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Abstract

We describe the two smallest minimal blocking sets of Q(2n, 3), n > 3. To
obtain these results, we use the characterization of the smallest minimal block-
ing sets of Q(6, 3), different from an ovoid. We also present some geometrical
properties of ovoids of Q(6, q), q odd.

1 Introduction

Let Q(2n, q), n > 2, be the non-singular parabolic quadric in PG(2n, q). An ovoid

of the polar space Q(2n, q) is a set of points O of Q(2n, q), such that every maximal
singular subspace (or generator) of Q(2n, q) intersects O in exactly one point. For
Q(2n, q), the generators are spaces of dimension n − 1. A blocking set of the polar
space Q(2n, q) is a set of points K of Q(2n, q) such that every generator intersects
K in at least one point. If O is an ovoid of Q(2n, q), then O has size qn + 1. So if
K is a blocking set of Q(2n, q) different from an ovoid, then K has size qn + 1 + r,
with r > 0. A blocking set K is called minimal if for every point p ∈ K, K \ {p} is
not a blocking set, or equivalently, if for every point p ∈ K, there is a generator α

such that α ∩ K = {p}.
We suppose in this article that q is odd. We recall known results about ovoids

of the parabolic quadric in 4, 6 and 8 dimensions.

Theorem 1. (Ball [1]) Suppose that O is an ovoid of Q(4, q), q = ph, p prime,

h > 1, then every elliptic quadric Q−(3, q) of Q(4, q) intersects O in 1 mod p points.

This result has interesting applications. One of them is the classification of all
ovoids of Q(4, q), q prime.
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Theorem 2. (Ball et al. [2]) All ovoids of Q(4, q), q prime, are elliptic quadrics

Q−(3, q).

When q = ph, p an odd prime, h > 1, and q = 22h+1, h ≥ 1, other classes of
ovoids of Q(4, q) are known ([9, 15, 18, 19]).

The classification of the ovoids of Q(4, q), q prime, leads to the following theorem,
using a result of [13].

Theorem 3. When q is an odd prime, q > 5, Q(6, q) does not have ovoids.

When q = 3h, h > 1, Q(6, q) always has ovoids ([9, 16, 17]), and when q is even,
then Q(6, q) does not have ovoids ([17]). For all other values of q, the existence or
non-existence of ovoids of Q(6, q) is not known, although it is conjectured in [13]
that Q(6, q) has ovoids if and only if q = 3h, h > 1.

Finally, we recall the following theorem about ovoids of higher dimensional
parabolic quadrics.

Theorem 4. (Gunawardena and Moorhouse [8]) The parabolic quadric Q(8, q),
q odd, does not have ovoids. This implies also that Q(2n, q), q odd, n > 5, does not

have ovoids.

We now recall known results about blocking sets different from ovoids. Suppose
that αB is a cone with vertex the k-dimensional subspace α and base some set B of
points, lying in some subspace π, π∩α = ∅. Then the truncated cone α∗B is defined
as αB \ α, hence, as the set of points of the cone αB where the points of the vertex
α are removed from. If α is the empty subspace, then α∗B = B.

The case q = 3 of the following theorem was proved in [5]. The theorem for q > 3
odd prime was proved in [4]. We denote the polarity associated to the quadric by
⊥.

Theorem 5. The smallest minimal blocking sets of Q(6, q), q an odd prime, different

from an ovoid of Q(6, q), are truncated cones p∗Q−(3, q), p ∈ Q(6, q), Q−(3, q) ⊆
p⊥ ∩ Q(6, q), and have size q3 + q.

When q > 3 is an odd prime, this theorem generalizes to the following theorem.

Theorem 6. ([5]) The smallest minimal blocking sets of Q(2n, q), q > 3 prime, n >

4, are truncated cones π∗

n−3Q
−(3, q), πn−3 ⊆ Q(2n, q), Q−(3, q) ⊆ π⊥

n−3 ∩ Q(2n, q),
and have size qn + qn−2.

Ovoids of Q(6, q) can be used to construct smaller examples in higher dimension.
For q = 3, the following result is known.

Theorem 7. ([5]) The smallest minimal blocking sets of Q(2n, q = 3), n > 4, are

truncated cones π∗

n−4O, O an ovoid of Q(6, q = 3), O ⊂ π⊥

n−4, πn−4 ⊂ Q(2n, q), and

have size qn + qn−3.

Theorems 6 and 7 express the difference between q > 3 odd prime and q =
3. Furthermore, considering Q(2n, q = 3), n > 4, it is clear that a truncated
cone π∗

n−3Q
−(3, q), contained in Q(2n, q), constitutes a minimal blocking set of size

qn + qn−2. We show in this article that minimal blocking sets of Q(2n, 3) of size k,
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qn + qn−3 < k < qn + qn−2 do not exist, and we characterize the minimal blocking
sets of Q(2n, q = 3) of size qn + qn−2, as described in the following theorem. Finally,
we show that minimal blocking sets of Q(2n, q = 3), n > 3, of size qn + qn−2 + 1 do
not exist.

Theorem 8. The minimal blocking sets of Q(2n, 3), n > 3, of size at most 3n+3n−2,

are truncated cones π∗

n−4O, πn−4 ⊆ Q(2n, 3), π⊥

n−4 ∩ Q(2n, 3) = πn−4Q(6, 3), O an

ovoid of Q(6, 3), and π∗

n−3Q
−(3, 3), πn−3 ⊆ Q(2n, 3), π⊥

n−3 ∩Q(2n, 3) = πn−3Q(4, 3),
Q−(3, 3) ⊆ Q(4, 3). Furthermore, a minimal blocking set of size 3n + 3n−2 + 1 of

Q(2n, 3) does not exist.

Finally, we mention that blocking sets of other classical polar spaces such as
Q−(2n + 1, q) and W(2n + 1, q) were studied by K. Metsch, [11, 12].

Before presenting the proof of the preceding theorem, we first mention some
geometrical properties of ovoids of Q(6, q), q odd.

2 Geometrical results on ovoids of Q(6, q), q odd

For the next three lemmas, we suppose that Q(6, q) has ovoids. This implies that
q is odd, since Q(6, q), q even, does not have ovoids [17], and this hypothesis is
satisfied when q = 3h, h > 1. Denote an ovoid of Q(6, q) by O.

Lemma 1. The ovoid O spans the 6-dimensional space PG(6, q).

Proof. Let Ω = 〈O〉.
It is impossible that Ω ∩ Q(6, q) is a singular quadric. For, assume that 〈O〉 ∩

Q(6, q) = πsQ, a cone with vertex πs, an s-dimensional subspace, s > 0, and with
base Q, a non-singular quadric of dimension at most 4. Then πs projects O onto an
ovoid of Q. However, no non-singular quadric of dimension at most four has ovoids
of size q3 + 1.

If Ω∩Q(6, q) = Q(4, q), then O must necessarily be an ovoid of Q(4, q); impossible
since |O| > q2 +1. If 〈O〉∩Q(6, q) = Q+(5, q), then O must be an ovoid of Q+(5, q);
impossible since |O| > q2 + 1. Finally, 〈O〉 ∩ Q(6, q) = Q−(5, q) is impossible, since
Q−(5, q) does not have ovoids [14]. �

Lemma 2. No elliptic quadric Q−(3, q) is contained in O.

Proof. Suppose that some Q−(3, q) ⊆ O. Consider a point p ∈ O \Q−(3, q). The 4-
space α = 〈p, Q−(3, q)〉 intersects Q(6, q) in a parabolic quadric Q(4, q) or in a cone
rQ′−(3, q). If α intersects Q(6, q) in a Q(4, q) then it contains at least q2 + 2 points
of O, a contradiction, since any Q(4, q) can intersect O in at most q2 +1 points, the
number of points of an ovoid of Q(4, q). If α intersects Q(6, q) in a cone rQ′−(3, q),
then O contains at least two points spanning a line of Q(6, q), a contradiction. �

The following lemma is an application of Theorem 1.

Lemma 3. The ovoid O does not contain an ovoid O′ of Q(4, q), with Q(4, q)
contained in Q(6, q).
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Proof. Suppose the contrary, i.e., suppose that there is some ovoid O′ of Q(4, q) ⊆
Q(6, q), with O′ ⊆ O. By the previous lemma, we may suppose that O′ is not an
elliptic quadric and hence, 〈O′〉 is a 4-dimensional projective space α, such that
α ∩ Q(6, q) = Q(4, q). Since O spans the 6-dimensional space, we can choose a
point p ∈ O \ α. Since α ∩ O contains an ovoid of Q(4, q), p 6∈ α⊥, hence p⊥ ∩
Q(4, q) = Q±(3, q), or p⊥ ∩ Q(4, q) = rQ(2, q) which is a tangent cone to Q(4, q).
If p⊥ ∩ Q(4, q) = rQ(2, q) or p⊥ ∩ Q(4, q) = Q+(3, q), then p⊥ contains a generator
of Q(4, q) meeting O′ and hence p⊥ contains a point of O′, a contradiction. If
p⊥ ∩ Q(4, q) = Q−(3, q), then Theorem 1 implies that p⊥ contains a point of O′, a
contradiction. �

We call a hyperplane α of PG(6, q) hyperbolic, elliptic respectively, if α∩Q(6, q) =
Q+(5, q), α ∩ Q(6, q) = Q−(5, q) respectively.

Corollary 1. Any hyperbolic hyperplane α has the property that 〈α ∩ O〉 = α.

Proof. Suppose that α is a hyperbolic hyperplane. Then necessarily α intersects O
in an ovoid O′ of a Q+(5, q). Since any ovoid of Q(4, q) is not contained in O, the
ovoid O′ spans the 5-dimensional space α. �

It is known that Q(6, 3) has, up to collineations, a unique ovoid [10]. In [20],
one finds an explicit list, related to a chosen Q(6, 3), of the coordinates in PG(6, 3)
of the points of this ovoid. With the aid of the software package pg [3], we can
compute all hyperplanes of PG(6, 3), select the elliptic hyperplanes from that list
and check whether such an elliptic hyperplane is spanned by the points of the ovoid
it contains. The software package pg is a package written in the language of the
computer algebra system GAP [7]. Checking the mentioned property can be done
with a few commands of the package pg. We found the following result.

Lemma 4. Any elliptic hyperplane α of PG(6, 3) has the property that 〈α∩O〉 = α.

We end this section with the following result. It was proved in [2], using Theo-
rem 1.

Theorem 9. (Ball, Govaerts and Storme [2]) Suppose that Q(6, q), q = ph,

h > 1, p an odd prime, has an ovoid O. Then any elliptic hyperplane intersects O
in 1 mod p points.

3 Small minimal blocking sets of Q(2n, 3), n > 3

We consider the parabolic quadric Q(2n, 3), n > 3. Some lemmas are restricted to
n > 4. In that case, we assume that the following hypothesis is true for Q(2k, 3),
k = 3, . . . , n − 1.

The minimal blocking sets of size at most qk + qk−2 +1 in Q(2k, q = 3) are trun-
cated cones π∗

k−4O, π⊥

k−4∩Q(2k, q = 3) = πk−4Q(6, q = 3), O an ovoid of Q(6, q = 3);
and truncated cones π∗

k−3Q
−(3, q = 3), π⊥

k−3∩Q(2k, q = 3) = πk−3Q
−(3, q = 3), πi an

i-dimensional subspace contained in Q(2k, q = 3). These examples have respectively
size qk + qk−3 and qk + qk−2.

To prove this hypothesis for n = 4, we will consider Q(6, 3).
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Suppose that K is a minimal blocking set of size at most qn+qn−2+1 of Q(2n, q =
3), n > 3. Since the smallest minimal blocking sets of Q(2n, q = 3), n > 4, of size
qn + qn−3, are already classified [5], we also assume that |K| > qn + qn−3 + 1 when
n > 4.

The next two lemmas can be proved by techniques of [6].

Lemma 5. For every point r ∈ K, |r⊥ ∩ K| 6 qn−2 + 1.

Lemma 6. Consider a point r ∈ Q(2n, q)\K, then the points of r⊥∩K are projected

from r onto a minimal blocking set Kr of Q(2n− 2, q), with Q(2n− 2, q) the base of

the cone r⊥ ∩ Q(2n, q).

We call a line of Q(2n, q) meeting K in i points an i-secant to K. The next
lemma and its corollary are restricted to n = 3 but will be generalized to n > 4. We
use the fact that a minimal blocking set of Q(4, 3), different from an ovoid, contains
at least 12 = q2 + q points, with q = 3. This is proved in e.g. [5].

Lemma 7. There are no lines of Q(6, 3) meeting K in exactly 2 points.

Proof. Suppose that L is a 2-secant to K. Consider a generator π of Q(6, 3) on L

such that π ∩ K = L ∩ K; Lemma 5 implies that such a generator exists. Count
the number of pairs (u, v), u ∈ π \ L, v ∈ K \ L, u ∈ v⊥. Since the projection
of the set of points u⊥ ∩ K from u is a minimal blocking set of Q(4, 3), and since
it cannot be an ovoid of Q(4, 3), it must contain at least q2 + q points of Q(4, 3).
We obtain q2(q2 + 1) as lower bound for this number. Using the size of K, we find
(q3 + q − 1)q = q4 + q2 − q as upper bound, hence, q2(q2 + 1) 6 q4 + q2 − q, a
contradiction. �

Corollary 2. Every generator π of Q(6, q = 3) intersects K in 1 point, or in 3 or

4 collinear points.

Proof. Since there are no 2-secants to K, 2 points of K in π give rise to 3 or 4
collinear points of K in π. If there would be 3 points of K spanning π, then π would
contain at least 7 points of K, a contradiction with Lemma 5. �

To generalize these two propositions, we rely now on the induction hypothesis.

Lemma 8. No generator πn−1 of Q(2n, q = 3), n > 4, intersects K in exactly 2
points.

Proof. Suppose that for some generator πn−1 of Q(2n, q), |πn−1 ∩ K| = 2, where
the two points of πn−1 ∩ K lie on the line L. Count the number of pairs (u, v),
u ∈ πn−1 \ L, u ∈ v⊥, v ∈ K \ πn−1. Since no minimal blocking set of size at most
qn−1 + qn−3 + 1 of Q(2n − 2, q) has a 2-secant, we find |u⊥ ∩ K| > qn−1 + qn−3 + 2.
Hence, the lower bound on the number of pairs is (qn−1 + . . . + q2)(qn−1 + qn−3). As
upper bound, we find (qn + qn−2−1)(qn−2 + . . .+ q), which is smaller than the lower
bound, a contradiction. �

Corollary 3. No line L of Q(2n, 3), n > 4, intersects K in exactly 2 points.

Proof. Suppose that L is a 2-secant to K. By the minimality of K and Lemma 5,
there exists a generator πn−1 on L such that L ∩ K = πn−1 ∩ K, a contradiction. �
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In three steps, we now prove Theorem 8 for n = 3.

Lemma 9. Suppose that L is a line of Q(6, 3) meeting K in 3 or 4 points. Suppose

that π is a generator of Q(6, 3) on L, then L∩K = π∩K, and |r⊥ ∩K| 6 q2 + q +1
for every r ∈ π \ L.

Proof. Let r0 be one of the points of K ∩ π. Suppose that r ∈ π \ L. Then there
exists a generator π′ of Q(6, 3) through r meeting K only in r0. The q2 − q lines of
π′ not through r0 or r lie in q generators of Q(6, 3) different from π′. Hence, at least
q3 − q2 points of K lie outside r⊥, and so, |r⊥ ∩ K| 6 q2 + q + 1. �

Lemma 10. Suppose that L is a 3-secant to K, then the point r ∈ L \ K only lies

on 3-secants to K and K = r∗O, O an ovoid of Q(4, 3), with Q(4, 3) the base of the

cone r⊥ ∩ Q(6, 3).

Proof. Put K∩L = {r1, r2, r3} and r ∈ L\K. Since |(r⊥1 ∪r⊥2 ∪r⊥3 )∩K| 6 3+1+1+1,
necessarily |r⊥ ∩ K| > q3 + q + 1 − 6 = q3 − 2 > q2 + q + 1, so, using the proof of
Lemma 9, r does not lie in a generator with 1 point of K, so r only lies in generators
containing at least 3 points of K. Moreover, these 3 or 4 points are collinear with
r by Corollary 2 and Lemma 9. If r projects the points of r⊥ ∩ K onto an ovoid of
Q(4, 3), then |K| = q(q2 +1); else |K| > q(q2 +2). Since |K| 6 q3 + q +1, necessarily
K = r∗O, O an ovoid of Q(4, 3), with Q(4, 3) the base of the cone r⊥ ∩ Q(6, 3). �

Theorem 10. A minimal blocking set K of size |K| 6 q3 + q + 1, q = 3, of Q(6, 3)
is an ovoid O or a truncated cone r∗O, O an elliptic quadric Q−(3, 3) ⊆ Q(4, 3),
with Q(4, 3) the base of the cone r⊥ ∩ Q(6, 3). In particular, there does not exist a

minimal blocking set of size q3 + q + 1 on Q(6, 3).

Proof. Assume that K is not an ovoid of Q(6, 3), then a line of Q(6, 3) is either a
1-, 3-, or 4-secant to K. By Lemma 10, we can assume that there is no 3-secant
to K. So a line of Q(6, 3) containing at least 2 points of K contains 4 points of K.
Suppose that L is a 4-secant to K. By Lemma 5, we find that |K| 6 4, since a
point of Q(6, 3) \ L is perpendicular to at least one point of L. But |K| > q3 + 1, a
contradiction. �

Finally, we prove Theorem 8 in four steps.

Lemma 11. Suppose that πn−1 is a generator of Q(2n, q) such that |πn−1 ∩K| = 1.
For every r ∈ πn−1 \ K, we have that |r⊥ ∩ K| 6 qn−1 + qn−2 + 1.

Proof. Denote the unique point in πn−1 ∩ K by s. The qn−1 − qn−2 hyperplanes of
πn−1, not through r or s, all lie in q generators, different from πn−1, all containing
at least one point of K. So at least (qn−1 − qn−2)q points lie in K\ r⊥; so |r⊥ ∩K| 6

qn−1 + qn−2 + 1. �

Lemma 12. Suppose that r 6∈ K, and suppose that L is a line of Q(2n, 3) through

r such that |L ∩ K| = 1. Then |r⊥ ∩ K| 6 qn−1 + qn−2 + 1.

Proof. Consider a generator through the line 〈r, s〉, s ∈ L ∩ K, only containing the
point s ∈ K. Such a generator exists; or else |s⊥ ∩ K| > qn−2 + 2. The preceding
lemma proves the assertion. �
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Lemma 13. There does not exist a line of Q(2n, 3) intersecting K in 4 points.

Proof. Suppose that L is a line of Q(2n, 3) meeting K in 4 points. By Lemma 5, we
find that |K| 6 4(qn−2 + 1) < qn + 1, a contradiction. �

Theorem 11. The minimal blocking sets of Q(2n, q = 3), n > 3, of size at most

qn + qn−2 +1, are truncated cones π∗

n−4O, π⊥

n−4 ∩Q(2n, q = 3) = πn−4Q(6, q = 3), O
an ovoid of Q(6, 3), and π∗

n−3Q
−(3, q = 3), π⊥

n−3 ∩ Q(2n, q = 3) = πn−3Q(4, q = 3),
Q−(3, q = 3) ⊆ Q(4, q = 3). Furthermore, a minimal blocking set of size qn+qn−2+1
of Q(2n, q = 3) does not exist.

Proof. Suppose that L is a line of Q(2n, 3), which also is a 3-secant to K. Put L∩K =
{r1, r2, r3} and r ∈ L\K. Then |(r⊥1 ∪r⊥2 ∪r⊥3 )∩K| 6 qn−2+1+2(qn−2−2) 6 qn−1−3.
So |r⊥ ∩ K| > qn + qn−3 + 1 − (qn−1 − 3) = 2qn−1 + qn−3 + 4 > qn−1 + qn−2 + 1. So
every generator through r meets K in at least 3 points, hence |r⊥∩K| > 3(qn−1 +1).
The projection of r⊥ ∩ K from r contains at least qn−1 + qn−4 points; so since r

lies on 3-secants to the projected points, necessarily |r⊥ ∩ K| > 3(qn−1 + qn−4),
by the induction hypothesis. The induction hypothesis implies also that r⊥ ∩ K
is projected onto a truncated cone π∗

n−5O, O an ovoid of Q(6, q), or a truncated
cone π∗

n−4Q
−(3, q), since the projection of K ∩ r⊥ must be a minimal blocking set

of the base Q(2n − 2, 3) of the cone r⊥ ∩ Q(2n, 3). It follows that |r⊥ ∩ K| =
qn + qn−3 or, respectively, qn + qn−2. Hence, r⊥ ∩ K contains a truncated cone
π∗

n−4O, π⊥

n−4 ∩ Q(2n, q = 3) = πn−4Q(6, q), O an ovoid of Q(6, q), or, respectively
a truncated cone π∗

n−3Q
−(3, q). Since these structures are minimal blocking sets of

Q(2n, q = 3), we conclude that K is necessarily equal to one of these structures. �
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