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Abstract

Convolution structure for Jacobi series allows end point summability of
Fourier-Jacobi expansions to lead an approximation of function by a linear
combination of Jacobi polynomials. Thus, using Cesàro summability of some
orders > 1 at x = 1, we prove a result of approximation of functions on [−1, 1]
by operators involving Jacobi polynomials. Precisely, we pick up functions
from a Lebesgue integrable space and then study its representation by Jacobi
polynomials under different conditions.

1 Introduction

We write X to denote either of the spaces Lp
α,β or C. The space is p-power Lebesgue

integrable functions with weight w(x) on −1 ≤ x ≤ 1, and C is space of all contin-
uous functions on [−1, 1]. The expansion of the function f(x) ∈ X at x = cos θ, in
the form of Jacobi series is given by

f(cos θ) ∼
∞∑

n=0

anP
(α,β)
n (cos θ) (1.1)

≡
∑

Un(cos θ) (say)

where

an =
2n+ α+ β + 1

2α+β+1
.
Γ(n+ 1)Γ(n+ α+ β + 1)

Γ(n+ α+ 1)Γ(n+ β + 1)
(1.2)
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∫ π

0
(1− cosω)α(1 + cosω)βP (α,β)

n (cosω) sinωf(cosω)dω

P (α,β)
n (cos θ), α > −1, β > −1, is n-th Jacobi polynomial of order (α, β) and the

existence of the integral in (1.2) is presumed.

We write
f(ω) = {f(cosω)− A}

T δ
n =

1

Aδ
n

n∑
ν=0

Aδ−1
n−νgνP

(α,β)
ν (1)P (α,β)

ν (cosω) sinω (1.3)

Lδ
ν =

1

Aδ
n

ν∑
k

Aδ−1
n−kgkP

(α,β)
k (1)P

(α,β)
k (cosω) sinω (1.4)

where

gν =
2ν + α+ β + 1

2α+β+1
.
Γ(ν + 1)Γ(ν + α+ β + 1)

Γ(ν + α+ 1)Γ(ν + β + 1)
= O(ν) (1.5)

gn,α =
2−α−β−1. Γ(n+ α+ β + 2)

Γ(α+ 1)Γ(n+ β + 1)
∼= nα+1 (1.6)

2 Preliminaries

Cesàro summability of the series (1.1) has been discussed in detail by Kogbetliantz,
E.[2], Szegö, G.[5] and Obrechkoff, N.[3]. In a recent paper Pandey, G.S.[4] has
proved the following theorems on Cesàro summability of the series (1.1) at the
frontier as well as at the internal points of the interval [−1,+1]. These theorems
are:

Theorem A. If, for −1
2
< k < 1

2
, α ≥ −1

2
, β ≥ α

f(x) ∈ lip(1/2− k) (2.1)

then the series (1.1) is summable (C, k − 1
2
) to the sum f(x) at an interior point x

of the interval [−1 + ε, 1− ε], ε > 0, but fixed.

Theorem B. The series (1.1) is summable (C, k) for α − 1
2
< k < α + 1

2
, −1

2
<

α < 1
2
, β ≥ α at θ = 0 to the sum A provided that

f(ω) ∈ lip(α+ 1/2− k) (2.2)

The following result is due to Yadav [6] .

Theorem C. If {λn} is a convex sequence such that
∑
n−1λn is convergent. Then

the series
∑{anP

(α,β)
n (x)λn}, -1

2
< α < 1

2
, β ≥ α, is absolutely summable (C, δ), 1 <

δ < 2 at the point x = 1 of the interval [−1, 1] provided

f(ω) ∈ lip(2− δ) (2.3)
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3 Main Result

The object of the present paper is to discuss the approximation of a function of X by
an operator formed by (C, δ) mean of the series (1.1) which is a linear combination
of Jacobi polynomials. At first we prove the convergence of (C, δ) mean and later
an approximation theorem. Our first theorem on convergence of Cesàro operators
is as follows:

Theorem 1. If {λn} is a convex sequence such that
∑
n−1λn is convergent then

(C, δ)1<δ<2 transform T δ
n(cos θ, f,X) of the series (1.1) with factor {λn} converges

at θ = 0, for -1
2
< α < 1

2
, β ≥ α,, or at the point x = 1 of the interval [−1, 1]

provided
f(ω) ∈ lip(2− δ) (3.1)

Our approximation theorem is as follows:

Theorem 2. There exists a linear combination T δ
n(cos θ, f,X) of Jacobi polyno-

mials such that for α = β ≥ −1
2

and −1
2
< α < 1

2

||T δ
n(cos θ, f,X)− f(cos θ)|| → 0 as, n→∞ (3.2)

Uniformly in [0, π] under the conditions of theorem 1, where T δ
n(cos θ, f,X) is Cesàro

mean of order δ, (1 < δ < 2)) of the Jacobi series (1.1) i.e.

T δ
n(cos θ, f,X) =

n∑
ν=0

(
Aδ−1

n−ν

Aδ
n

)
Sν(cos θ) (3.3)

and

Sν(cos θ) =
ν∑

k=0

λkakP
(α,β)
k (cos θ) (3.4)

is partial sum of the Jacobi series(1.1).

4 Lemmas

To prove the theorems, we use the following results given as lemmas.

Lemma 1. For 0 ≤ ω ≤ γn, γn = n−(2α+2)(4+2α−δ)−1
we have

T δ
n = O(n2α+1ω) (4.1)

Proof: We have (see (1.3)),

T δ
n =

1

Aδ
n

n∑
ν=0

Aδ−1
n−νgνP

(α,β)
ν (1)P (α,β)

ν (cosω) sinω

= n−δ.A
n∑

ν=0

nδ−1ν2α+1ω
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where A is an independent constant.

= O(n2α+1ω), since δ > 1

Hence the lemma.

Lemma 2. For π − n−1 ≤ ω ≤ π, we have

T δ
n = O(nα+β+1) sinω (4.2)

Proof:

T δ
n =

1

Aδ
n

n∑
ν=0

Aδ−1
n−νgνP

(α,β)
ν (1)P (α,β)

ν (cosω) sinω

=

{
n−δ.A

n∑
ν=0

Aδ−1
n−νν

α+β+1

}
sinω

= O(nα+β+1) sinω since δ > 1

which proves the lemma.

Lemma 3. For 0 ≤ ω ≤ γn, γn = n−(2α+2)(4+2α−δ)−1
we have

Lδ
ν = O(ν2α+1) sinω (4.3)

Proof:

Lδ
ν =

1

Aδ
n

ν∑
k=0

Aδ−1
n−kgkP

(α,β)
k (1)P

(α,β)
k (cosω) sinω

= O(n−δ)

[
ν∑

k=0

Aδ−1
n−kO(k2α+1)

]
sinω

(since |P (α,β)
n (cosω)| = O(nα), for α ≥ 1

2
and P

(α,β)
k (1) = kα).

= O(n−δ)O(nδ−1)ν2α+2 sinω

= O(ν2α+1) sinω, since ν ≤ n.

Lemma 4. For π − 1/n ≤ ω ≤ π, we have

Lδ
ν = O(να+β+1) sinω (4.4)

Proof of the lemma is as that of lemma 3.

Lemma 5. If γn ≤ ω ≤ π − 1/n, (γn ≥ 1/n), and En and Gn are respectively real
and imaginary parts of

E ≡ {M(ω)}e−
π
2
i(α+ 1

2
)
∫ ω

−∞
(ω − t)−α− 3

2×
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n∑
ν=1

Aδ−2
n−ν

{
ei(ν+α+β

2
+1)ω − ei(ν+α+β

2
+1)t

dt (4.5)

such that
M(ω) = (sinω/2)−α− 1

2 (cosω/2)−β+ 1
2

then

T δ
n = (Aδ

n)−1En + (Aδ
n)−1Gn +O

(
nα−3/2 sin−α−3/2 ω

2
cos−β−1/2 ω

2

)
(4.6)

Proof of the lemma follows by direct calculation substituting the orders of Jacobi
polynomials and asymptotic values given by Szegö ([5], p. 71 and p. 196).

Lemma 6. If γn ≤ ω ≤ π − 1/n, (γn ≥ 1/n), we have

E ≡M(ω)ei π
2
(α+ 1

2
)ei(n+α+β

2
+1)ωψ(ω) (4.7)

where

ψ(ω) ≡
∫ ∞
0

uα−3/2

kn(ω)− kn(ω − u)ei(n+α+β
2

+1)u

du (4.8)

such that

kn(ω) =
n∑

m=0

Aδ−2
m eimω (4.9)

Proof: Proof the lemma is parallel to that of lemma 5.

Lemma 7. We have
ψ(ω) = O(nα+1/2ω1−δ) (4.10)

and
ψ(ω + µn)− ψ(ω) = O(nδ+α−3/2 log nω−1) (4.11)

where
µn =

π

n+ α+β
2

+ 1

Proof: Proof of the lemma is a consequence of direct calculations.

Lemma 8. Combining lemmas 5 and 6, we have for If γn ≤ ω < π − 1/n, (γn ≥
1/n),

T δ
n = Rn

{
M(ω)e−

π
2
i(α+ 1

2
)ei(n+α+β

2
+1)ωn−δψ(ω)

}

+ In

{
M(ω)e−i π

2
(α+ 1

2
)ei(n+α+β

2
+1)ωn−δψ(ω)

}

+ O

(
n−α−3/2 sin−α−3/2 ω

2
cos−β−1/2 ω

2

)
(4.12)
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where
ψ(ω) = O(nα+1/2ω1−δ)

and
ψ(ω + µn)− ψ(ω) = O(nδ+α−3/2 log nω−1)

Lemma 9. If, γn ≤ ω ≤ π − 1/n, (γn ≥ 1/n),E1
n and G1

n and are respectively real
and imaginary parts of

E1 = {M(ω)}ei(α+1/2)π
2

∫ ω

−∞
(ω − t)−α−3/2

ν−1∑
k=0

Aδ−2
n−k

×

ei(k+α+β
2

+1)ω − ei(k+α+β
2

+1)t

dt
where

M(ω) = (sinω/2)−α− 1
2 (cosω/2)−β+ 1

2

then

T δ
n = (Aδ

n)−1E1
n + (Aδ

n)−1G1
n +O

n−δνα+δ−3/2

(
sin

ω

2

)−α− 3
2
(

cos
ω

2

)−β− 1
2

 (4.13)

Proof: Proof of the lemma is similar to that of lemma 5.

Lemma 10. If, γn ≤ ω ≤ π − 1/n, (γn ≥ 1/n),

µn =
π

n+ α+β
2

+ 1

We have

E1 = O{M(ω)}ei(α+1/2)π
2 e

i

(
n+α+β

2
+1

)
ω
φ(ω) (4.14)

such that
φ(ω) = O(nα+1/2ω1−δ)

and
φ(ω + µn)− φ(ω) = O(nδ+α−3/2 log nω−1)

Proof: Again the proof is similar to that of lemma 5.

Lemma 11. If, γn ≤ ω ≤ π − 1/n, (γn ≥ 1/n), we have

Lδ
ν = Rn

{
M(ω)e−i(α+ 1

2
)π/2ei(n+α+β

2
+1)ωn−δψ(ω)

}

+ In

{
M(ω)e−i(α+ 1

2
)π/2ei(n+α+β

2
+1)ωn−δψ(ω)

}

+ O

(
n−δνα+δ−3/2

(
sin

ω

2

)−α−3/2(
cos

ω

2

)−β−1/2}
(4.15)
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such that

ψ(ω) = O(nα+1/2)ω1−δ

and

ψ(ω + µn)− ψ(ω) = O(nδ+α−3/2 log nω−1)

Proof: Combining lemmas 9 and 10, we have the result of lemma 11.

Proof of Theorem 1.

Calculating on the lines of Yadav [6] and using lemma 1 to 11. We find the
bounded variation of T δ

n(cos θ, f,X) at θ = 0 when 1 < δ < 2.

Thus the sequence {T δ
n(cos θ, f,X)} converges at θ = 0 i.e. x = 1 of the interval

[−1, 1]. This completes the proof of Theorem 1.

Proof of Theorem 2.

We have

T δ
n(cos θ, f,X) =

1

Aδ
n

n∑
k=0

Aδ−1
n−kSk(cos θ)

where

Sk(cos θ) =
ν∑

i=0

aiP
(α,β)
i (cos θ)λi

Since the end point convergence of the sequence of operators T δ
n(cos θ, f,X) implies

its convergence in the whole interval [−1, 1] (or [0, π]) by the theorem proved by
Yadav[7] for α ≥ β ≥ −1/2. Thus

∣∣∣∣∣∣T δ
n(cos θ, f,X)

∣∣∣∣∣∣
X
≤
∣∣∣∣∣∣f(cos θ)

∣∣∣∣∣∣
X

and

||T δ
n(cos θ, f,X)− f(cos θ)|| → 0.

This completes the proof of theorem 2.
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