The two smallest minimal blocking sets of
 $\mathrm{Q}(2 n, 3), n \geqslant 3$

J. De Beule*
L. Storme †

Abstract

We describe the two smallest minimal blocking sets of $\mathrm{Q}(2 n, 3), n \geqslant 3$. To obtain these results, we use the characterization of the smallest minimal blocking sets of $\mathrm{Q}(6,3)$, different from an ovoid. We also present some geometrical properties of ovoids of $\mathrm{Q}(6, q), q$ odd.

1 Introduction

Let $\mathrm{Q}(2 n, q), n \geqslant 2$, be the non-singular parabolic quadric in $\mathrm{PG}(2 n, q)$. An ovoid of the polar space $\mathrm{Q}(2 n, q)$ is a set of points \mathcal{O} of $\mathrm{Q}(2 n, q)$, such that every maximal singular subspace (or generator) of $\mathrm{Q}(2 n, q)$ intersects \mathcal{O} in exactly one point. For $\mathrm{Q}(2 n, q)$, the generators are spaces of dimension $n-1$. A blocking set of the polar space $\mathrm{Q}(2 n, q)$ is a set of points \mathcal{K} of $\mathrm{Q}(2 n, q)$ such that every generator intersects \mathcal{K} in at least one point. If \mathcal{O} is an ovoid of $\mathrm{Q}(2 n, q)$, then \mathcal{O} has size $q^{n}+1$. So if \mathcal{K} is a blocking set of $\mathrm{Q}(2 n, q)$ different from an ovoid, then \mathcal{K} has size $q^{n}+1+r$, with $r>0$. A blocking set \mathcal{K} is called minimal if for every point $p \in \mathcal{K}, \mathcal{K} \backslash\{p\}$ is not a blocking set, or equivalently, if for every point $p \in \mathcal{K}$, there is a generator α such that $\alpha \cap \mathcal{K}=\{p\}$.

We suppose in this article that q is odd. We recall known results about ovoids of the parabolic quadric in 4,6 and 8 dimensions.

Theorem 1. (Ball [1]) Suppose that \mathcal{O} is an ovoid of $\mathrm{Q}(4, q), q=p^{h}$, p prime, $h \geqslant 1$, then every elliptic quadric $\mathrm{Q}^{-}(3, q)$ of $\mathrm{Q}(4, q)$ intersects \mathcal{O} in $1 \bmod p$ points.

This result has interesting applications. One of them is the classification of all ovoids of $\mathrm{Q}(4, q), q$ prime.

[^0]Theorem 2. (Ball et al. [2]) All ovoids of $\mathrm{Q}(4, q), q$ prime, are elliptic quadrics $\mathrm{Q}^{-}(3, q)$.

When $q=p^{h}, p$ an odd prime, $h>1$, and $q=2^{2 h+1}, h \geq 1$, other classes of ovoids of $\mathrm{Q}(4, q)$ are known ($[9,15,18,19])$.

The classification of the ovoids of $\mathrm{Q}(4, q), q$ prime, leads to the following theorem, using a result of [13].

Theorem 3. When q is an odd prime, $q \geqslant 5, \mathrm{Q}(6, q)$ does not have ovoids.
When $q=3^{h}, h \geqslant 1, \mathrm{Q}(6, q)$ always has ovoids $([9,16,17])$, and when q is even, then $\mathrm{Q}(6, q)$ does not have ovoids $([17])$. For all other values of q, the existence or non-existence of ovoids of $\mathrm{Q}(6, q)$ is not known, although it is conjectured in [13] that $\mathrm{Q}(6, q)$ has ovoids if and only if $q=3^{h}, h \geqslant 1$.

Finally, we recall the following theorem about ovoids of higher dimensional parabolic quadrics.

Theorem 4. (Gunawardena and Moorhouse [8]) The parabolic quadric $\mathrm{Q}(8, q)$, q odd, does not have ovoids. This implies also that $\mathrm{Q}(2 n, q), q$ odd, $n \geqslant 5$, does not have ovoids.

We now recall known results about blocking sets different from ovoids. Suppose that $\alpha \mathcal{B}$ is a cone with vertex the k-dimensional subspace α and base some set \mathcal{B} of points, lying in some subspace $\pi, \pi \cap \alpha=\emptyset$. Then the truncated cone $\alpha^{*} \mathcal{B}$ is defined as $\alpha \mathcal{B} \backslash \alpha$, hence, as the set of points of the cone $\alpha \mathcal{B}$ where the points of the vertex α are removed from. If α is the empty subspace, then $\alpha^{*} \mathcal{B}=\mathcal{B}$.

The case $q=3$ of the following theorem was proved in [5]. The theorem for $q>3$ odd prime was proved in [4]. We denote the polarity associated to the quadric by \perp.

Theorem 5. The smallest minimal blocking sets of $\mathrm{Q}(6, q), q$ an odd prime, different from an ovoid of $\mathrm{Q}(6, q)$, are truncated cones $p^{*} \mathrm{Q}^{-}(3, q), p \in \mathrm{Q}(6, q), \mathrm{Q}^{-}(3, q) \subseteq$ $p^{\perp} \cap \mathrm{Q}(6, q)$, and have size $q^{3}+q$.

When $q>3$ is an odd prime, this theorem generalizes to the following theorem.
Theorem 6. ([5]) The smallest minimal blocking sets of $\mathrm{Q}(2 n, q), q>3$ prime, $n \geqslant$ 4 , are truncated cones $\pi_{n-3}^{*} \mathrm{Q}^{-}(3, q), \pi_{n-3} \subseteq \mathrm{Q}(2 n, q), \mathrm{Q}^{-}(3, q) \subseteq \pi_{n-3}^{\perp} \cap \mathrm{Q}(2 n, q)$, and have size $q^{n}+q^{n-2}$.

Ovoids of $\mathrm{Q}(6, q)$ can be used to construct smaller examples in higher dimension. For $q=3$, the following result is known.

Theorem 7. ([5]) The smallest minimal blocking sets of $\mathrm{Q}(2 n, q=3)$, $n \geqslant 4$, are truncated cones $\pi_{n-4}^{*} \mathcal{O}, \mathcal{O}$ an ovoid of $\mathrm{Q}(6, q=3), \mathcal{O} \subset \pi_{n-4}^{\perp}, \pi_{n-4} \subset \mathrm{Q}(2 n, q)$, and have size $q^{n}+q^{n-3}$.

Theorems 6 and 7 express the difference between $q>3$ odd prime and $q=$ 3. Furthermore, considering $\mathrm{Q}(2 n, q=3), n \geqslant 4$, it is clear that a truncated cone $\pi_{n-3}^{*} \mathrm{Q}^{-}(3, q)$, contained in $\mathrm{Q}(2 n, q)$, constitutes a minimal blocking set of size $q^{n}+q^{n-2}$. We show in this article that minimal blocking sets of $\mathrm{Q}(2 n, 3)$ of size k,
$q^{n}+q^{n-3}<k<q^{n}+q^{n-2}$ do not exist, and we characterize the minimal blocking sets of $\mathrm{Q}(2 n, q=3)$ of size $q^{n}+q^{n-2}$, as described in the following theorem. Finally, we show that minimal blocking sets of $\mathrm{Q}(2 n, q=3), n \geqslant 3$, of size $q^{n}+q^{n-2}+1$ do not exist.

Theorem 8. The minimal blocking sets of $\mathrm{Q}(2 n, 3), n \geqslant 3$, of size at most $3^{n}+3^{n-2}$, are truncated cones $\pi_{n-4}^{*} \mathcal{O}, \pi_{n-4} \subseteq \mathrm{Q}(2 n, 3), \pi_{n-4}^{\perp} \cap \mathrm{Q}(2 n, 3)=\pi_{n-4} \mathrm{Q}(6,3)$, \mathcal{O} an ovoid of $\mathrm{Q}(6,3)$, and $\pi_{n-3}^{*} \mathrm{Q}^{-}(3,3), \pi_{n-3} \subseteq \mathrm{Q}(2 n, 3), \pi_{n-3}^{\perp} \cap \mathrm{Q}(2 n, 3)=\pi_{n-3} \mathrm{Q}(4,3)$, $\mathrm{Q}^{-}(3,3) \subseteq \mathrm{Q}(4,3)$. Furthermore, a minimal blocking set of size $3^{n}+3^{n-2}+1$ of $\mathrm{Q}(2 n, 3)$ does not exist.

Finally, we mention that blocking sets of other classical polar spaces such as $\mathrm{Q}^{-}(2 n+1, q)$ and $\mathrm{W}(2 n+1, q)$ were studied by K. Metsch, $[11,12]$.

Before presenting the proof of the preceding theorem, we first mention some geometrical properties of ovoids of $\mathrm{Q}(6, q), q$ odd.

2 Geometrical results on ovoids of $\mathrm{Q}(6, q), q$ odd

For the next three lemmas, we suppose that $\mathrm{Q}(6, q)$ has ovoids. This implies that q is odd, since $\mathrm{Q}(6, q), q$ even, does not have ovoids [17], and this hypothesis is satisfied when $q=3^{h}, h \geqslant 1$. Denote an ovoid of $\mathrm{Q}(6, q)$ by \mathcal{O}.

Lemma 1. The ovoid \mathcal{O} spans the 6 -dimensional space $\operatorname{PG}(6, q)$.
Proof. Let $\Omega=\langle\mathcal{O}\rangle$.
It is impossible that $\Omega \cap \mathrm{Q}(6, q)$ is a singular quadric. For, assume that $\langle\mathcal{O}\rangle \cap$ $\mathrm{Q}(6, q)=\pi_{s} Q$, a cone with vertex π_{s}, an s-dimensional subspace, $s \geqslant 0$, and with base Q, a non-singular quadric of dimension at most 4. Then π_{s} projects \mathcal{O} onto an ovoid of Q. However, no non-singular quadric of dimension at most four has ovoids of size $q^{3}+1$.

If $\Omega \cap \mathrm{Q}(6, q)=\mathrm{Q}(4, q)$, then \mathcal{O} must necessarily be an ovoid of $\mathrm{Q}(4, q)$; impossible since $|\mathcal{O}|>q^{2}+1$. If $\langle\mathcal{O}\rangle \cap \mathrm{Q}(6, q)=\mathrm{Q}^{+}(5, q)$, then \mathcal{O} must be an ovoid of $\mathrm{Q}^{+}(5, q)$; impossible since $|\mathcal{O}|>q^{2}+1$. Finally, $\langle\mathcal{O}\rangle \cap \mathrm{Q}(6, q)=\mathrm{Q}^{-}(5, q)$ is impossible, since $\mathrm{Q}^{-}(5, q)$ does not have ovoids [14].

Lemma 2. No elliptic quadric $\mathrm{Q}^{-}(3, q)$ is contained in \mathcal{O}.
Proof. Suppose that some $\mathrm{Q}^{-}(3, q) \subseteq \mathcal{O}$. Consider a point $p \in \mathcal{O} \backslash \mathrm{Q}^{-}(3, q)$. The 4space $\alpha=\left\langle p, \mathrm{Q}^{-}(3, q)\right\rangle$ intersects $\mathrm{Q}(6, q)$ in a parabolic quadric $\mathrm{Q}(4, q)$ or in a cone $r \mathrm{Q}^{\prime-}(3, q)$. If α intersects $\mathrm{Q}(6, q)$ in a $\mathrm{Q}(4, q)$ then it contains at least $q^{2}+2$ points of \mathcal{O}, a contradiction, since any $\mathrm{Q}(4, q)$ can intersect \mathcal{O} in at most $q^{2}+1$ points, the number of points of an ovoid of $\mathrm{Q}(4, q)$. If α intersects $\mathrm{Q}(6, q)$ in a cone $r \mathrm{Q}^{\prime-}(3, q)$, then \mathcal{O} contains at least two points spanning a line of $\mathrm{Q}(6, q)$, a contradiction.

The following lemma is an application of Theorem 1.
Lemma 3. The ovoid \mathcal{O} does not contain an ovoid \mathcal{O}^{\prime} of $\mathrm{Q}(4, q)$, with $\mathrm{Q}(4, q)$ contained in $\mathrm{Q}(6, q)$.

Proof. Suppose the contrary, i.e., suppose that there is some ovoid \mathcal{O}^{\prime} of $\mathrm{Q}(4, q) \subseteq$ $\mathrm{Q}(6, q)$, with $\mathcal{O}^{\prime} \subseteq \mathcal{O}$. By the previous lemma, we may suppose that \mathcal{O}^{\prime} is not an elliptic quadric and hence, $\left\langle\mathcal{O}^{\prime}\right\rangle$ is a 4 -dimensional projective space α, such that $\alpha \cap \mathrm{Q}(6, q)=\mathrm{Q}(4, q)$. Since \mathcal{O} spans the 6 -dimensional space, we can choose a point $p \in \mathcal{O} \backslash \alpha$. Since $\alpha \cap \mathcal{O}$ contains an ovoid of $\mathrm{Q}(4, q), p \notin \alpha^{\perp}$, hence $p^{\perp} \cap$ $\mathrm{Q}(4, q)=\mathrm{Q}^{ \pm}(3, q)$, or $p^{\perp} \cap \mathrm{Q}(4, q)=r \mathrm{Q}(2, q)$ which is a tangent cone to $\mathrm{Q}(4, q)$. If $p^{\perp} \cap \mathrm{Q}(4, q)=r \mathrm{Q}(2, q)$ or $p^{\perp} \cap \mathrm{Q}(4, q)=\mathrm{Q}^{+}(3, q)$, then p^{\perp} contains a generator of $\mathrm{Q}(4, q)$ meeting \mathcal{O}^{\prime} and hence p^{\perp} contains a point of \mathcal{O}^{\prime}, a contradiction. If $p^{\perp} \cap \mathrm{Q}(4, q)=\mathrm{Q}^{-}(3, q)$, then Theorem 1 implies that p^{\perp} contains a point of \mathcal{O}^{\prime}, a contradiction.

We call a hyperplane α of $\operatorname{PG}(6, q)$ hyperbolic, elliptic respectively, if $\alpha \cap Q(6, q)=$ $\mathrm{Q}^{+}(5, q), \alpha \cap \mathrm{Q}(6, q)=\mathrm{Q}^{-}(5, q)$ respectively.

Corollary 1. Any hyperbolic hyperplane α has the property that $\langle\alpha \cap \mathcal{O}\rangle=\alpha$.
Proof. Suppose that α is a hyperbolic hyperplane. Then necessarily α intersects \mathcal{O} in an ovoid \mathcal{O}^{\prime} of a $\mathrm{Q}^{+}(5, q)$. Since any ovoid of $\mathrm{Q}(4, q)$ is not contained in \mathcal{O}, the ovoid \mathcal{O}^{\prime} spans the 5 -dimensional space α.

It is known that $\mathrm{Q}(6,3)$ has, up to collineations, a unique ovoid [10]. In [20], one finds an explicit list, related to a chosen $\mathrm{Q}(6,3)$, of the coordinates in $\operatorname{PG}(6,3)$ of the points of this ovoid. With the aid of the software package pg [3], we can compute all hyperplanes of $\operatorname{PG}(6,3)$, select the elliptic hyperplanes from that list and check whether such an elliptic hyperplane is spanned by the points of the ovoid it contains. The software package pg is a package written in the language of the computer algebra system GAP [7]. Checking the mentioned property can be done with a few commands of the package pg . We found the following result.

Lemma 4. Any elliptic hyperplane α of $\operatorname{PG}(6,3)$ has the property that $\langle\alpha \cap \mathcal{O}\rangle=\alpha$.
We end this section with the following result. It was proved in [2], using Theorem 1.

Theorem 9. (Ball, Govaerts and Storme [2]) Suppose that $\mathrm{Q}(6, q), q=p^{h}$, $h \geqslant 1, p$ an odd prime, has an ovoid \mathcal{O}. Then any elliptic hyperplane intersects \mathcal{O} in $1 \bmod p$ points.

3 Small minimal blocking sets of $\mathrm{Q}(2 n, 3), n \geqslant 3$

We consider the parabolic quadric $\mathrm{Q}(2 n, 3), n \geqslant 3$. Some lemmas are restricted to $n \geqslant 4$. In that case, we assume that the following hypothesis is true for $\mathrm{Q}(2 k, 3)$, $k=3, \ldots, n-1$.

The minimal blocking sets of size at most $q^{k}+q^{k-2}+1$ in $\mathrm{Q}(2 k, q=3)$ are truncated cones $\pi_{k-4}^{*} \mathcal{O}, \pi_{k-4}^{\perp} \cap \mathrm{Q}(2 k, q=3)=\pi_{k-4} \mathrm{Q}(6, q=3), \mathcal{O}$ an ovoid of $\mathrm{Q}(6, q=3)$; and truncated cones $\pi_{k-3}^{*} \mathrm{Q}^{-}(3, q=3), \pi_{k-3}^{\perp} \cap \mathrm{Q}(2 k, q=3)=\pi_{k-3} \mathrm{Q}^{-}(3, q=3), \pi_{i}$ an i-dimensional subspace contained in $\mathrm{Q}(2 k, q=3)$. These examples have respectively size $q^{k}+q^{k-3}$ and $q^{k}+q^{k-2}$.

To prove this hypothesis for $n=4$, we will consider $\mathrm{Q}(6,3)$.

Suppose that \mathcal{K} is a minimal blocking set of size at most $q^{n}+q^{n-2}+1$ of $\mathrm{Q}(2 n, q=$ $3), n \geqslant 3$. Since the smallest minimal blocking sets of $\mathrm{Q}(2 n, q=3), n \geqslant 4$, of size $q^{n}+q^{n-3}$, are already classified [5], we also assume that $|\mathcal{K}| \geqslant q^{n}+q^{n-3}+1$ when $n \geqslant 4$.

The next two lemmas can be proved by techniques of [6].
Lemma 5. For every point $r \in \mathcal{K},\left|r^{\perp} \cap \mathcal{K}\right| \leqslant q^{n-2}+1$.
Lemma 6. Consider a point $r \in \mathrm{Q}(2 n, q) \backslash \mathcal{K}$, then the points of $r^{\perp} \cap \mathcal{K}$ are projected from r onto a minimal blocking set \mathcal{K}_{r} of $\mathrm{Q}(2 n-2, q)$, with $\mathrm{Q}(2 n-2, q)$ the base of the cone $r^{\perp} \cap \mathrm{Q}(2 n, q)$.

We call a line of $\mathrm{Q}(2 n, q)$ meeting \mathcal{K} in i points an i-secant to \mathcal{K}. The next lemma and its corollary are restricted to $n=3$ but will be generalized to $n \geqslant 4$. We use the fact that a minimal blocking set of $\mathrm{Q}(4,3)$, different from an ovoid, contains at least $12=q^{2}+q$ points, with $q=3$. This is proved in e.g. [5].

Lemma 7. There are no lines of $\mathrm{Q}(6,3)$ meeting \mathcal{K} in exactly 2 points.
Proof. Suppose that L is a 2 -secant to \mathcal{K}. Consider a generator π of $\mathrm{Q}(6,3)$ on L such that $\pi \cap \mathcal{K}=L \cap \mathcal{K}$; Lemma 5 implies that such a generator exists. Count the number of pairs $(u, v), u \in \pi \backslash L, v \in \mathcal{K} \backslash L, u \in v^{\perp}$. Since the projection of the set of points $u^{\perp} \cap \mathcal{K}$ from u is a minimal blocking set of $\mathrm{Q}(4,3)$, and since it cannot be an ovoid of $\mathrm{Q}(4,3)$, it must contain at least $q^{2}+q$ points of $\mathrm{Q}(4,3)$. We obtain $q^{2}\left(q^{2}+1\right)$ as lower bound for this number. Using the size of \mathcal{K}, we find $\left(q^{3}+q-1\right) q=q^{4}+q^{2}-q$ as upper bound, hence, $q^{2}\left(q^{2}+1\right) \leqslant q^{4}+q^{2}-q$, a contradiction.

Corollary 2. Every generator π of $\mathrm{Q}(6, q=3)$ intersects \mathcal{K} in 1 point, or in 3 or 4 collinear points.

Proof. Since there are no 2 -secants to \mathcal{K}, 2 points of \mathcal{K} in π give rise to 3 or 4 collinear points of \mathcal{K} in π. If there would be 3 points of \mathcal{K} spanning π, then π would contain at least 7 points of \mathcal{K}, a contradiction with Lemma 5.

To generalize these two propositions, we rely now on the induction hypothesis.
Lemma 8. No generator π_{n-1} of $\mathrm{Q}(2 n, q=3), n \geqslant 4$, intersects \mathcal{K} in exactly 2 points.

Proof. Suppose that for some generator π_{n-1} of $\mathrm{Q}(2 n, q),\left|\pi_{n-1} \cap \mathcal{K}\right|=2$, where the two points of $\pi_{n-1} \cap \mathcal{K}$ lie on the line L. Count the number of pairs (u, v), $u \in \pi_{n-1} \backslash L, u \in v^{\perp}, v \in \mathcal{K} \backslash \pi_{n-1}$. Since no minimal blocking set of size at most $q^{n-1}+q^{n-3}+1$ of $\mathrm{Q}(2 n-2, q)$ has a 2 -secant, we find $\left|u^{\perp} \cap \mathcal{K}\right| \geqslant q^{n-1}+q^{n-3}+2$. Hence, the lower bound on the number of pairs is $\left(q^{n-1}+\ldots+q^{2}\right)\left(q^{n-1}+q^{n-3}\right)$. As upper bound, we find $\left(q^{n}+q^{n-2}-1\right)\left(q^{n-2}+\ldots+q\right)$, which is smaller than the lower bound, a contradiction.

Corollary 3. No line L of $\mathrm{Q}(2 n, 3), n \geqslant 4$, intersects \mathcal{K} in exactly 2 points.
Proof. Suppose that L is a 2 -secant to \mathcal{K}. By the minimality of \mathcal{K} and Lemma 5 , there exists a generator π_{n-1} on L such that $L \cap \mathcal{K}=\pi_{n-1} \cap \mathcal{K}$, a contradiction.

In three steps, we now prove Theorem 8 for $n=3$.
Lemma 9. Suppose that L is a line of $\mathrm{Q}(6,3)$ meeting \mathcal{K} in 3 or 4 points. Suppose that π is a generator of $\mathrm{Q}(6,3)$ on L, then $L \cap \mathcal{K}=\pi \cap \mathcal{K}$, and $\left|r^{\perp} \cap \mathcal{K}\right| \leqslant q^{2}+q+1$ for every $r \in \pi \backslash L$.

Proof. Let r_{0} be one of the points of $\mathcal{K} \cap \pi$. Suppose that $r \in \pi \backslash L$. Then there exists a generator π^{\prime} of $\mathrm{Q}(6,3)$ through r meeting \mathcal{K} only in r_{0}. The $q^{2}-q$ lines of π^{\prime} not through r_{0} or r lie in q generators of $\mathrm{Q}(6,3)$ different from π^{\prime}. Hence, at least $q^{3}-q^{2}$ points of \mathcal{K} lie outside r^{\perp}, and so, $\left|r^{\perp} \cap \mathcal{K}\right| \leqslant q^{2}+q+1$.

Lemma 10. Suppose that L is a 3-secant to \mathcal{K}, then the point $r \in L \backslash \mathcal{K}$ only lies on 3 -secants to \mathcal{K} and $\mathcal{K}=r^{*} \mathcal{O}, \mathcal{O}$ an ovoid of $\mathrm{Q}(4,3)$, with $\mathrm{Q}(4,3)$ the base of the cone $r^{\perp} \cap \mathrm{Q}(6,3)$.

Proof. Put $\mathcal{K} \cap L=\left\{r_{1}, r_{2}, r_{3}\right\}$ and $r \in L \backslash \mathcal{K}$. Since $\left|\left(r_{1}^{\perp} \cup r_{2}^{\perp} \cup r_{3}^{\perp}\right) \cap \mathcal{K}\right| \leqslant 3+1+1+1$, necessarily $\left|r^{\perp} \cap \mathcal{K}\right| \geqslant q^{3}+q+1-6=q^{3}-2>q^{2}+q+1$, so, using the proof of Lemma $9, r$ does not lie in a generator with 1 point of \mathcal{K}, so r only lies in generators containing at least 3 points of \mathcal{K}. Moreover, these 3 or 4 points are collinear with r by Corollary 2 and Lemma 9. If r projects the points of $r^{\perp} \cap \mathcal{K}$ onto an ovoid of $\mathrm{Q}(4,3)$, then $|\mathcal{K}|=q\left(q^{2}+1\right)$; else $|\mathcal{K}| \geqslant q\left(q^{2}+2\right)$. Since $|\mathcal{K}| \leqslant q^{3}+q+1$, necessarily $\mathcal{K}=r^{*} \mathcal{O}, \mathcal{O}$ an ovoid of $\mathrm{Q}(4,3)$, with $\mathrm{Q}(4,3)$ the base of the cone $r^{\perp} \cap \mathrm{Q}(6,3)$.

Theorem 10. A minimal blocking set \mathcal{K} of size $|\mathcal{K}| \leqslant q^{3}+q+1, q=3$, of $\mathrm{Q}(6,3)$ is an ovoid \mathcal{O} or a truncated cone $r^{*} \mathcal{O}, \mathcal{O}$ an elliptic quadric $\mathrm{Q}^{-}(3,3) \subseteq \mathrm{Q}(4,3)$, with $\mathrm{Q}(4,3)$ the base of the cone $r^{\perp} \cap \mathrm{Q}(6,3)$. In particular, there does not exist a minimal blocking set of size $q^{3}+q+1$ on $\mathrm{Q}(6,3)$.

Proof. Assume that \mathcal{K} is not an ovoid of $\mathrm{Q}(6,3)$, then a line of $\mathrm{Q}(6,3)$ is either a 1 -, 3 -, or 4 -secant to \mathcal{K}. By Lemma 10 , we can assume that there is no 3 -secant to \mathcal{K}. So a line of $\mathrm{Q}(6,3)$ containing at least 2 points of \mathcal{K} contains 4 points of \mathcal{K}. Suppose that L is a 4 -secant to \mathcal{K}. By Lemma 5 , we find that $|\mathcal{K}| \leqslant 4$, since a point of $\mathrm{Q}(6,3) \backslash L$ is perpendicular to at least one point of L. But $|\mathcal{K}|>q^{3}+1$, a contradiction.

Finally, we prove Theorem 8 in four steps.
Lemma 11. Suppose that π_{n-1} is a generator of $\mathrm{Q}(2 n, q)$ such that $\left|\pi_{n-1} \cap \mathcal{K}\right|=1$. For every $r \in \pi_{n-1} \backslash \mathcal{K}$, we have that $\left|r^{\perp} \cap \mathcal{K}\right| \leqslant q^{n-1}+q^{n-2}+1$.

Proof. Denote the unique point in $\pi_{n-1} \cap \mathcal{K}$ by s. The $q^{n-1}-q^{n-2}$ hyperplanes of π_{n-1}, not through r or s, all lie in q generators, different from π_{n-1}, all containing at least one point of \mathcal{K}. So at least $\left(q^{n-1}-q^{n-2}\right) q$ points lie in $\mathcal{K} \backslash r^{\perp}$; so $\left|r^{\perp} \cap \mathcal{K}\right| \leqslant$ $q^{n-1}+q^{n-2}+1$.

Lemma 12. Suppose that $r \notin \mathcal{K}$, and suppose that L is a line of $\mathrm{Q}(2 n, 3)$ through r such that $|L \cap \mathcal{K}|=1$. Then $\left|r^{\perp} \cap \mathcal{K}\right| \leqslant q^{n-1}+q^{n-2}+1$.

Proof. Consider a generator through the line $\langle r, s\rangle, s \in L \cap \mathcal{K}$, only containing the point $s \in \mathcal{K}$. Such a generator exists; or else $\left|s^{\perp} \cap \mathcal{K}\right| \geqslant q^{n-2}+2$. The preceding lemma proves the assertion.

Lemma 13. There does not exist a line of $\mathrm{Q}(2 n, 3)$ intersecting \mathcal{K} in 4 points.
Proof. Suppose that L is a line of $\mathrm{Q}(2 n, 3)$ meeting \mathcal{K} in 4 points. By Lemma 5, we find that $|\mathcal{K}| \leqslant 4\left(q^{n-2}+1\right)<q^{n}+1$, a contradiction.

Theorem 11. The minimal blocking sets of $\mathrm{Q}(2 n, q=3), n \geqslant 3$, of size at most $q^{n}+q^{n-2}+1$, are truncated cones $\pi_{n-4}^{*} \mathcal{O}, \pi_{n-4}^{\perp} \cap \mathrm{Q}(2 n, q=3)=\pi_{n-4} \mathrm{Q}(6, q=3), \mathcal{O}$ an ovoid of $\mathrm{Q}(6,3)$, and $\pi_{n-3}^{*} \mathrm{Q}^{-}(3, q=3)$, $\pi_{n-3}^{\perp} \cap \mathrm{Q}(2 n, q=3)=\pi_{n-3} \mathrm{Q}(4, q=3)$, $\mathrm{Q}^{-}(3, q=3) \subseteq \mathrm{Q}(4, q=3)$. Furthermore, a minimal blocking set of size $q^{n}+q^{n-2}+1$ of $\mathrm{Q}(2 n, q=3)$ does not exist.

Proof. Suppose that L is a line of $\mathrm{Q}(2 n, 3)$, which also is a 3 -secant to \mathcal{K}. Put $L \cap \mathcal{K}=$ $\left\{r_{1}, r_{2}, r_{3}\right\}$ and $r \in L \backslash \mathcal{K}$. Then $\left|\left(r_{1}^{\perp} \cup r_{2}^{\perp} \cup r_{3}^{\perp}\right) \cap \mathcal{K}\right| \leqslant q^{n-2}+1+2\left(q^{n-2}-2\right) \leqslant q^{n-1}-3$. So $\left|r^{\perp} \cap \mathcal{K}\right| \geqslant q^{n}+q^{n-3}+1-\left(q^{n-1}-3\right)=2 q^{n-1}+q^{n-3}+4>q^{n-1}+q^{n-2}+1$. So every generator through r meets \mathcal{K} in at least 3 points, hence $\left|r^{\perp} \cap \mathcal{K}\right| \geqslant 3\left(q^{n-1}+1\right)$. The projection of $r^{\perp} \cap \mathcal{K}$ from r contains at least $q^{n-1}+q^{n-4}$ points; so since r lies on 3 -secants to the projected points, necessarily $\left|r^{\perp} \cap \mathcal{K}\right| \geqslant 3\left(q^{n-1}+q^{n-4}\right)$, by the induction hypothesis. The induction hypothesis implies also that $r^{\perp} \cap \mathcal{K}$ is projected onto a truncated cone $\pi_{n-5}^{*} \mathcal{O}, \mathcal{O}$ an ovoid of $\mathrm{Q}(6, q)$, or a truncated cone $\pi_{n-4}^{*} \mathrm{Q}^{-}(3, q)$, since the projection of $\mathcal{K} \cap r^{\perp}$ must be a minimal blocking set of the base $\mathrm{Q}(2 n-2,3)$ of the cone $r^{\perp} \cap \mathrm{Q}(2 n, 3)$. It follows that $\left|r^{\perp} \cap \mathcal{K}\right|=$ $q^{n}+q^{n-3}$ or, respectively, $q^{n}+q^{n-2}$. Hence, $r^{\perp} \cap \mathcal{K}$ contains a truncated cone $\pi_{n-4}^{*} \mathcal{O}, \pi_{n-4}^{\perp} \cap \mathrm{Q}(2 n, q=3)=\pi_{n-4} \mathrm{Q}(6, q), \mathcal{O}$ an ovoid of $\mathrm{Q}(6, q)$, or, respectively a truncated cone $\pi_{n-3}^{*} \mathrm{Q}^{-}(3, q)$. Since these structures are minimal blocking sets of $\mathrm{Q}(2 n, q=3)$, we conclude that \mathcal{K} is necessarily equal to one of these structures.

References

[1] S. Ball. On ovoids of $\mathrm{O}(5, q)$. Adv. Geom., 4(1):1-7, 2004.
[2] S. Ball, P. Govaerts, and L. Storme. On Ovoids of Parabolic Quadrics. Des. Codes Cryptogr., to appear.
[3] J. De Beule, P. Govaerts, and L. Storme. Projective Geometries, a share package for GAP. (http://cage.ugent.be/~jdebeule/pg), submitted to GAP.
[4] J. De Beule and K. Metsch. Small point sets that meet all generators of $\mathrm{Q}(2 n, p)$, $p>3, p$ prime. J. Combin. Theory, Ser. A, 106(2):327-333, 2004.
[5] J. De Beule and L. Storme. On the smallest minimal blocking sets of $\mathrm{Q}(2 n, q)$, for q an odd prime. Discrete Math., 294(1-2):83-107, 2005.
[6] J. De Beule and L. Storme. The smallest minimal blocking sets of $Q(6, q), q$ even. J. Combin. Des., 11(4):290-303, 2003.
[7] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.3; 2002. (http://www.gap-system.org)
[8] A. Gunawardena and G. E. Moorhouse. The non-existence of ovoids in $O_{9}(q)$. European J. Combin., 18(2):171-173, 1997.
[9] W. M. Kantor. Ovoids and translation planes. Canad. J. Math., 34(5):11951207, 1982.
[10] W. M. Kantor. Spreads, translation planes and Kerdock sets. I. SIAM J. Algebraic Discrete Methods, 3(2):151-165, 1982.
[11] K. Metsch. The sets closest to ovoids in $Q^{-}(2 n+1, q)$. Bull. Belg. Math. Soc. Simon Stevin, 5(2-3):389-392, 1998. Finite geometry and combinatorics (Deinze, 1997).
[12] K. Metsch. Small point sets that meet all generators of $W(2 n+1, q)$. Des. Codes Cryptogr., 31(3):283-288, 2004.
[13] C. M. O'Keefe and J. A. Thas. Ovoids of the quadric $Q(2 n, q)$. European J. Combin., 16(1):87-92, 1995.
[14] S. E. Payne and J. A. Thas. Finite Generalized Quadrangles, volume 110 of Research Notes in Mathematics. Pitman (Advanced Publishing Program), Boston, MA, 1984.
[15] T. Penttila and B. Williams. Ovoids of parabolic spaces. Geom. Dedicata, 82(1-3):1-19, 2000.
[16] J. A. Thas. Polar spaces, generalized hexagons and perfect codes. J. Combin. Theory Ser. A, 29(1):87-93, 1980.
[17] J. A. Thas. Ovoids and spreads of finite classical polar spaces. Geom. Dedicata, 10(1-4):135-143, 1981.
[18] J. A. Thas and S. E. Payne. Spreads and ovoids in finite generalized quadrangles. Geom. Dedicata, 52(3):227-253, 1994.
[19] J. Tits. Ovoides et groupes de Suzuki. Arch. Math., 13:187-198, 1962.
[20] H. Van Maldeghem. Generalized polygons, volume 93 of Monographs in Mathematics. Birkhäuser Verlag, Basel, 1998.

Address of the authors: Department of Pure Mathematics and Computer Algebra, Ghent University, Krijgslaan 281, S 22, 9000 Gent, Belgium
J. De Beule: http://cage.ugent.be/~jdebeule or http://www.jandebeule.be, jdebeule@cage.ugent.be
L. Storme: http://cage.ugent.be/~ls, ls@cage.ugent.be

[^0]: *This author thanks the Prof. Dr. Wuytack Fund for a research grant.
 ${ }^{\dagger}$ This author thanks the Fund for Scientific Research - Flanders (Belgium) for a research grant.

