \omega), X^{\prime}\right)$ with
(i) $\left.\tilde{\psi}\right|_{L^{1}(G, \omega)}=\psi$ and $\delta \tilde{\psi}_{L^{1}(G, \omega) \times L^{1}(G, \omega)}=\delta \psi$.
(ii) Let $\mu$ be in $M(G, \omega)$ with $\|\mu\|_{\omega} \leq 1$, and let $x$ be in $X$ with $\|x\| \leq 1$ and $a, b \in L^{1}(G, \omega)$ with $\|a\|_{1}^{\omega} \leq 1$ and $\|b\|_{1}^{\omega} \leq 1$. If $\left\{\mu_{\alpha}\right\}$ is a net in $M(G, \omega)$ with $\left\|\mu_{\alpha}\right\|_{\omega} \leq 1$ such that so- $\lim \mu_{\alpha}=\mu$, then

$$
\left|\left(\overline{\lim }_{\alpha} \operatorname{Re} \tilde{\psi}\left(\mu_{\alpha}\right)(a \cdot x \cdot b)+i \overline{\lim }_{\alpha} \operatorname{Im} \tilde{\psi}\left(\mu_{\alpha}\right)(a \cdot x \cdot b)\right)-\tilde{\psi}(\mu)(a \cdot x \cdot b)\right| \leq 3\|\delta \tilde{\psi}\| .
$$

Proof. (i) We follow the proof of [12, Lemma 1.10] for this particular case. Let $\mu \in M(G, \omega)$ and let $\left\{e_{\alpha}\right\}$ be a bounded approximate identity for $L^{1}(G, \omega)$ with bound $M$. Defining

$$
\psi_{\alpha}(\mu)=\psi\left(\mu * e_{\alpha}\right)
$$

we see that $\psi_{\alpha}$ is a bounded net in $\mathcal{C}^{1}\left(M(G, \omega), X^{\prime}\right)$ and so has a cofinal subnet $\psi_{\beta}$ convergent to a limit $\tilde{\psi}$ in the weak ${ }^{*}$-topology induced by identifying $\mathcal{C}^{1}\left(M(G, \omega), X^{\prime}\right)$ with $\mathcal{C}_{1}(M(G, \omega), X)^{\prime}$. Thus

$$
\lim _{\beta} \psi\left(\mu * e_{\beta}\right)(x)=\tilde{\psi}(\mu)(x)
$$

for all $\mu \in M(G, \omega), x \in X$. Since for all $a \in L^{1}(G, \omega), \psi\left(a * e_{\beta}\right) \rightarrow \psi(a)$ in norm, $\left.\tilde{\psi}\right|_{L^{1}(G, \omega)}=\psi$. Also $\left.\delta \tilde{\psi}\right|_{L^{1}(G, \omega) \times L^{1}(G, \omega)}=\delta \psi$.

To prove (ii) let us consider $\mu, \nu \in M(G, \omega)$ with $\|\mu\|_{\omega},\|\nu\|_{\omega} \leq 1$ and $x \in X$ with $\|x\| \leq 1$. Then

$$
\begin{equation*}
|\delta \tilde{\psi}(\mu, \nu)(x)|=|\mu \cdot \tilde{\psi}(\nu)(x)-\tilde{\psi}(\mu * \nu)(x)+\tilde{\psi}(\mu) \cdot \nu(x)| \leq\|\delta \tilde{\psi}\| . \tag{3.4}
\end{equation*}
$$

For $a, b \in L^{1}(G, \omega)$ with $\|a\|_{1}^{\omega} \leq 1,\|b\|_{1}^{\omega} \leq 1$ and $x \in X$ with $\|x\| \leq 1$ by (3.4)

$$
\begin{aligned}
-\operatorname{Re} \tilde{\psi}\left(\mu_{\alpha}\right)(a \cdot x \cdot b) & =-\operatorname{Re} \tilde{\psi}\left(\mu_{\alpha}\right) \cdot a(x \cdot b) \\
& \leq \operatorname{Re} \mu_{\alpha} \cdot \psi(a)(x \cdot b)-\operatorname{Re} \psi\left(\mu_{\alpha} * a\right)(x \cdot b)+\|\delta \tilde{\psi}\|
\end{aligned}
$$

and so

$$
\begin{aligned}
-\varlimsup \operatorname{Re} \tilde{\psi}\left(\mu_{\alpha}\right)(a \cdot x \cdot b) & \leq \underline{\lim }\left\{\operatorname{Re} \mu_{\alpha} \cdot \psi(a)(x \cdot b)-\operatorname{Re} \psi\left(\mu_{\alpha} * a\right)(x \cdot b)+\|\delta \tilde{\psi}\|\right\} \\
& =\operatorname{Re} \mu \cdot \psi(a)(x \cdot b)-\operatorname{Re} \psi(\mu * a)(x \cdot b)+\|\delta \tilde{\psi}\|
\end{aligned}
$$

On the other hand

$$
-\overline{\lim } \tilde{\operatorname{Re}}\left(\mu_{\alpha}\right)(a \cdot x \cdot b) \geq \operatorname{Re} \mu \cdot \psi(a)(x \cdot b)-\operatorname{Re} \psi(\mu * a)(x \cdot b)-\|\delta \tilde{\psi}\|
$$

Hence

$$
\left|\mu \cdot \operatorname{Re} \psi(a)(x \cdot b)-\operatorname{Re} \psi(\mu * a)(x \cdot b)+\varlimsup \operatorname{Re} \tilde{\psi}\left(\mu_{\alpha}\right)(a \cdot x \cdot b)\right| \leq\|\delta \tilde{\psi}\| .
$$

Similarly for imaginary parts we have

$$
\left|\mu \cdot \operatorname{Im} \psi(a)(x \cdot b)-\operatorname{Im} \psi(\mu * a)(x \cdot b)+\overline{\lim } \operatorname{Im} \tilde{\psi}\left(\mu_{\alpha}\right)(a \cdot x \cdot b)\right| \leq\|\delta \tilde{\psi}\| .
$$

Therefore

$$
\begin{align*}
& \mid \mu \cdot \psi(a)(x \cdot b)-\psi(\mu * a)(x \cdot b) \\
& \quad+\left(\overline{\left.\lim \operatorname{Re} \tilde{\psi}\left(\mu_{\alpha}\right)+i \overline{\lim } \operatorname{Im} \tilde{\psi}\left(\mu_{\alpha}\right)\right)(a \cdot x \cdot b) \mid \leq 2\|\delta \tilde{\psi}\| .} .\right. \tag{3.5}
\end{align*}
$$

but from (3.4) we also have

$$
\begin{equation*}
|\mu \cdot \psi(a)(x \cdot b)-\psi(\mu * a)(x \cdot b)+\tilde{\psi}(\mu)(a \cdot x \cdot b)| \leq\|\delta \tilde{\psi}\| . \tag{3.6}
\end{equation*}
$$

Hence (3.5) and (3.6) imply that

$$
\left|\left(\overline{\lim } \operatorname{Re} \tilde{\psi}\left(\mu_{\alpha}\right)(a)+i \overline{\lim } \operatorname{Im} \tilde{\psi}\left(\mu_{\alpha}\right)\right)(a \cdot x \cdot b)-\tilde{\psi}(\mu)(a \cdot x \cdot b)\right| \leq 3\|\delta \tilde{\psi}\| .
$$

Proposition 3.4. [18, Proposition 3.1] Let $\mathcal{A}$ be a Banach algebra with a bounded approximate identity, and let $X$ be a Banach $\mathcal{A}$-bimodule. Let $\psi \in \mathcal{C}^{1}\left(\mathcal{A}, X^{\prime}\right)$ such that $|\psi(a)(b \cdot x \cdot c)| \leq\|\delta \psi\|$ for every $x \in X$ with $\|x\| \leq 1$ and $a, b, c \in \mathcal{A}$ with $\|a\| \leq 1,\|b\| \leq 1$ and $\|c\| \leq 1$. Then there exists $\widehat{\psi} \in X^{\prime}$ such that

$$
|\psi(a)(x)-\delta \widehat{\psi}(a)(x)| \leq 5\|\delta \psi\| .
$$

Theorem 3.5. Let $G$ be a locally compact group, and let $\omega$ be a diagonally bounded weight on $G$. Then $\mathcal{H}^{2}\left(L^{1}(G, \omega), L^{1}(G, \omega)^{(2 n+1)}\right)$ is a Banach space for every $n \in \mathbb{Z}^{+}$.

Proof. Set $X=L^{1}(G, \omega)^{(2 n)}$. Let $\phi \in \mathcal{C}^{1}\left(L^{1}(G, \omega), X^{\prime}\right)$ and let us consider $\tilde{\phi} \in$ $\mathcal{C}^{1}\left(M(G, \omega), X^{\prime}\right)$ as in Proposition 3.3. Set

$$
S=\left\{\operatorname{Re} \delta_{g^{-1}} \tilde{\phi}\left(\delta_{g}\right): g \in G\right\}
$$

Since $S$ is bounded above by $\|\tilde{\phi}\| D b(\omega)$ in $X_{\mathbb{R}}^{\prime}$, the complete vector lattice of real valued functions in $X^{\prime}$, then $\psi_{r}=\sup _{g \in G} S$ exists in $X_{\mathbb{R}}^{\prime}$.

For every $h \in G$ and $x \in X$ with $\|x\| \leq 1$ by (3.4) we have

$$
\begin{aligned}
& \delta_{h} \cdot \psi_{r}(x)=\sup _{k \in G}\left\{\operatorname{Re}\left(\delta_{h} * \delta_{k^{-1}}\right) \cdot \tilde{\phi}\left(\delta_{k}\right)(x)\right\}=\sup _{g \in G}\left\{\operatorname{Re} \delta_{g^{-1}} \cdot \tilde{\phi}\left(\delta_{g} * \delta_{h}\right)(x)\right\} \\
& \quad \leq \sup _{g \in G}\left\{\operatorname{Re}\left(\delta_{g^{-1}} * \delta_{g}\right) \cdot \tilde{\phi}\left(\delta_{h}\right)(x)+\operatorname{Re} \delta_{g^{-1}} \cdot \tilde{\phi}\left(\delta_{g}\right) \cdot \delta_{h}(x)\right\}+\|\delta \tilde{\phi}\| D b(\omega) \omega(h) \\
& \quad \leq \operatorname{Re} \tilde{\phi}\left(\delta_{h}\right)(x)+\psi_{r} \cdot \delta_{h}(x)+\|\delta \tilde{\phi}\| D b(\omega) \omega(h),
\end{aligned}
$$

where $h k^{-1}=g^{-1}$. On the other hand,

$$
\delta_{h} \cdot \psi_{r}(x) \geq \operatorname{Re} \tilde{\phi}\left(\delta_{h}\right)(x)+\psi_{r} \cdot \delta_{h}(x)-\|\delta \tilde{\phi}\| D b(\omega) \omega(h)
$$

Therefore,

$$
\begin{equation*}
\left|\delta_{h} \cdot \psi_{r}(x)-\psi_{r} \cdot \delta_{h}(x)-\operatorname{Re} \tilde{\phi}\left(\delta_{h}\right)(x)\right| \leq\|\delta \tilde{\phi}\| D b(\omega) \omega(h) . \tag{3.7}
\end{equation*}
$$

Now if $\mu_{\alpha}=\sum_{i=1}^{n} \alpha_{i} \delta_{h_{i}}$, then by (3.7)

$$
\begin{align*}
\mid \mu_{\alpha} \cdot \psi_{r}(x)-\psi_{r} \cdot \mu_{\alpha}(x) & -\operatorname{Re} \tilde{\phi}\left(\mu_{\alpha}\right)(x) \mid \\
& \leq \sum_{i=1}^{n}\left|\alpha_{i}\right|\left|\delta_{h_{i}} \cdot \psi_{r}(x)-\psi_{r} \cdot \delta_{h_{i}}(x)-\operatorname{Re} \tilde{\phi}\left(\delta_{h_{i}}\right)(x)\right|  \tag{3.8}\\
& \leq \sum_{i=1}^{n}\left|\alpha_{i}\right|\|\delta \tilde{\phi}\| D b(\omega) \omega\left(h_{i}\right) \leq\|\delta \tilde{\phi}\| D b(\omega)\left\|\mu_{\alpha}\right\|_{\omega} .
\end{align*}
$$

Similarly, by considering imaginary parts we obtain $\psi_{i}$ such that

$$
\begin{equation*}
\left|\mu_{\alpha} \cdot \psi_{i}(x)-\psi_{i} \cdot \mu_{\alpha}(x)-\operatorname{Im} \tilde{\phi}\left(\mu_{\alpha}\right)(x)\right| \leq\|\delta \tilde{\phi}\| D b(\omega)\left\|\mu_{\alpha}\right\|_{\omega} . \tag{3.9}
\end{equation*}
$$

Since every $h$ in $L^{1}(G, \omega)$ with $\|h\|_{1}^{\omega} \leq 1$ is the so-limit of a net $\left\{\mu_{\alpha}\right\}$ with $\left\|\mu_{\alpha}\right\|_{\omega} \leq 1$, where every $\mu_{\alpha}$ is a linear combination of point masses, then by (3.8) and (3.9) for every $x \in X$ with $\|x\| \leq 1$ and $a, b \in L^{1}(G, \omega)$ with $\|a\|_{1}^{\omega} \leq 1$ and $\|b\|_{1}^{\omega} \leq 1$ we have
$\left|(h \cdot \psi-\psi \cdot h)(a \cdot x \cdot b)-\left(\overline{\lim } \operatorname{Re} \tilde{\phi}\left(\mu_{\alpha}\right)+i \overline{\lim } \operatorname{Im} \tilde{\phi}\left(\mu_{\alpha}\right)\right)(a \cdot x \cdot b)\right| \leq 2\|\delta \tilde{\phi}\| D b(\omega)$
where $\psi=\psi_{r}+i \psi_{i}$. Now by Proposition 3.3 (ii), we have

$$
\left|\left(\overline{\lim }_{\alpha} \operatorname{Re} \tilde{\phi}\left(\mu_{\alpha}\right)(a \cdot x \cdot b)+i \varlimsup_{\alpha} \operatorname{Im} \tilde{\phi}\left(\mu_{\alpha}\right)(a \cdot x \cdot b)\right)-\phi(h)(a \cdot x \cdot b)\right| \leq 3\|\delta \tilde{\phi}\| .
$$

Thus

$$
\begin{aligned}
\mid(h \cdot \psi- & \psi \cdot h)(a \cdot x \cdot b)-\phi(h)(a \cdot x \cdot b) \mid \\
\leq & \left|(h \cdot \psi-\psi \cdot h)(a \cdot x \cdot b)-\left(\overline{\lim } \operatorname{Re} \tilde{\phi}\left(\mu_{\alpha}\right)+i \overline{\lim } \operatorname{Im} \tilde{\phi}\left(\mu_{\alpha}\right)\right)(a \cdot x \cdot b)\right| \\
& +\left|\left(\overline{\lim } \operatorname{Re} \tilde{\phi}\left(\mu_{\alpha}\right)+i \overline{\lim } \operatorname{Im} \tilde{\phi}\left(\mu_{\alpha}\right)\right)(a \cdot x \cdot b)-\phi(h)(a \cdot x \cdot b)\right| \\
\leq & \|\delta \tilde{\phi}\|(2 D b(\omega)+3) .
\end{aligned}
$$

Now by Proposition 3.4 there exist $\hat{\phi} \in X^{\prime}$ such that

$$
|(h \cdot \psi-\psi \cdot h)(x)-\delta \hat{\phi}(h)(x)-\phi(h)(x)| \leq 5\|\delta \tilde{\phi}\|(2 D b(\omega)+3)
$$

Define

$$
\bar{\psi}(h)(x)=-\delta \psi(h)(x)-\delta \widehat{\phi}(h)(x)+\phi(h)(x) .
$$

Then $\delta \bar{\psi}=\delta \tilde{\phi}$ and $|\bar{\psi}(h)(x)| \leq 5\|\delta \tilde{\phi}\|(2 D b(\omega)+3)$ for every $h \in L^{1}(G, \omega)$ with $\|h\|_{1}^{\omega} \leq 1$ and $x \in X$ with $\|x\| \leq 1$. So $\|\bar{\psi}\| \leq 5\|\delta \tilde{\phi}\|(2 D b(\omega)+3)$ and this completes the proof.

Theorem 3.6. $\mathcal{H}_{\lambda}^{2}\left(L^{1}(G, \omega)\right)$ is a Banach space for every locally compact group $G$ and for every diagonally bounded weight $\omega$.

Proof. Let $\phi \in \mathcal{C}^{1}\left(L^{1}(G, \omega), L^{\infty}\left(G, \omega^{-1}\right)\right)$ be such that for $a, b \in L^{1}(G, \omega)$

$$
\phi(a)(b)=-\phi(b)(a) .
$$

By the proof of Theorem 3.5 there exists $\bar{\psi} \in \mathcal{C}^{1}\left(L^{1}(G, \omega), L^{\infty}\left(G, \omega^{-1}\right)\right)$ defined by $\bar{\psi}(b)(a)=-\delta \psi(b)(a)+\phi(b)(a)$ such that $\delta \bar{\psi}=\delta \phi$ and for a constant $M,\|\bar{\psi}\| \leq$ $M\|\delta \phi\|$ and obviously $\bar{\psi}(b)(a)=-\bar{\phi}(a)(b)$.

Example 3.7. [17, Example 3.15] It is well known that for $\mathbb{F}_{2}$, the free group on two generators, the second unbounded cohomology $H^{2}\left(\mathbb{F}_{2}, \mathbb{R}\right)$ is trivial [3, Example 4.3 and Example 1 on page 58]. So all bounded 2-cocycles have the form $\phi(g, h)=$ $\psi(g)-\psi(g h)+\psi(h)$ for some possibly unbounded $\psi$. We define

$$
\omega(g)=\left\{\begin{array}{lc}
\exp (K-\psi(g)) & \text { if } g \neq e \\
1 & \text { otherwise }
\end{array}\right.
$$

where $K$ is a bound for $\phi$, we get a weight on $\mathbb{F}_{2}$ such that $\sup \left\{\omega(g) \omega\left(g^{-1}\right)\right\}<\infty$. Thus $\mathcal{H}^{2}\left(\ell^{1}\left(\mathbb{F}_{2}, \omega\right), \ell^{\infty}\left(\mathbb{F}_{2}, \omega^{-1}\right)\right)$ is a Banach space. In the case $\omega=1$ as noted in the Introduction $\mathcal{H}^{2}\left(\ell^{1}\left(\mathbb{F}_{2}\right), \ell^{\infty}\left(\mathbb{F}_{2}\right)\right) \neq 0$ and by [18] it is a Banach space.
Example 3.8. Bade et al. [1] studied the Beurling algebra $\ell^{1}\left(\mathbb{Z}, \omega_{\alpha}\right)$. They defined a weight $\omega_{\alpha}$ on $\mathbb{Z}$ by $\omega_{\alpha}(n)=(1+|n|)^{\alpha}$ and they proved
(i) If $\alpha>0$, then $\ell^{1}\left(\mathbb{Z}, \omega_{\alpha}\right)$ is not amenable.
(ii) If $0 \leq \alpha<1 / 2$, then $\ell^{1}\left(\mathbb{Z}, \omega_{\alpha}\right)$ is weakly amenable.
(iii) If $\alpha \geq 1 / 2$, then $\ell^{1}\left(\mathbb{Z}, \omega_{\alpha}\right)$ is not weakly amenable.

Note that if $\alpha=0$, then $\omega=1$ and $\ell^{1}\left(\mathbb{Z}, \omega_{\alpha}\right)=\ell^{1}(\mathbb{Z})$ is an amenable algebra [2, §43.3]. Thus by [12] $\mathcal{H}^{n}\left(\ell^{1}(\mathbb{Z}), X^{\prime}\right)=0$ for every Banach $\ell^{1}(\mathbb{Z})$-bimodule $X$ and every $n \geq 1$. In [16] the second author showed that $\mathcal{H}^{2}\left(\ell^{1}\left(\mathbb{Z}, \omega_{\alpha}\right), \mathbb{C}\right) \neq 0$ for every $\alpha>0$, then by $[19] \mathcal{H}^{2}\left(\ell^{1}\left(\mathbb{Z}, \omega_{\alpha}\right), \ell^{\infty}\left(\mathbb{Z}, \omega_{\alpha}\right)\right) \neq 0$. Note that $\omega_{\alpha}$ is not diagonally bounded. So Theorem 3.5 is not applicable. We do not know whether $\mathcal{H}^{2}\left(\ell^{1}\left(\mathbb{Z}, \omega_{\alpha}\right), \ell^{\infty}\left(\mathbb{Z}, \omega_{\alpha}\right)\right)$ is a Banach space or not.

Acknowledgment. The authors express their thanks to the referee for his valuable comments and bringing references [4] and [20] to the authors attention.

## References

[1] W. G. Bade, P. C. Curtis, Jr. and H. G. Dales, Amenability and weak amenability for Beurling and Lipschitz algebras, Proc. London Math. Soc. 55 (1987) 359-377.
[2] F. F. Bonsall and J. Duncan, complete normed algebras, (springer-Verlag, 1973).
[3] K. S. Brown, Cohomology of groups, Springer-Verlag, 1982.
[4] M. Burger and N. Monod, Continuous bounded cohomology and applications to rigidity theory, Geom. Funct. Anal. 12 (2002), no. 2, 219-280.
[5] H. G. Dales, F. Ghahramani, N. Grønbæk, Derivations into iterated duals of Banach algebras, Studia Math. 128 1998, 19-54.
[6] M. Despic and F. Ghahramani, Weak amenability of group algebras of locally compact groups, Canad. Math. Bull. 37 (1994), 165-167.
[7] F. Ghahramani and A. T. M. Lau, Multipliers and ideals in second conjugate algebras related to locally compact groups, J. Funct. Anal. 132 (1995) no. 1, 170191.
[8] F. P. Greenleaf, Norm decreasing homomorphisms of group algebras, Pacific J. Math. 15 (1965), 1187-1219.
[9] A. Ya. Helemskii, Banach cyclic (co)homology and the Connes-Tzygan exact sequence, J. London Math. Soc., (2) 6, (1992), 449-462.
[10] E. Hewitt and K. A. Ross, Abstract harmonic analysis I, Springer-verlage, Berlin, (1963).
[11] N. V. Ivanov, Second bounded cohomology group, J. Soviet Math., 167 (1988), 117-120.
[12] B. E. Johnson, Cohomology in Banach algebras, Men. American Math. Soc. 127 (1972), pp. 96
[13] ——, Weak amenability of group algebras, Bull. London Math. Soc. 23, (1991) 281-284.
[14] ——, Permanent weak amenability of group algebras of free groups, Bull. London Math. Soc. 31, (1999) 569-573.
[15] S. Matsumoto and S. Morita, Bounded cohomology of certain groups of homeomorphisms, Proc. Amer. Math. Soc. 94 (1985), 539-544.
[16] A. Pourabbas, Second cohomology of Beurling algebras, Saitama Math. j. 17(1999), 87-94.
$[17]$ _一, Weak amenability of Weighted group algebras, Atti Sem. Math. Fis. Uni. Modena 48, (2000) no. 2, 299-316.
[18] ——, Second cohomology group of group algebras with coefficients in iterated duals. Proc. Amer. Math. Soc. 132 (2004) no. 5, 1403-1410.
[19] A. M. Sinclair and R. R. Smith, Hochschild cohomology of von Neumann algebras, London Math. Soc. Lecture Note Series 203 (1995), pp. 196.
[20] T. Soma, Existence of non-Banach bounded cohomology, Topology 37 (1998), no. 1, 179-193.

Faculty of Mathematics and Computer Science, Amirkabir University of Technology, 424 Hafez Avenue, Tehran Iran
email:feyzih@aut.ac.ir, arpabbas@aut.ac.ir


[^0]:    Received by the editors June 2004 - In revised form in September 2004.
    Communicated by A. Valette.
    2000 Mathematics Subject Classification : Primary 43A20; Secondary 46M20.
    Key words and phrases : weak amenability, cohomology, Beurling algebra.

