Combinatorial and geometrical properties of a
class of tilings

Ali Messaoudi*

Abstract

In this paper, we consider a tiling generated by a Pisot unit number of
degree d > 3 which has a finite expansible property. We compute the states
of a finite automaton which recognizes the boundary of the central tile. We
also prove in the case d = 3 that the interior of each tile is simply connected.

1 Introduction

Let 6 > 1 be a real number. A (-representation of a real number x > 0 is an infinite
sequence (a;)g>i>—cos @; € N, such that

r=af’ + a1+ Faftatan T a4
for a certain integer £ > 0. It is denoted by
T = apQp—1...0109.a_1A_2 ...

A particular (-representation, called (-expansion, is computed by the “greedy al-
gorithm” (see [4] and [5]): denote by |y| and {y} respectively the integer part and
the fractional part of a number y. There exists & € Z such that 8% < z < ¥+, Let
1y = |x/B%] and r, = {x/3}. Then for i < k, put z; = |Briy1] and 7, = {Bri1}-
We get

v =B+ B+
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Ifk<0 (ie,ifz<1), weput xg=2_1 =--- = 2541 = 0. If an expansion ends
with infinitely many zeros, it is said to be finite, and the ending zeros are omitted.

The digits x;’s computed by the previous algorithm belong to the set A =
{0,...,8 — 1} if 8 is an integer, or to the set A = {0,...,[F]} if § is not an
integer. We will sometimes omit the splitting point between the integer part and
the fractional part of the J-expansion; then the infinite sequence is just an element
of AN,

For the numbers 0 < x < 1, the expansion defined above coincides with the (-
representation of Rényi [10], which can be defined by means of the 3 transformation
of the unit interval

Ts(z) ={Bz}, = €[0,1].
For z € [0,1), we have z_; = 3T} '(z)] for j = 1,2, ...

Remark 1.1. For x = 1 the two algorithms differ. The (-expansion of 1 is just
1 =1.0000..., while the Rényi B-representation of 1 is

d(1,B8) = t_1t_5.
where ‘
= [BT5 (1)), Vi > 1.

Let Fiin(3) be the set of nonnegative real numbers which have a finite -expansion.
We will sometimes denote a finite f-expansion x,, ...xx, k < n, by (2;)n>i>k. We
denote the set of finite $-expansions by Fj. We put

Eg ={(xi)izk, k € Z|Yn >k, (i)n>i>k € Fp}.
We say that [ has a finite expansible property and we denote this by (F) if
Z[B) N[0, +00) = Fin(f),

where Z[(] is the ring generated by Z and (. If 3 satisfies the property (F), then
d(1, 3) is finite, because 3 — | 3] € Fin(3).

We say that 3 is a Pisot number if 3 is an algebraic integer number whose all Galois
conjugates have modulus less than one. Moreover, if

X4 by X+ 4 by

is the minimal polynomial of 3 then [ is said to be a unit Pisot number if by = +1.

In the following, we assume that § = 3 is a Pisot unit number of degree d > 3. We

denote by s, ..., 3. the real Galois conjugates of 3 and by G411, ..., Bris, Brisi1 =

Brits- -y Braos = PBris its complex Galois conjugates. We also assume that  has

the property (F) and that d(1,5) = .a_y...a_;, where a_; # 0. We have a_; = |].
Let ¥ = (Ba,...,01s). We denote (aﬁQ, coafl) by ayt for all ¢ € Z and

a € Z. If B is a subset of Z and i € Z, then we denote by By’ the set {by)" | b € B}.
If .x_q...2_y is a finite -expansion, we put

Koz n= { Z dip" | (di)i>-n € Eg, dj = x5, Vi=—N, =N +1,...,—1}

and call it a tile. We denote ¢NK-1_1...x_N by Ky ,. . and Ko by K. We call
IC the central tile. 1t is known that the central tile K induces a periodic tiling of
R x C&.
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Proposition 1. (see [1],/2], [3] and [8]) The tiles are compact sets of R"™! x C*
and satisfy the following properties.

1. Every tile intersects a finite number of different tiles.
2. The Lebesgue measure of the intersection of two different tiles is zero.
3. The intersection of a tile with the interior of another tile is empty.

4. If x = M ~dib" is an element of a tile K.o y.x_y, then x is an interior

i=—

point of this tile. In particular, 0 is an interior point of the central tile.
5. If a_y = 1, then the tiles are arcwise connected sets.

In this paper we study the boundary of the tiles. In particular, we compute the
states of a finite automaton that recognizes the boundary of the central tile. We
also prove that in the case d = 3 the interior of each tile is simply connected. This

generalizes a result of Rauzy (see [9]) which was done in the case of [ satisfying the
relation 3 — 32 — 3 —1 = 0.

2 Notations and definitions

We denote by || || the norm in R"~ x C* defined by
(z1,. ozt 21, o0y 28) || = max{|x], |z] |i=1,...,r =1, j=1,... s}

where |z;| is the absolute value of z; and |z;| is the modulus of z;.
Let z = (22,...,2r45) € R7I X C* and @ € Z, we denote (2235, . .., z4500,,) by z¢".
Let Z be a subset of R"~! x C*. We denote by diam(Z) the diameter of Z, by int(Z)
the interior of Z, by 9(Z) the boundary of Z and by 1'Z the set {z¢" | z € Z} for
all 2 € Z.

Let X be a finite and non-empty set. Let X~ be the set of infinite sequences
on X. An automaton over X is an oriented graph denoted by A = (V, X, E, I,T)
with edges labelled by the elements of X where V' is the set of vertices, called
states, I C V is the set of initial states, T C V is the set of terminal states, and
E CV x X xV is the set of labelled edges. The automaton is said to be finite
if V' is a finite set. All states of the automata considered in this paper are final.
Let (an)n>0 € XV; we say that the automaton A recognizes (a,)n>o if there exists
a sequence of states (g,)n>o such that ¢o is an initial state and for all n > 1, ¢, is
a final state satisfying (¢,_1,an_1,¢,) € E. For more information about automata,
see [11].

A subset Y of XV is said to be recognized by a finite automaton if there exists
a finite automaton such that Y is exactly the set of sequences recognized by the
automaton.

A subset C of K is said to be recognized by a finite automaton if the set {(d;)i>o €
Es | Y% diW' € C} is recognized by a finite automaton.
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3 Boundary of K

+oo ./

Proposition 2. Let z = Y e’ and y = S5 i’ where (g)is0, (€))is0 €
Es. Then x = y if and only if there exists M = M(B) € N such that the set
{38 (e —Di=* | k > 0} is included in the set {30y, cith® | (¢i)osi>—n € Fs}.

Lemma 1. Let xg.x_1...2_, be a finite G-expansion. Then xo + x_1/0 + -+ +
T_p /0" < 3.

Proof. The proof is a direct consequence of the greedy algorithm (see [7]). =

Proof of Proposition 2. Assume that 2 = y and put 4, = 28 (g; —/)¢"*. Assume
that Ay # 0. Since 3 satisfies the property (F), there exists a finite [-expansion
(¢i)p>i>—ar with ¢ # 0 such that S8 (g, — €))% = £, ¢;3". Now assume
without loss of generality that % (e; — /)3% = S, ;3. Let h be an integer
such that h > maz(k, M). Put P(z) = 2"(XF (e; — &)z F — L |, ¢;ia®). Then
P(z) is a polynomial with integer coefficients satisfying P(3) = 0. Then for all
Galois conjugates v of 3 we have P(vy) = 0. Hence

L
i=—M
Since
Yo=Y e+ Y of (1)
i=0 i=0 i=—M

we should have Zf:o ;3% > . Therefore L < 0, otherwise we have

k
Zﬁ?zﬂi_k > f.
i=0

This latter inequality contradicts Lemma 1, because ¢; . .. gq is a finite S-expansion.
On the other hand, since z = y, A, = Y/ %, (c; — e)v'™F = S ¥ e W —
S % epyitb’; then there exists a fixed constant ¢(8) = ¢ > 0 such that [|A4]] < c.
Hence

k
1> (e —e)B <, Vi=2,...,r+2s, Vk > 0. (2)

=0

Now put for all k& > 0, z, = >F (e, — €})3*. Since 3 is a Pisot unit number, 1/3
is an algebraic integer, hence for all k > 0, zj is an algebraic integer of Q(/3). The
Galois conjugates of z; are contained in the set {XF ((e,—¢))3 " | j =2,...,r+2s}.
By (2) and the fact that z; is bounded by a fixed constant independent of k, we
deduce that the set I' constituted of all z; and their Galois conjugates is bounded
independently of k. This implies that there exists a fixed constant [ independent
of k such that for all £ > 0, the coefficients of the minimal polynomial of z; are
bounded by [. Since these coefficients are integer numbers, we deduce that the set
of minimal polynomial of all z; is finite. Hence the set I' is finite. Thus the set
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{Ay | k > 0} is finite. Then M is a finite integer independent of k. This ends the
proof of the direct implication.

Now assume that the set {>F ((g; — €))¢"F | k > 0} is included in the set
{£39 et | (¢i)osis—m € Fj}, then there exists d > 0 such that || 8 (s, —
eNF|| < d for all k > 0. Hence for all k > 0, || S8 (g; — &)¢7|| < d||w]|F. Since
||| < 1, we obtain 15 ;0" = S2EF el

"

Theorem 1. The boundary of K is recognized by a finite automaton whose set of
states is contained in the product set {71 1, 1 cith’ | (¢;)—1>i>—m-1 € Fa} x Ax A
where M is a fized nonnegative integer number and A ={0,...,|3]}.

Lemma 2. Let z € R™'xC®, then z € O(K) if and only if there exist N = N(3) < 0
and 1 € {N,...,—1} such that x = Y15 eqpt = Y15 lp?, where (g5)i0, (€1)i>1 €
Es and €) # 0.

Proof. Assume that z € 9(K). Since x ¢ int(K), for all 7 > 0 there exists y & K
such that ||z — y|| < 7. Hence there exists a sequence (y,,),>1 such that for all n >
1, ||z —yn|| < 1/n and y, & K. Since there exists a finite number of tiles intersecting
K (item 1 of Proposition 1), we deduce that there exists a tile ' = IC.E/_T_.E; # K
and a subsequence (Y, )n>0 such that for all n > 0, ||z —y,.|| < 1/p, and y,, € K.
Hence lim,, 4 ¥y, = . Since K’ is a compact set, x € K', hence x € KN K'. The
number [ is limited independently of x because of item 1 of Proposition 1. This
proves the direct implication.

Assume that z = 15 g0 = S5 el)pt where | < 0, then z € K N Ke | e
If © € int(K), then there exists a real number r; > 0 such that B(z,r) = {z €
R™'XC* | ||z—z|| <r} C K. Putforalln € N, z, =37, /" Since the sequence
2, converges to x and z, is an interior point of ./ — (item 4 of Proposition 1),
there exists a positive integer n and a real number r, > 0 such that

zn € B(w,71) and B(zp,72) C Ko | o1

Then there exists § > 0 such that B(z,,d) C KN Ko . ey this is a contradiction
because the Lebesgue measure of KNK ./ . is zero (item 2 of Proposition 1). This
ends the proof. [

Beginning of the proof of Theorem 1. Let [ be a negative integer. Put
400 ) +00 )
Dy ={(ei)izo0 € Eg | 3e)izt € Ep; 61 #0, D_e' =D '},
=0 i=l
Er = {(ei,€))iz1 | ()it (€1)iz1 € B, €6 =0, VI <i < =1, # 0, 22,6 =

= 5;¢i} and

k
Vi={ (=W k=1, (g,¢)is € Er}.

1=l

By Proposition 2, the set V} is finite. First, put [ = —1 and assume that V_; N Ay° #
0. Let y_; € A such that y_19° € V1N AY°. Put x_; = 0 and A_; = y_;4°. Hence

A_1 = 01/)_1 + (y_1 - .T_1>¢0.
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Now, consider the equation in (X, a,b) € V_; x A x A defined by:

X =A 97" + (b—a)y’ (3)
Let (Ao, zo,y0) € Vo1 x A x A. If (Ap, 0, Yo) is a solution of (3) and
zo/B+x_1/B <1, yo/B+y-1/B <1 (4)

then we put an edge from (A_1,2_1,y-1) to (Ao, xo,y0) and label it by xy. The
relation (4) guarantees that the words zoz_; and yoy_; are finite [-expansions.
Now assume that we have constructed the sequence (A;,z;,y;), —1 < i < m. If
(Apit1, Tomi1s Yma1) is a solution of the equation X = A, '+(b—a)y° and ,,,, 1/ 5+

/BT <L, Yt /B -+ y_1 /BT < 1, then we put an edge from
(Ams Ty Ym) 10 (Amt1s Tmt1, Yms1) and label it by 2,41 If we continue on, we obtain
an automaton that we denote by A_;. Since V_; is a finite set, the automaton A_,
is finite.

Lemma 3. The automaton A_i recognizes the set D_.

Proof. Let (g;)i>0 € D_1; then there exists (¢});>—1 € Es such that ¢/ ; # 0 and
SXpeit = X2 et Put e g =0 and By = X8 () — )i for all k > —1.
We have B_; = ¢’ ;4° and by induction By = By_19 ™1+ (¢}, —&)¢°, Vk € N. Hence
the sequence (g;);>¢ is recognized by the automaton A_;.

Now let (z;);>0 be a sequence recognized by the automaton A_;; then there exists
a sequence (y;)i>—1 € Fg such that A_; = y_1¢° and Ay = Ap_ 19~ + (x, — yr)Y°
for all £ € N. Hence for all £ € N,

warl =y_ wU + Z yz w’LJrl

=0

Since ||¢]| < 1 and for all K € N, Ay € V_; (finite set), we have
lim Ayttt =

k—+o00
Therefore S3° 4" = 32 | yb'. Thus (z;);>0 € D_;. This ends the proof of the
lemma.
"

End of the proof of Theorem 1. Consider [ < —1. It is easy to see that a sequence
(x;)i>0 belongs to D if and only if the associated sequence (y;)i>o, defined by y; = 0
fort=0,...,—l —2and y; = z;1441 for all ¢ > —] — 1, belongs to D_;. Hence we
construct an automaton A; which recognizes D; in the following manner: denote
by I the set of all states vV l) , of Ay such that there exist an initial state v(j% of

A_; and final states v(]) ...,v(_]l)_?) such that for all ¢ = —1,...,—] — 3, the edge
between vij) and Uz’+1 is labeled by 0. Then if we denote A_; by (.5, A, E 1, Ll, T,4),
we have A, = (S, A, E;, I;,T)) where E, = E_;\R;, where R, = {( O,UZ“) €
E ] -1<i<—-1-3, v(_jl)_Q € I;} and T; is the set of v € T_; such that there
exist k4 1 states of A_1: v_; 9,0 1,...,0_;_24, = v such that v_;_5 € I, and for
alli=—l—1,..., =1 =24k, (vi_1,a;,v;) € E; for some sequence (a;)—;—1<i<—i—2+k
of elements of A.
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Let C = {(g:)i>0 € E5 | ©2p&" € (K)}. By Lemma 2, we have C = !y D,
where N is the integer given in Lemma 2. Then an automaton which recognizes C
is L= (S,A,E,I,T) where = !y I;, T=T.1, E=E jand SCV_; x Ax A.

Remark 3.1. By using the same approach, we can prove that the boundary of every
tile is recognized by a finite automaton.

Remark 3.2. The interest of automata remains in the fact that they give informa-
tion for the boundary of compact sets given by numeration systems. For example
in the case of B satisfying the relation 3% — 32 — 3 — 1 = 0, the central tile (Rauzy
fractal) (see [9]) is the set K = {15 i |Vi:e; = 0,1 Aeigir1€i0 = 0}, where a
is one of the two complex roots of the polynomial x> — x®> — x — 1. The automaton
which recognizes the boundary of K helps us to show that this boundary is a Jordan
curve and that it is a quasi-circle (image of a circle by a quasi-conformal map) with
Hausdorff dimension 1.0645 (see [6]). It will be interesting to try to extend these

results to other Pisot unit numbers.

Theorem 2. If 3 is a cubic Pisot unit number with the property (F), then the
interior of each tile is simply connected.

Remark 3.3. The class of B cubic Pisot unit numbers with the property (F) is equal
to the class of numbers 3 > 1 with minimal polynomial 3 — ax® —bx — 1 = 0 where
a,b are integer numbers satisfying the property —1 <b <a+1 anda+b>1 (see
[2]). This class of real numbers (3 satisfies also d(1,5) = .a_1...a_y, where a_; = 1.
Then for this class the tiles are arcwise connected sets (see item 5 of Proposition 1).

Proof. 1t suffices to prove the result for the central tile K. We notice that in
the case of 3 cubic Pisot unit number, we have v = 5 if § is not totally real, and
otherwise ¥ = (s, f33).

Let T be a Jordan simple and closed curve contained in int(K). Let C be the
connected bounded component of I' (C' is the open set delimited by I' ) and C’ be
the connected unbounded component of T'. Let us prove that C' C int(K).

First we shall show that vC' N K C Y. Let zp € »C N K. Assume that zy € Y.

Since
18]

K= U ICZ and wlC = ’Co.,

=0
there exists ig € {1,...,|3]}} such that z, € K;, . Put

r=dr, Kz\int(¥K)),

where

d(X,Y) = inf{lle —yll [z € X, y e V}

for every X and Y subsets of Ky, where Ky = C if 3 is not totally real, and otherwise
K, = R2. Since the set ¢I" is contained in int(1K), we have r > 0.
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Since ;). Nint(YK) = 0, d(K;,,4T) > r. Since K;, is connected (item 5 of
Proposition 1) and KC;, N C # 0, we have IC;,, C 1 C. Since K is connected (item 5
of Proposition 1), for all € > 0 there exist 1,...,x, € K such that =y =z, z, =y
and ||x; — x| <eforall 1 <i<mn-—1.

Let 1 < j < |B], j #io, and § = min{d(K;, ;) | ;. N IC;, = 0}. In both cases
d =0 and § > 0, we deduce by taking € = 0 (in the second case) that there exist k
integers ny,...,nx € {1,...,[3]} such that ny =iy, ny = j and IC,,,, Ny, # 0
for all 1 < ¢ < k — 1. Therefore K; contains a point of ¥»C' N K. Hence by using
the same argument used for K;,, we deduce that K; C ¢C, V1 < j < |3]. Then
PYC'NK C Y. Let x be an element of K such that ||z|| = maz{||z|| | z € K}. Then
x € C’. Thus x € K. This is impossible, because in this case we have z¢p~! € K
and ||z 71| > ||z||. Therefore

YCNK C k. (5)

The relation (5) implies that »C' NI = ¢C N Y. If we apply the same argument
to the curve ¢" T, we obtain

Vn € N\{0}, v"CNK =y"CnNyK.
Then by induction we have
YPPCNK =y"CNyY"K, VYn € N\{0}.

Let z € C. Since 0 € int(K) and [¢| < 1, there exists n € N such that z¢™ € K.
Then zy™ € Y"C N K = Y"C' NY"K. Hence z € K. This implies that C' C K. Since
C'is an open set, we have C' C int(K). [

Remark 3.4. The proof cannot be extended to 3 with deg(3) = d > 3, because
a Jordan simple and closed curve I' does not separate the d — 1 dimensional space
R™! x C* into two connected components. However if we take I' as a d — 1 sphere,
using the same proof of Theorem 2, we can show that C' C int(K).
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