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Abstract

Recently, we showed in [1] that any 3-Moufang generalized quadrangle is
automatically a Moufang quadrangle. In another recent paper, Katrin Tent
[2] borrowed an argument of the second author to show that the half Moufang
condition implies the Moufang condition for generalized quadrangles. In the
present paper we show that this argument can be used to further weaken
the hypotheses: we define the half 3-Moufang condition as a kind of greatest
common divisor of the 3-Moufang condition and the half Moufang condition
and show that it implies the Moufang condition.

1 Introduction, definitions and notation

A generalized quadrangle is a point-line incidence structure S = (P,L, I) containing
no ordinary k-gons as subgeometries for k < 4, and such that every two members of
P ∪ L are contained in some ordinary quadrangle (called an apartment). To avoid
trivialities, We will also assume that every point (line) is incident with at least three
lines (points). The automorphism group Aut(S) of the generalized quadrangle S
is the group of permutations of P and of L that preserve the relation I. Putting
G := Aut(S), we denote the stabilizer of an element x ∈ P ∪L as usual by Gx. For
points and lines x1, . . . , xk, k ∈ N, we denote by G[x1,...,xk] the stabilizer in G of all
elements incident with one of x1, . . . , xk.

Let S = (P,L, I) be a generalized quadrangle with automorphism group G. The
incidence graph is the graph with vertex set P ∪ L and edges given by I. A root is
the set of elements of a path of length 4 in the incidence graph. Hence there are two
kinds of roots: the ones containing 3 lines, and the ones containing three points.
A root R = {y0, y1, y2, y3, y4}, with y0Iy1I . . . Iy4, is called Moufang if the group
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G[y1,y2,y3] acts transitively on the set of apartments containing R. This is equivalent
with saying that G[y1,y2,y3] acts transitively on the set of elements incident with y0

(respectively y4) different from y1 (respectively y3).
A generalized quadrangle is called Moufang if all roots are Moufang. A general-

ized quadrangle is called half Moufang if every root of one fixed kind is Moufang. A
generalized quadrangle is called 3-Moufang if for every path {y0, y1, y2, y3} of length
3, with y0Iy1I . . . Iy3, the group G[y1,y2] acts transitively on the set of apartments
containing y0, . . . , y3.

Generalized quadrangles were introduced by Jacques Tits [4], and he also intro-
duced the Moufang condition in the appendix of [5]. The half Moufang condition
was introduced by Thas, Payne and the second author in [3], where the equivalence
with the Moufang condition in the finite case was shown. Later on, Richard Weiss
and the second author defined the k-Moufang condition for generalized polygons [7]
and Thas, Payne and the second author proved in [6] that 3-Moufang is equivalent
to Moufang for finite generalized quadrangles.

Recently, Katrin Tent [2] proved in general that the half Moufang condition
is equivalent to the Moufang condition, and she used an argument of the second
author in order to repair a flaw in an earlier version of her proof. Then, the authors
proved in [1] that, again in general, the 3-Moufang condition is equivalent to the
Moufang condition (for generalized quadrangles). In the same paper, they showed
how the argument of the second author can be adopted to give a very short proof of
Tent’s result mentioned above. In the present paper, we will apply a variant of that
very same argument to further weaken the Moufang condition. We will introduce a
condition that is weaker than both the half Moufang condition and the 3-Moufang
condition, and therefore we will call it the half 3-Moufang condition.

First notice that all paths of length 3 in a generalized quadrangles are of the same
type. So we cannot restrict on the set of 3-paths in order to weaken the 3-Moufang
condition. Instead, we will restrict on the transitivity property of the 3-Moufang
condition. More exactly, the half 3-Moufang condition assures that for one type of
root R = {y0, y1, y2, y3, y4}, with y0Iy1I . . . Iy4, the group G[y2,y3]

y0
acts transitively

on the apartments containing y0, . . . , y4.

Our Main result reads now:

Main Result. Every half 3-Moufang generalized quadrangle is a Moufang gen-

eralized quadrangle, and vice versa.

Since the converse is rather trivial to prove, we will only prove that the half
3-Moufang condition implies the Moufang condition.

2 Proof of the Main Result

From now on, we assume that S = (P,L, I) is a generalized quadrangle with au-
tomorphism group G, satisfying the half 3-Moufang condition. More exactly, we
assume that for all roots R = {y0, y1, y2, y3, y4}, with y0Iy1I . . . Iy4, and with
y0, y2, y4 ∈ P, the group G[y2,y3]

y0
acts transitively on the apartments containing

y0, . . . , y4.
We fix some apartment Σ := {x0, x1, . . . , x7}, with x0Ix1I · · ·Ix7Ix0, where

x0 ∈ P.
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2.1 Reduction lemmas

In this subsection, we reduce our main result to proving that certain actions must
be independent of certain configurations.

We remark first that all paths {x, y, y′, z}, with xIyIy′Iz and x ∈ L, of length 3
form a single orbit under G, and hence all groups G[x,y]

z are conjugate. The proof is
left to the reader, but the arguments follow the lines of the proof of Lemma 2 below.

For two points x, y ∈ P, the trace {x, y}⊥ is defined to be the set of all points
collinear to both x and y, and the span {x, y}⊥⊥ is the set of all points collinear to
all points of {x, y}⊥.

Lemma 1 If in S the span {x, y}⊥⊥ of some non-collinear points x, y contains at

least 3 elements, then S is half Moufang.

Proof We may assume without loss of generality that {x, y} = {x2, x6}. Let
x′

6 ∈ {x2, x6}
⊥⊥, with x2 6= x′

6 6= x6. Let x′

5 denote the line incident with x4 and x′

6.
As G[x3,x4]

x6
fixes {x2, x6}, the span (x2, x6)

⊥⊥ has to be stabilized as a set, but as
the lines through x4 are fixed as well, this implies that the span is fixed pointwise,
and hence in particular x′

6 is fixed. Consider an arbitrary element g ∈ G
[x3,x4]
x6,x′

6

and

choose an element h ∈ G[x′

5
,x′

6
] mapping x2 to x6 (h exists by the half 3-Moufang

assumption on the root {x0, x0x
′

6, x
′

6, x
′

5, x4}). The commutator [g, h] clearly belongs

to G
[x4,x′

5
,x′

6
]

x6 and hence is trivial. Consequently g = gh ∈ G[x3,x4,x5]. �

Let Ω denote the set of lines incident with x0, but distinct from x1.

Lemma 2 Let x be any point incident with x1, x 6= x0, and let y be any point not

on x1 collinear with x. If the action of G[x1,x]
y on Ω independent of x and y, then S

is half Moufang.

Proof It suffices to show that there is an element g ∈ G[x0,x1,x2] mapping x6 to
an arbitrary point z on x7. Let’s start with an arbitrary nontrivial collineation
α ∈ G[x1,x2]

x4
. Then there is a unique point z′ on xα

5 collinear with z. Hence, if we

denote x′

2 the unique point on x1 collinear with z′, then the collineation β ∈ G
[x1,x′

2
]

z′

mapping xα
7 to x7 maps xα

6 to z. The composition αβ fixes all points on x1 and —
by assumption — it also fixes all lines incident with x0, since the action of α on Ω
must be the inverse of the action of β on Ω. Moreover, αβ maps x6 to z. Also, the
action of αβ on the lines through x2 is the same as the action of β (since α fixes
every line through x2). Interchanging now the roles of x0 and x2, we see that the
collineation γ ∈ G[x0,x1]

z mapping x
β
3 back to x3 has an action on the lines through

x2 inverse to that of αβ, which implies that αβγ ∈ G[x0,x1,x2]. Since αβγ maps x6

to z, the assertion follows. �

In order to prove that every half 3-Moufang quadrangle is Moufang, we thus
need to show that our choice for x and y does not influence the action of G[x1,x]

y on

Ω. First we will deal with groups of the form G[x1,x2]
y where we vary y. For this,

we will need Lemma 1. Then we vary x on x1 and use the argument that repaired
Tent’s proof alluded to in the introduction.
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2.2 The action of G[x1,x2]
y on Ω is independent of the choice of y.

Here we prove:

Lemma 3 Let y be any point not on x1 collinear with x2. Then the action of G[x1,x2]
y

on Ω is independent of y.

Proof First we note that we may assume y to be incident with x3. Indeed, this
follows immediately from the fact that the group G[x0,x1]

x6
acts transitively on the

lines through x2 distinct from x1, and so any group G[x1,x2]
z can thus be seen as a

conjugate of G[x1,x2]
y with yIx3 under a collineation which does not permute the lines

through x0.

Now, if the action of G[x1,x2]
y on Ω were not independent of the choice of y, with

y incident with x3, then we may assume that the action of the group G1 := G[x1,x2]
x4

on Ω differs from the action of the group G2 := G[x2,x3]
x0

on Ω.

Suppose first that there is an element α ∈ G1 ∪ G2 such that α commutes with
every element of G1 ∪ G2. We claim that G1 and G2 must have the same action on
Ω. Indeed, if not, then there is a collineation g1 ∈ G1 such that its action on Ω is not
induced by any element of G2. Let g2 ∈ G2 be such that g2 maps x

g1

7 back to x7. Then

g1g2 gives rise to a collineation g1g2 ∈ G
[x2]
x6,xα

6

(because (xα
6 )g1g2 = (xg1g2

6 )α = xα
6 ).

If xα
6 were not contained in {x2, x6}

⊥⊥, then g1g2 would fix at least three points
on some line through x2, implying that g1g2 would fix an ideal subquadrangle (i.e.,
a subquadrangle with the property that every line in S through a point of the
subquadrangle belongs to the subquadrangle). This contradicts the fact that g1g2

does not fix all lines through x0. Hence we have a span of at least three elements,
and Lemma 1 concludes the proof in this case (since the current lemma holds for
half Moufang quadrangles).

Hence we may assume that the centralizer of G1 ∪G2 in G1 ∪G2 is trivial. Note
that G1 and G2 normalize each other. We claim that G1 cannot have a commutative
action on Ω. Indeed, if G1 were commutative, then also G2 would be commutative.
If only the identity in G1 has the same action on Ω as some element of G2, then
G1 and G2 centralize each other. But two abelian groups acting regularly on a set
Ω and centralizing each other must have the same action on Ω, a contradiction.
Hence there is some nonidentity element c1 in G1 having the same action on Ω as
an element c2 in G2. Both c1, c2 centralize G1 ∪ G2, again a contradiction with our
assumptions. The claim is proved.

Next we claim that only the identity in G1 has the same action on Ω as some
element of G2. Indeed, suppose by way of contradiction that there is a β1 ∈ G1

inducing the same action on Ω as some β2 ∈ G2. Since β1 cannot lie in the center of
G1∪G2, we may suppose there is a g ∈ G1∪G2 such that the commutator [β1, g] 6= id
(and this is equivalent to the assumption that the action on Ω of that commutator
be nontrivial). Suppose g ∈ G2 — the case g ∈ G1 is similar, if one interchanges
the roles of x0 and x4 (noting that the action of G1 and G2 on Ω is permutation
equivalent with their action on the set of lines through x4 distinct from x3). Consider
an arbitrary h ∈ G[x0,x1]

x6
, then gh induces the same action on Ω as g. It is clear that

all the commutators [β1, g], [β2, g] and [β2, g
h] induce the same action on Ω, and each

of them fixes all points of x3. This easily implies α := [β1, g] = [β2, g] = [β2, g
h].
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Since the latter fixes the line xh
3 pointwise and since h is arbitrary, we see that α 6= id

fixes all points collinear with x2. So, the image of x6 under α must lie in the span of
x2 and x6 which forces the generalized quadrangle to be half Moufang by Lemma 1.
But then the lemma holds, and so the claim is proved.

Hence the regular actions of G1 and G2 on Ω normalize each other and share
only the identity. This easily implies that they centralize each other, and the actions
on Ω are opposite, i.e., Ω can be identified with G2, the group G1 is anti-isomorphic
to G2 and its action on Ω can be identified with left multiplication in G2, and the
action of G2 on Ω is right multiplication in G2.

We conclude that, for arbitrary yIx3, y 6= x2, the action of G[x0,x1]
y on Ω is either

the same as the action of G2 on Ω, or it is opposite.
Suppose both really occur. So for some yIx3, y 6= x2, the action of G1 = G[x0,x1]

y

on Ω is opposite the action of G2 on Ω, and for some zIx3, z 6= x2, the action of
G3 := G[x0,x1]

z on Ω is the same as the action of G2 on Ω. Since G1 ∩G2 is trivial, no
nontrivial element of G2 can fix all points on x1. This implies that G2∩G3 is trivial.
But G2 and G3 normalize each other, hence they centralize each other. This means
that the action of G3 — which is the same as the action of G2 — on Ω centralizes
the action of G2 on Ω, hence this action is commutative! This contradicts a previous
claim.

We conclude that all actions of G[x0,x1]
y on Ω, yIx3, y 6= x2, are either the same

as the action of G2 on Ω, or opposite. In particular, the action is independent of y.
�

2.3 The action of G[x1,x]
y on Ω is independent of x

Here we prove:

Lemma 4 If x′

2 is an arbitrary point on x1, x′

2 6= x0, and x′

4 is the unique point

on x5 collinear with x′

2, then the action of G[x1,x2]
x4

on Ω coincides with the action of

G
[x1,x′

2
]

x′

4

on Ω.

Proof Let U2 be the permutation group acting on Ω given by the action of G[x1,x2]
x4

.
Let x′

2 be an arbitrary point on x1, x′

2 6= x0, and let x′

4 be the unique point on x5

collinear with x′

2. Then we define U ′

2 as the permutation group on Ω given by

the action of G
[x1,x′

2
]

x′

4

. If we show that U2 ≡ U ′

2, then Lemma 2 implies that S is

half Moufang, and hence Moufang by [2]. We assume that U2 6= U ′

2 and seek a
contradiction. First we claim that the two different groups U2 and U ′

2 cannot have a
nontrivial element in common. Indeed, let U6 be the permutation group acting on Ω
the way G[x6,x7]

x4
does. Then clearly U6 is conjugate to U2 since for every g ∈ G[x1,x2]

x4

there exists an h ∈ G[x6,x7]
x4

(determined by x
g
7 = xh−1

1 ) such that G[x1,x2]
x4

= G[x6,x7]
x4

gh
.

Similarly U6 is conjugate to U ′

2. Suppose now that there are g ∈ G[x1,x2]
x4

and g′ ∈

G
[x1,x′

2
]

x′

4

inducing the same action on Ω. For α ∈ G[x1,x2]
x4

∪G
[x1,x′

2
]

x′

4

∪G[x6,x7]
x4

denote by

rα the corresponding element of U2 ∪ U ′

2 ∪ U6. With this notation rg = rg′ . If h is
as above, then U2 = U

rgrh

6 = U
rg′rh

6 = U ′

2, a contradiction. The claim follows.
We now show that the groups U2 and U ′

2 also normalize each other. If u2 ∈ U2

and u′

2 ∈ U ′

2, then let g ∈ G[x1,x2]
x4

be such that rg = u2 and similarly let g′ ∈ G
[x1,x′

2
]

x′

4
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be such that rg′ = u′

2. Then gg′ belongs to G
[x1,x2]

x
g′

4

, which has the same action on

Ω as G[x1,x2]
x4

by Lemma 3. Hence u
u′

2

2 ∈ U2 and U ′

2 normalizes U2. Similarly, U2

normalizes U ′

2.
Since U2 ∩ U ′

2 is trivial, it now follows that U2 and U ′

2 centralize each other. So,
as before, their respective actions on Ω are mutually opposite one another.

We need some more notation now. Note that we may assume that there are
at least 4 lines through x0 otherwise the discussion about U2 and U ′

2 having a dif-
ferent action on Ω is absurd. We can thus define two different paths of length
4 both not contained in the apartment Σ by the incidences x0Ix̃1Ix̃2Ix̃3Ix4 and
x4Ix5Ix6Ix7Ix0. Furthermore we denote by x4

′ the unique point on x5 collinear
with x′

2, and by x̃2
′ the unique point on x̃1 collinear with x′

4. Finally the unique
point on x7 collinear with x4

′ is denoted p and the the unique point on x̃1 collinear
with x4

′ is called q.

Put Ω̃ equal to the set of lines through x0 distinct from x̃1. The groups G
[x̃1,x̃2

′

]
x′

4

and G[x̃1,x̃2]
x4

induce opposite actions on Ω̃ since there exists a collineation g ∈ G[x5,x6]
x0

conjugating G
[x1,x′

2
]

x′

4

into G
[x̃1,x̃2

′

]
x′

4

and G[x1,x2]
x4

into G[x̃1,x̃2]
x4

.

Also, the group G
[x̃1,q]
x4

′ induces either the same action on Ω̃ as G[x̃1,x̃2]
x4

or the

opposite action, in which case this action coincides with the action of G
[x̃1,x̃2

′

]
x′

4

on Ω̃.

Define g ∈ G
[x6,x7]
x4

′ such that x
g
1 = x̃1, and define h ∈ G[x6,x7]

x4
such that xh

1 = x̃1. We
know from Lemma 3 that g and h have the same action on the set of lines through

x0. But g conjugates G
[x1,x′

2
]

x4
′ (which induces the same action on Ω as G

[x1,x′

2
]

x′

4

by

Lemma 3) into G
[x̃1,q]
x4

′ and h conjugates G[x1,x2]
x4

into G[x̃1,x̃2]
x4

. Hence the actions of

G
[x̃1,q]
x4

′ and G[x̃1,x̃2]
x4

on Ω̃ are opposite.

We have shown that the actions of G
[x̃1,q]
x4

′ and G
[x̃1,x̃2

′

]
x′

4

on Ω̃ coincide. Now let

g′ ∈ G
[x1,x′

2
]

x′

4

map x̃1 to x7 and let h′ ∈ G
[x1,x′

2
]

x4
′ map x̃1 to x7. Then, since g′ and h′

induce the same action on Ω by Lemma 3, and since

(
G

[x̃1,x̃2

′

]
x′

4

)g′

= G
[x6,x7]
x′

4

and
(
G

[x̃1,q]
x4

′

)h′

= G
[p,x7]
x4

′ ,

the groups G
[x6,x7]
x′

4

and G
[p,x7]
x4

′ induce the same action on the set of lines through x0.

Now let g′′ ∈ G[x6,x7]
x4

map x7 to x1 and let h′′ ∈ G
[x6,x7]
x4

′ map x7 to x1. Again both
g′′ and h′′ induce the same action on the set of lines through x0. Moreover, we have

(G[x6,x7]
x4

)g′′ = G[x1,x2]
x4

and (G
[p,x7]
x4

′ )h′′

= G
[x1,x′

2
]

x4
′ . We conclude that the action of U2

on Ω coincides with that of U ′

2.
The lemma is proved. �

This now also completes the proof of the Main Result.
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