On a lower bound for the L-S category of a rationally elliptic space

Toshihiro Yamaguchi

Abstract

We discuss a formula that the dimension of the rational cohomology gives a lower bound for the L-S category of a rationally elliptic space.

1 Introduction

In this paper, X is a simply connected finite cell complex. Recall that the L-S (Lusternik-Schnirelmann) category of $X, \operatorname{cat}(X)$, is the least integer n such that X can be covered by $n+1$ open subsets contractible in X. The rational L-S category, $\operatorname{cat}_{0}(X)$, is the least integer n such that $X \simeq_{0} Y$ and $\operatorname{cat}(Y)=n$. A simply connected space Y is called (rationally) elliptic if the rank of the homotopy group $\pi_{*}(Y)$ is finite and the rational cohomology $H^{*}(Y ; Q)$ is finite dimensional.

Recently G.Lupton showed that $2 c a t_{0}(X) \leq \operatorname{dim} H^{*}(X ; Q)$ for certain elliptic spaces X [8, Corollary 2.6]. In the case of elliptic spaces X, it seems, roughly speaking, that $\operatorname{cat}(X)$ becomes larger when $\operatorname{dim} H^{*}(X ; Q)$ does. So we want to give a lower bound for the L-S category of an elliptic space X in terms of its cohomology. We propose a

Problem. If X is elliptic, then $\operatorname{dim} H^{*}(X ; Q) \leq 2^{\text {cat }(X)}$?
Note that $\operatorname{cat}_{0}(X) \leq N=\max \left\{i \mid H^{i}(X ; Q) \neq 0\right\}$ in general [5, p.386] and $\operatorname{dim} H^{*}(X ; Q) \leq 2^{N}$ if X is elliptic [2, p.61].

Recall that the rational cup length, $\operatorname{cup}_{0}(X)$, is the largest integer n such that the n-product of $H^{+}(X ; Q)$ is not zero. Also the rational Toomer invariant of X,

[^0]$e_{0}(X)$, is given by using the Sullivan minimal model [9] $M(X)=(\Lambda V, d)$ as $\sup \{n \mid$ there is an element $\alpha \in \Lambda^{\geq n} V$ such that $\left.0 \neq[\alpha] \in H^{*}(X ; Q)\right\}$. If $H^{*}(X ; Q)$ is a Poincaré duality algebra, it is proved that $e_{0}(X)=\operatorname{cat}_{0}(X)$ [4, Theorem 3]. If X is elliptic, $H^{*}(X ; Q)$ has a Poincaré duality. Therefore if X is elliptic
$$
\operatorname{cup}_{0}(X) \leq e_{0}(X)=\operatorname{cat}_{0}(X) \leq \operatorname{cat}(X),
$$
in which $\operatorname{cup}_{0}(X)=e_{0}(X)$ if X is formal [5]. For example, there is an 11-dimensional manifold X whose rational homotopy type is given by the Sullivan minimal model $M(X)=(\Lambda(x, y, z), d)$ with the degrees $\operatorname{deg}(x)=\operatorname{deg}(y)=3, \operatorname{deg}(z)=5$ and the differentials $d(x)=d(y)=0, d(z)=x y$. We see that $H^{*}(X ; Q) \cong \Lambda(x, y) \otimes$ $Q[u, w] /\left(x y, x u, y w, u^{2}, u w, w^{2}, x w+y u\right)$ with $\operatorname{deg}(u)=\operatorname{deg}(w)=8$. Notice that it is isomorphic to the cohomology of the non-elliptic manifold $Y=\left(S^{3} \times S^{8}\right) \sharp\left(S^{3} \times S^{8}\right)$, where S^{n} is the n-dimensional sphere and \sharp is the connected sum. Then
$$
2^{\operatorname{cat}(Y)}=2^{2}<\operatorname{dim} H^{*}(X ; Q)=6<2^{3}=2^{e_{0}(X)} \leq 2^{\text {cat }(X)} .
$$

Hence the formula of the problem does not hold in non-elliptic cases in general.
Recall that the toral rank of $X, \operatorname{rk}(X)$, is the largest integer n such that an n torus can act continuously on X with all its isotropy subgroups finite. Also $r k_{0}(X)$ is defined as $\max \left\{r k(Y) \mid Y \simeq_{0} X\right\}$. In [7], S.Halperin conjectured that $2^{r k(X)} \leq$ $\operatorname{dim} H^{*}(X ; Q)$ in general. If X is elliptic, by [1] and [3],

$$
r k(X) \leq r k_{0}(X) \leq-\chi_{\pi}(X) \leq \operatorname{rank} \pi_{o d d}(X) \leq e_{0}(X)
$$

where $\chi_{\pi}(X)=\sum_{i}(-1)^{i}$ rank $\pi_{i}(X)$. Thus our problem does not contradict his conjecture. Especially note that $2^{r k(X)}=\operatorname{dim} H^{*}(X ; Q)=2^{\operatorname{cat}(X)}$ if X is the product space of some odd-dimensional spheres. In this paper, we give a partial answer to our problem;

Theorem 1.1. If X is elliptic with rank $\pi_{\text {even }}(X) \leq 1, \operatorname{dim} H^{*}(X ; Q) \leq 2^{\operatorname{cat}(X)}$.
Note that even if the formula of the problem holds for elliptic spaces X and Y, it does not for the non-elliptic space $X \vee Y$, one point union of X and Y, in general. Indeed $\operatorname{dim} H^{*}(X \vee Y ; Q)=\operatorname{dim} H^{*}(X ; Q)+\operatorname{dim} H^{*}(Y ; Q)-1$ but $\operatorname{cat}(X \vee Y)=\max \{\operatorname{cat}(X), \operatorname{cat}(Y)\}$.

In the following sections, we use Sullivan minimal model of a simply connected space Y. It is a free Q-commutative differential graded algebra $(\Lambda V, d)$ with a graded vector space $V=\oplus_{i>1} V^{i}$ and a minimal differential, i.e., $d\left(V^{i}\right) \subset\left(\Lambda^{+} V \cdot \Lambda^{+} V\right)^{i+1}$. Especially note that $V^{i} \cong \operatorname{Hom}\left(\pi_{i}(Y), Q\right)$ and $H^{*}(\Lambda V, d) \cong H^{*}(Y ; Q)$. Refer [5] for a general introduction and notations, for example, rational fibration and K-S extension. Since cup,e_{0} and cat ${ }_{0}$ are rational homotopy invariants, we denote often $\operatorname{cup}_{0}(\Lambda V, d), e_{0}(\Lambda V, d)$ and $\operatorname{cat}_{0}(\Lambda V, d)$ for a minimal model $(\Lambda V, d)$ of a space. For an element v, we denote $\operatorname{deg}(v)$ as $|v|$.

We give the proof of Theorem 1.1 in Section 2 and some examples of the case of rank $\pi_{\text {even }}(X)=2$ in Section 3.

2 Proof

Lemma 2.1. Let X be the total space of the rational fibration $F \rightarrow X \rightarrow S^{2 n+1}$ with an elliptic space F satisfying $\operatorname{dim} H^{*}(F ; Q) \leq 2^{e_{0}(F)}$. Then $\operatorname{dim} H^{*}(X ; Q) \leq 2^{e_{0}(X)}$.

Proof. By [2, Lemme 5.6.3], $e_{0}(F)<e_{0}(X)$. Therefore we have $\operatorname{dim} H^{*}(X ; Q) \leq$ $\operatorname{dim} H^{*}(F ; Q) \cdot \operatorname{dim} H^{*}\left(S^{2 n+1} ; Q\right)=2 \operatorname{dim} H^{*}(F ; Q) \leq 2 \cdot 2^{e_{0}(F)}=2^{e_{0}(F)+1} \leq 2^{e_{0}(X)}$.

Proof of Theorem 1.1. If rank $\pi_{\text {even }}(X)=0$, Then $M(X)=\left(\Lambda\left(v_{1}, \cdots, v_{m}\right), d\right)$ with $\left|v_{i}\right|$ are odd. Note the element $v_{1} \cdots v_{m}$ is non-exact d-cocycle. Thus $e_{0}(X)=m$ and $\operatorname{dim} H^{*}(X ; Q) \leq \sharp\left\{v_{1}^{\epsilon_{1}} \cdots v_{m}^{\epsilon_{m}} \mid \epsilon_{i}=0,1\right\}=2^{m}$

Let $\operatorname{rank} \pi_{\text {even }}(X)=1$. Up to isomorphisms, we can put the Sullivan minimal model of X as

$$
M(X)=\left(\Lambda\left(x, z, v_{1}, \cdots, v_{m}\right), d\right)
$$

(i) $|x|$ is even, the other elements are odd and $i<j$ if $\left|v_{i}\right|<\left|v_{j}\right|$,
(ii) $d(z)=x^{n}+f$ for some $n>1$ and $f \in I\left(v_{1}, \cdots, v_{m}\right)$,
(iii) $d\left(v_{i}\right) \in I\left(v_{1}, \cdots v_{i-1}\right)$ for any $1 \leq i \leq m$,
where $I(*)$ is the ideal of $\Lambda\left(x, z, v_{1}, \cdots, v_{m}\right)$ generated by $*$. Factor out the differential graded ideal generated by v_{i} inductively for $i=1, \cdots, m$ as the K-S extensions

$$
\left(\Lambda\left(v_{i}\right), 0\right) \rightarrow\left(\Lambda\left(x, z, v_{i}, \cdots, v_{m}\right), \bar{d}\right) \rightarrow\left(\Lambda\left(x, z, v_{i+1}, \cdots, v_{m}\right), \bar{d}\right)
$$

in which the differential \bar{d} of the right side is induced from one of the left. Put $W_{i}=Q\left\{x, z, v_{i+1}, \cdots, v_{m}\right\}$ for $i=0, \cdots, m$. Note that $\operatorname{dim} H^{*}\left(\Lambda W_{i}, \bar{d}\right)<\infty$ for $i=1, . ., m[6]$. Finally we have $\left(\Lambda W_{m}, \bar{d}\right)=(\Lambda(x, z), \bar{d})$ with $\bar{d}(z)=x^{n}$ and $\bar{d}(x)=0$. Then $e_{0}(\Lambda(x, z), \bar{d})=\operatorname{cup}_{0}(\Lambda(x, z), \bar{d})=n-1$. and $\operatorname{dim} H^{*}(\Lambda(x, z), \bar{d})=n \leq 2^{n-1}=$ $2^{e_{0}(\Lambda(x, z), \bar{d})}$. By using Lemma 2.1 inductively, we have

$$
\operatorname{dim} H^{*}\left(\Lambda W_{i}, \bar{d}\right) \leq 2^{e_{0}\left(\Lambda W_{i}, \bar{d}\right)}
$$

for $i=m-1, \cdots, 1$ and 0 . Finally we have $\operatorname{dim} H^{*}(X ; Q) \leq 2^{e_{0}(X)}=2^{\text {cat }_{0}(X)} \leq$ $2^{\text {cat }(X)}$.

3 case of $\operatorname{rank} \pi_{\text {even }}(X)=2$

In this section, we give some examples of elliptic spaces X of $\operatorname{rank} \pi_{\text {even }}(X)=2$ such that the formula of our problem holds.
(1) $H^{*}(X ; Q)=Q[x, y] /(f, g)$. Let $\operatorname{cup}_{0}(X)=n$. Then $\operatorname{dim} Q[x, y] /(f, g) \leq$ $\sharp\left\{x^{i} y^{j} \mid 0 \leq i+j<n\right\}+1=\frac{n(n+1)}{2}+1 \leq 2^{n}=2^{\text {cup }}(X)=2^{e_{0}(X)}$.
(2) $M(X)=\left(\Lambda\left(x, y, v_{1}, v_{2}, v_{3}\right), d\right)$ with $|x|=|y|=2,\left|v_{1}\right|=2 n+3,\left|v_{2}\right|=\left|v_{3}\right|=3$ and $d v_{1}=x^{n+2}, d v_{2}=x y, d v_{3}=y^{2}$. Then $H^{*}(X ; Q) \cong Q\left\{1, x, x^{2}, \cdots, x^{n+1}, y,\left[y v_{1}-\right.\right.$ $\left.x^{n+1} v_{2}\right], x^{i}\left[y v_{2}-x v_{3}\right]$ for $\left.i=0, \cdots, n+1\right\} \cong H^{*}\left(\left(C P^{n+1} \times S^{5}\right) \sharp\left(S^{2} \times S^{2 n+5}\right) ; Q\right)$, Thus $e_{0}(X)=n+3$ and $\operatorname{dim} H^{*}(X ; Q)=2 n+6<2^{n+3}=2^{e_{0}(X)}$. Here $C P^{n+1}$ is
the complex $n+1$-dimensional projective space.
(3) $M(X)=(\Lambda(x, y, z, a, b, c), d)$ with $|x|=2,|y|=3,|z|=3,|a|=4,|b|=$ $5,|c|=7$ and $d(x)=d(y)=0, d(z)=x^{2}, d(a)=x y, d(b)=x a+y z, d(c)=a^{2}+2 y b$. Then $H^{*}(X ; Q) \cong Q\left\{1, x, y,[y a],[x b-z a],\left[x^{2} c-x a b+y z b\right],\left[3 x y c+a^{3}\right],\left[3 x^{2} y c+x a^{3}\right]\right\}$. Thus $e_{0}(X)=4$ and $\operatorname{dim} H^{*}(X ; Q)=8<2^{4}=2^{e_{0}(X)}$.

References

[1] C.Allday and S.Halperin, Lie group actions on spaces of finite rank, Quart.J.Math. Oxford 28 (1978) 63-76
[2] Y.Félix, La dichotomie elliptique-hyperbolique en homotopie rationnelle, Astérisque 176 [1989]
[3] Y.Félix and S.Halperin, Rational LS-category and its applications, Trans.A.M.S. 273 (1982) 1-17
[4] Y.Félix, S.Halperin and J.M. Lemaire, The rational LS category of products and of Poincaré duality complex, Topology 37 (1998) 749-756
[5] Y.Félix, S.Halperin and J.C.Thomas, Rational homotopy theory, Springer G.T.M. 205 [2001]
[6] S.Halperin, Finiteness in the minimal models of Sullivan, T.A.M.S. 230 (1977) 173-199
[7] S.Halperin, Rational homotopy and torus actions, London Math.Soc. Lectures Notes Series 93 (1985) 293-306
[8] G.Lupton, The rational Toomer invariant and certain elliptic spaces, Contem.Math. 316 (2002) 135-146
[9] D.Sullivan, Infinitesimal computations in topology, Publ.I.H.E.S. 47 (1977) 269331

Faculty of Education, Kochi University, 2-5-1, Kochi,780-8520, Japan
email: tyamag@cc.kochi-u.ac.jp

[^0]: Received by the editors December 2003.
 Communicated by Y. Félix.
 1991 Mathematics Subject Classification : 55P62, 55M30.
 Key words and phrases : L-S category, rationally elliptic space, Sullivan minimal model.

