On a lower bound for the L-S category of a rationally elliptic space

Toshihiro Yamaguchi

Abstract

We discuss a formula that the dimension of the rational cohomology gives a lower bound for the L-S category of a rationally elliptic space.

1 Introduction

In this paper, X is a simply connected finite cell complex. Recall that the L-S (Lusternik-Schnirelmann) category of X, cat(X), is the least integer n such that X can be covered by n + 1 open subsets contractible in X. The rational L-S category, $cat_0(X)$, is the least integer n such that $X \simeq_0 Y$ and cat(Y) = n. A simply connected space Y is called *(rationally) elliptic* if the rank of the homotopy group $\pi_*(Y)$ is finite and the rational cohomology $H^*(Y; Q)$ is finite dimensional.

Recently G.Lupton showed that $2cat_0(X) \leq \dim H^*(X;Q)$ for certain elliptic spaces X [8, Corollary 2.6]. In the case of elliptic spaces X, it seems, roughly speaking, that cat(X) becomes larger when $\dim H^*(X;Q)$ does. So we want to give a lower bound for the L-S category of an elliptic space X in terms of its cohomology. We propose a

Problem. If X is elliptic, then dim $H^*(X;Q) \leq 2^{cat(X)}$?

Note that $cat_0(X) \leq N = \max\{i|H^i(X;Q) \neq 0\}$ in general [5, p.386] and $\dim H^*(X;Q) \leq 2^N$ if X is elliptic [2, p.61].

Recall that the rational cup length, $cup_0(X)$, is the largest integer n such that the n-product of $H^+(X;Q)$ is not zero. Also the rational Toomer invariant of X,

Key words and phrases : L-S category, rationally elliptic space, Sullivan minimal model.

Bull. Belg. Math. Soc. 12 (2005), 565-568

Received by the editors December 2003.

Communicated by Y. Félix.

¹⁹⁹¹ Mathematics Subject Classification : 55P62, 55M30.

 $e_0(X)$, is given by using the Sullivan minimal model [9] $M(X) = (\Lambda V, d)$ as $sup\{n|$ there is an element $\alpha \in \Lambda^{\geq n}V$ such that $0 \neq [\alpha] \in H^*(X;Q)\}$. If $H^*(X;Q)$ is a Poincaré duality algebra, it is proved that $e_0(X) = cat_0(X)$ [4, Theorem 3]. If X is elliptic, $H^*(X;Q)$ has a Poincaré duality. Therefore if X is elliptic

$$cup_0(X) \le e_0(X) = cat_0(X) \le cat(X),$$

in which $cup_0(X) = e_0(X)$ if X is formal [5]. For example, there is an 11-dimensional manifold X whose rational homotopy type is given by the Sullivan minimal model $M(X) = (\Lambda(x, y, z), d)$ with the degrees deg(x) = deg(y) = 3, deg(z) = 5 and the differentials d(x) = d(y) = 0, d(z) = xy. We see that $H^*(X;Q) \cong \Lambda(x,y) \otimes Q[u,w]/(xy,xu,yw,u^2,uw,w^2,xw+yu)$ with deg(u) = deg(w) = 8. Notice that it is isomorphic to the cohomology of the non-elliptic manifold $Y = (S^3 \times S^8) \sharp (S^3 \times S^8)$, where S^n is the n-dimensional sphere and \sharp is the connected sum. Then

$$2^{cat(Y)} = 2^2 < \dim H^*(X;Q) = 6 < 2^3 = 2^{e_0(X)} \le 2^{cat(X)}.$$

Hence the formula of the problem does not hold in non-elliptic cases in general.

Recall that the toral rank of X, rk(X), is the largest integer n such that an ntorus can act continuously on X with all its isotropy subgroups finite. Also $rk_0(X)$ is defined as $max\{rk(Y)|Y \simeq_0 X\}$. In [7], S.Halperin conjectured that $2^{rk(X)} \leq \dim H^*(X;Q)$ in general. If X is elliptic, by [1] and [3],

$$rk(X) \le rk_0(X) \le -\chi_{\pi}(X) \le rank \ \pi_{odd}(X) \le e_0(X),$$

where $\chi_{\pi}(X) = \sum_{i} (-1)^{i} rank \ \pi_{i}(X)$. Thus our problem does not contradict his conjecture. Especially note that $2^{rk(X)} = \dim H^{*}(X;Q) = 2^{cat(X)}$ if X is the product space of some odd-dimensional spheres. In this paper, we give a partial answer to our problem;

Theorem 1.1. If X is elliptic with rank $\pi_{even}(X) \leq 1$, dim $H^*(X;Q) \leq 2^{cat(X)}$.

Note that even if the formula of the problem holds for elliptic spaces X and Y, it does not for the non-elliptic space $X \vee Y$, one point union of X and Y, in general. Indeed dim $H^*(X \vee Y; Q) = \dim H^*(X; Q) + \dim H^*(Y; Q) - 1$ but $cat(X \vee Y) = max\{cat(X), cat(Y)\}.$

In the following sections, we use Sullivan minimal model of a simply connected space Y. It is a free Q-commutative differential graded algebra $(\Lambda V, d)$ with a graded vector space $V = \bigoplus_{i>1} V^i$ and a minimal differential, i.e., $d(V^i) \subset (\Lambda^+ V \cdot \Lambda^+ V)^{i+1}$. Especially note that $V^i \cong Hom(\pi_i(Y), Q)$ and $H^*(\Lambda V, d) \cong H^*(Y; Q)$. Refer [5] for a general introduction and notations, for example, rational fibration and K-S extension. Since cup_0 , e_0 and cat_0 are rational homotopy invariants, we denote often $cup_0(\Lambda V, d)$, $e_0(\Lambda V, d)$ and $cat_0(\Lambda V, d)$ for a minimal model $(\Lambda V, d)$ of a space. For an element v, we denote deg(v) as |v|.

We give the proof of Theorem 1.1 in Section 2 and some examples of the case of rank $\pi_{even}(X) = 2$ in Section 3.

2 Proof

Lemma 2.1. Let X be the total space of the rational fibration $F \to X \to S^{2n+1}$ with an elliptic space F satisfying dim $H^*(F;Q) \leq 2^{e_0(F)}$. Then dim $H^*(X;Q) \leq 2^{e_0(X)}$.

Proof. By [2, Lemme 5.6.3], $e_0(F) < e_0(X)$. Therefore we have dim $H^*(X;Q) \le \dim H^*(F;Q) \cdot \dim H^*(S^{2n+1};Q) = 2 \dim H^*(F;Q) \le 2 \cdot 2^{e_0(F)} = 2^{e_0(F)+1} \le 2^{e_0(X)}$.

Proof of Theorem 1.1. If rank $\pi_{even}(X) = 0$, Then $M(X) = (\Lambda(v_1, \cdots, v_m), d)$ with $|v_i|$ are odd. Note the element $v_1 \cdots v_m$ is non-exact *d*-cocycle. Thus $e_0(X) = m$ and dim $H^*(X; Q) \leq \sharp \{v_1^{\epsilon_1} \cdots v_m^{\epsilon_m} | \epsilon_i = 0, 1\} = 2^m$

Let rank $\pi_{even}(X) = 1$. Up to isomorphisms, we can put the Sullivan minimal model of X as

$$M(X) = (\Lambda(x, z, v_1, \cdots, v_m), d)$$

(i) |x| is even, the other elements are odd and i < j if $|v_i| < |v_j|$,

(ii) $d(z) = x^n + f$ for some n > 1 and $f \in I(v_1, \cdots, v_m)$,

(iii) $d(v_i) \in I(v_1, \cdots v_{i-1})$ for any $1 \le i \le m$,

where I(*) is the ideal of $\Lambda(x, z, v_1, \dots, v_m)$ generated by *. Factor out the differential graded ideal generated by v_i inductively for $i = 1, \dots, m$ as the K-S extensions

$$(\Lambda(v_i), 0) \to (\Lambda(x, z, v_i, \cdots, v_m), \overline{d}) \to (\Lambda(x, z, v_{i+1}, \cdots, v_m), \overline{d}),$$

in which the differential \overline{d} of the right side is induced from one of the left. Put $W_i = Q\{x, z, v_{i+1}, \cdots, v_m\}$ for $i = 0, \cdots, m$. Note that $\dim H^*(\Lambda W_i, \overline{d}) < \infty$ for i = 1, ..., m [6]. Finally we have $(\Lambda W_m, \overline{d}) = (\Lambda(x, z), \overline{d})$ with $\overline{d}(z) = x^n$ and $\overline{d}(x) = 0$. Then $e_0(\Lambda(x, z), \overline{d}) = cup_0(\Lambda(x, z), \overline{d}) = n-1$. and $\dim H^*(\Lambda(x, z), \overline{d}) = n \leq 2^{n-1} = 2^{e_0(\Lambda(x, z), \overline{d})}$. By using Lemma 2.1 inductively, we have

$$\dim H^*(\Lambda W_i, \overline{d}) \le 2^{e_0(\Lambda W_i, \overline{d})}$$

for $i = m - 1, \dots, 1$ and 0. Finally we have $\dim H^*(X; Q) \le 2^{e_0(X)} = 2^{cat_0(X)} \le 2^{cat(X)}$.

3 case of $rank \pi_{even}(X) = 2$

In this section, we give some examples of elliptic spaces X of rank $\pi_{even}(X) = 2$ such that the formula of our problem holds.

(1) $H^*(X;Q) = Q[x,y]/(f,g)$. Let $cup_0(X) = n$. Then $\dim Q[x,y]/(f,g) \le$ $\sharp\{x^iy^j|0\le i+j< n\}+1 = \frac{n(n+1)}{2}+1\le 2^n = 2^{cup_0(X)} = 2^{e_0(X)}.$

(2) $M(X) = (\Lambda(x, y, v_1, v_2, v_3), d)$ with $|x| = |y| = 2, |v_1| = 2n+3, |v_2| = |v_3| = 3$ and $dv_1 = x^{n+2}, dv_2 = xy, dv_3 = y^2$. Then $H^*(X; Q) \cong Q\{1, x, x^2, \cdots, x^{n+1}, y, [yv_1 - x^{n+1}v_2], x^i[yv_2 - xv_3]$ for $i = 0, \cdots, n+1\} \cong H^*((CP^{n+1} \times S^5) \sharp (S^2 \times S^{2n+5}); Q),$ Thus $e_0(X) = n+3$ and dim $H^*(X; Q) = 2n+6 < 2^{n+3} = 2^{e_0(X)}$. Here CP^{n+1} is the complex n + 1-dimensional projective space.

(3) $M(X) = (\Lambda(x, y, z, a, b, c), d)$ with |x| = 2, |y| = 3, |z| = 3, |a| = 4, |b| = 5, |c| = 7 and $d(x) = d(y) = 0, d(z) = x^2, d(a) = xy, d(b) = xa + yz, d(c) = a^2 + 2yb$. Then $H^*(X;Q) \cong Q\{1, x, y, [ya], [xb-za], [x^2c-xab+yzb], [3xyc+a^3], [3x^2yc+xa^3]\}$. Thus $e_0(X) = 4$ and dim $H^*(X;Q) = 8 < 2^4 = 2^{e_0(X)}$.

References

- [1] C.Allday and S.Halperin, *Lie group actions on spaces of finite rank*, Quart.J.Math. Oxford 28 (1978) 63-76
- [2] Y.Félix, La dichotomie elliptique-hyperbolique en homotopie rationnelle, Astérisque 176 [1989]
- [3] Y.Félix and S.Halperin, Rational LS-category and its applications, Trans.A.M.S. 273 (1982) 1-17
- [4] Y.Félix, S.Halperin and J.M. Lemaire, The rational LS category of products and of Poincaré duality complex, Topology 37 (1998) 749-756
- Y.Félix, S.Halperin and J.C.Thomas, *Rational homotopy theory*, Springer G.T.M. 205 [2001]
- S.Halperin, Finiteness in the minimal models of Sullivan, T.A.M.S. 230 (1977) 173-199
- S.Halperin, Rational homotopy and torus actions, London Math.Soc. Lectures Notes Series 93 (1985) 293-306
- [8] G.Lupton, The rational Toomer invariant and certain elliptic spaces, Contem.Math. 316 (2002) 135-146
- [9] D.Sullivan, Infinitesimal computations in topology, Publ.I.H.E.S. 47 (1977) 269-331

Faculty of Education, Kochi University, 2-5-1, Kochi,780-8520, Japan email: tyamag@cc.kochi-u.ac.jp