On a method of approximation by Jacobi polynomials

R.K. Dubey R.K. Pandey

Abstract

Convolution structure for Jacobi series allows end point summability of Fourier-Jacobi expansions to lead an approximation of function by a linear combination of Jacobi polynomials. Thus, using Cesàro summability of some orders > 1 at x = 1, we prove a result of approximation of functions on [-1, 1]by operators involving Jacobi polynomials. Precisely, we pick up functions from a Lebesgue integrable space and then study its representation by Jacobi polynomials under different conditions.

1 Introduction

We write X to denote either of the spaces $L^p_{\alpha,\beta}$ or C. The space is p-power Lebesgue integrable functions with weight w(x) on $-1 \le x \le 1$, and C is space of all continuous functions on [-1, 1]. The expansion of the function $f(x) \in X$ at $x = \cos \theta$, in the form of Jacobi series is given by

$$f(\cos\theta) \sim \sum_{n=0}^{\infty} a_n P_n^{(\alpha,\beta)}(\cos\theta)$$

$$\equiv \sum U_n(\cos\theta)$$
(1.1)

where

$$a_n = \frac{2n + \alpha + \beta + 1}{2^{\alpha + \beta + 1}} \cdot \frac{\Gamma(n+1)\Gamma(n+\alpha+\beta+1)}{\Gamma(n+\alpha+1)\Gamma(n+\beta+1)}$$
(1.2)

Received by the editors June 2003 - In revised form in December 2003. Communicated by A. Bultheel.

Bull. Belg. Math. Soc. 12 (2005), 557-564

$$\int_0^{\pi} (1 - \cos \omega)^{\alpha} (1 + \cos \omega)^{\beta} P_n^{(\alpha,\beta)}(\cos \omega) \sin \omega f(\cos \omega) d\omega$$

 $P_n^{(\alpha,\beta)}(\cos\theta), \alpha > -1, \beta > -1$, is *n*-th Jacobi polynomial of order (α,β) and the existence of the integral in (1.2) is presumed.

We write

$$f(\omega) = \{f(\cos\omega) - A\}$$
$$T_n^{\delta} = \frac{1}{A_n^{\delta}} \sum_{\nu=0}^n A_{n-\nu}^{\delta-1} g_{\nu} P_{\nu}^{(\alpha,\beta)}(1) P_{\nu}^{(\alpha,\beta)}(\cos\omega) \sin\omega$$
(1.3)

$$L_{\nu}^{\delta} = \frac{1}{A_n^{\delta}} \sum_{k}^{\nu} A_{n-k}^{\delta-1} g_k P_k^{(\alpha,\beta)}(1) P_k^{(\alpha,\beta)}(\cos\omega) \sin\omega$$
(1.4)

where

$$g_{\nu} = \frac{2\nu + \alpha + \beta + 1}{2^{\alpha + \beta + 1}} \cdot \frac{\Gamma(\nu + 1)\Gamma(\nu + \alpha + \beta + 1)}{\Gamma(\nu + \alpha + 1)\Gamma(\nu + \beta + 1)} = O(\nu)$$
(1.5)

$$g_{n,\alpha} = \frac{2^{-\alpha-\beta-1} \cdot \Gamma(n+\alpha+\beta+2)}{\Gamma(\alpha+1)\Gamma(n+\beta+1)} \cong n^{\alpha+1}$$
(1.6)

2 Preliminaries

Cesàro summability of the series (1.1) has been discussed in detail by Kogbetliantz, E.[2], Szegö, G.[5] and Obrechkoff, N.[3]. In a recent paper Pandey, G.S.[4] has proved the following theorems on Cesàro summability of the series (1.1) at the frontier as well as at the internal points of the interval [-1, +1]. These theorems are:

Theorem A. If, for
$$-\frac{1}{2} < k < \frac{1}{2}, \ \alpha \ge -\frac{1}{2}, \ \beta \ge \alpha$$

 $f(x) \in \operatorname{lip}(1/2 - k)$ (2.1)

then the series (1.1) is summable $(C, k - \frac{1}{2})$ to the sum f(x) at an interior point x of the interval $[-1 + \epsilon, 1 - \epsilon], \epsilon > 0$, but fixed.

Theorem B. The series (1.1) is summable (C, k) for $\alpha - \frac{1}{2} < k < \alpha + \frac{1}{2}, -\frac{1}{2} < \alpha < \frac{1}{2}, \beta \geq \alpha$ at $\theta = 0$ to the sum A provided that

$$f(\omega) \in \operatorname{lip}(\alpha + 1/2 - k) \tag{2.2}$$

The following result is due to Yadav [6].

Theorem C. If $\{\lambda_n\}$ is a convex sequence such that $\sum n^{-1}\lambda_n$ is convergent. Then the series $\sum \{a_n P_n^{(\alpha,\beta)}(x)\lambda_n\}, -\frac{1}{2} < \alpha < \frac{1}{2}, \beta \ge \alpha$, is absolutely summable $(C, \delta), 1 < \delta < 2$ at the point x = 1 of the interval [-1, 1] provided

$$f(\omega) \in \operatorname{lip}(2-\delta) \tag{2.3}$$

3 Main Result

The object of the present paper is to discuss the approximation of a function of X by an operator formed by (C, δ) mean of the series (1.1) which is a linear combination of Jacobi polynomials. At first we prove the convergence of (C, δ) mean and later an approximation theorem. Our first theorem on convergence of Cesàro operators is as follows:

Theorem 1. If $\{\lambda_n\}$ is a convex sequence such that $\sum n^{-1}\lambda_n$ is convergent then $(C, \delta)_{1 < \delta < 2}$ transform $T_n^{\delta}(\cos \theta, f, X)$ of the series (1.1) with factor $\{\lambda_n\}$ converges at $\theta = 0$, for $-\frac{1}{2} < \alpha < \frac{1}{2}$, $\beta \ge \alpha$, or at the point x = 1 of the interval [-1, 1] provided

$$f(\omega) \in \lim(2-\delta) \tag{3.1}$$

Our approximation theorem is as follows:

Theorem 2. There exists a linear combination $T_n^{\delta}(\cos \theta, f, X)$ of Jacobi polynomials such that for $\alpha = \beta \ge -\frac{1}{2}$ and $-\frac{1}{2} < \alpha < \frac{1}{2}$

$$||T_n^{\delta}(\cos\theta, f, X) - f(\cos\theta)|| \to 0 \quad as, \quad n \to \infty$$
(3.2)

Uniformly in $[0, \pi]$ under the conditions of theorem 1, where $T_n^{\delta}(\cos \theta, f, X)$ is Cesàro mean of order δ , $(1 < \delta < 2)$) of the Jacobi series (1.1) i.e.

$$T_n^{\delta}(\cos\theta, f, X) = \sum_{\nu=0}^n \left(\frac{A_{n-\nu}^{\delta-1}}{A_n^{\delta}}\right) S_{\nu}(\cos\theta)$$
(3.3)

and

$$S_{\nu}(\cos\theta) = \sum_{k=0}^{\nu} \lambda_k a_k P_k^{(\alpha,\beta)}(\cos\theta)$$
(3.4)

is partial sum of the Jacobi series (1.1).

4 Lemmas

To prove the theorems, we use the following results given as lemmas.

Lemma 1. For $0 \le \omega \le \gamma_n$, $\gamma_n = n^{-(2\alpha+2)(4+2\alpha-\delta)^{-1}}$ we have

$$T_n^{\delta} = O(n^{2\alpha + 1}\omega) \tag{4.1}$$

Proof: We have (see (1.3)),

$$T_n^{\delta} = \frac{1}{A_n^{\delta}} \sum_{\nu=0}^n A_{n-\nu}^{\delta-1} g_{\nu} P_{\nu}^{(\alpha,\beta)}(1) P_{\nu}^{(\alpha,\beta)}(\cos\omega) \sin\omega$$
$$= n^{-\delta} A \sum_{\nu=0}^n n^{\delta-1} \nu^{2\alpha+1} \omega$$

where A is an independent constant.

$$= O(n^{2\alpha+1}\omega), \qquad \text{since } \delta > 1$$

Hence the lemma.

Lemma 2. For $\pi - n^{-1} \le \omega \le \pi$, we have $T_n^{\delta} = O(n^{\alpha + \beta + 1}) \sin \omega$ (4.2)

Proof:

$$T_{n}^{\delta} = \frac{1}{A_{n}^{\delta}} \sum_{\nu=0}^{n} A_{n-\nu}^{\delta-1} g_{\nu} P_{\nu}^{(\alpha,\beta)}(1) P_{\nu}^{(\alpha,\beta)}(\cos \omega) \sin \omega$$
$$= \left\{ n^{-\delta} A \sum_{\nu=0}^{n} A_{n-\nu}^{\delta-1} \nu^{\alpha+\beta+1} \right\} \sin \omega$$
$$= O(n^{\alpha+\beta+1}) \sin \omega \qquad \text{since } \delta > 1$$

which proves the lemma.

Lemma 3. For
$$0 \le \omega \le \gamma_n$$
, $\gamma_n = n^{-(2\alpha+2)(4+2\alpha-\delta)^{-1}}$ we have
 $L_{\nu}^{\delta} = O(\nu^{2\alpha+1}) \sin \omega$
(4.3)

Proof:

$$L_{\nu}^{\delta} = \frac{1}{A_{n}^{\delta}} \sum_{k=0}^{\nu} A_{n-k}^{\delta-1} g_{k} P_{k}^{(\alpha,\beta)}(1) P_{k}^{(\alpha,\beta)}(\cos\omega) \sin\omega$$
$$= O(n^{-\delta}) \left[\sum_{k=0}^{\nu} A_{n-k}^{\delta-1} O(k^{2\alpha+1}) \right] \sin\omega$$

$$\begin{split} (\text{since } |P_n^{(\alpha,\beta)}(\cos\omega)| &= O(n^{\alpha}), \text{ for } \alpha \geq \frac{1}{2} \text{ and } P_k^{(\alpha,\beta)}(1) = k^{\alpha}). \\ &= O(n^{-\delta})O(n^{\delta-1})\nu^{2\alpha+2}\sin\omega \\ &= O(\nu^{2\alpha+1})\sin\omega, \qquad \text{ since } \nu \leq n. \end{split}$$

Lemma 4. For $\pi - 1/n \le \omega \le \pi$, we have

$$L_{\nu}^{\delta} = O(\nu^{\alpha+\beta+1})\sin\omega \tag{4.4}$$

Proof of the lemma is as that of lemma 3.

Lemma 5. If $\gamma_n \leq \omega \leq \pi - 1/n$, $(\gamma_n \geq 1/n)$, and E_n and G_n are respectively real and imaginary parts of

$$E \equiv \{M(\omega)\}e^{-\frac{\pi}{2}i(\alpha+\frac{1}{2})}\int_{-\infty}^{\omega}(\omega-t)^{-\alpha-\frac{3}{2}}\times$$

On a method of approximation by Jacobi polynomials

$$\sum_{\nu=1}^{n} A_{n-\nu}^{\delta-2} \left\{ e^{i(\nu + \frac{\alpha+\beta}{2} + 1)\omega} - e^{i(\nu + \frac{\alpha+\beta}{2} + 1)t} \right\} dt$$
(4.5)

such that

$$M(\omega) = (\sin \omega/2)^{-\alpha - \frac{1}{2}} (\cos \omega/2)^{-\beta + \frac{1}{2}}$$

then

$$T_n^{\delta} = (A_n^{\delta})^{-1} E_n + (A_n^{\delta})^{-1} G_n + O\left(n^{\alpha - 3/2} \sin^{-\alpha - 3/2} \frac{\omega}{2} \cos^{-\beta - 1/2} \frac{\omega}{2}\right)$$
(4.6)

Proof of the lemma follows by direct calculation substituting the orders of Jacobi polynomials and asymptotic values given by Szegö ([5], p. 71 and p. 196).

Lemma 6. If $\gamma_n \leq \omega \leq \pi - 1/n$, $(\gamma_n \geq 1/n)$, we have

$$E \equiv M(\omega)e^{i\frac{\pi}{2}(\alpha+\frac{1}{2})}e^{i(n+\frac{\alpha+\beta}{2}+1)\omega}\psi(\omega)$$
(4.7)

where

$$\psi(\omega) \equiv \int_0^\infty u^{\alpha-3/2} \left[k_n(\omega) - k_n(\omega - u) e^{i(n + \frac{\alpha+\beta}{2} + 1)u} \right] du$$
(4.8)

such that

$$k_n(\omega) = \sum_{m=0}^n A_m^{\delta-2} e^{im\omega}$$
(4.9)

Proof: Proof the lemma is parallel to that of lemma 5.

Lemma 7. We have

$$\psi(\omega) = O(n^{\alpha + 1/2} \omega^{1-\delta}) \tag{4.10}$$

and

$$\psi(\omega + \mu_n) - \psi(\omega) = O(n^{\delta + \alpha - 3/2} \log n\omega^{-1})$$
(4.11)

where

$$\mu_n = \frac{\pi}{n + \frac{\alpha + \beta}{2} + 1}$$

Proof: Proof of the lemma is a consequence of direct calculations.

Lemma 8. Combining lemmas 5 and 6, we have for If $\gamma_n \leq \omega < \pi - 1/n$, $(\gamma_n \geq 1/n)$,

$$T_{n}^{\delta} = R_{n} \left\{ M(\omega) e^{-\frac{\pi}{2}i(\alpha + \frac{1}{2})} e^{i(n + \frac{\alpha + \beta}{2} + 1)\omega} n^{-\delta} \psi(\omega) \right\}$$

+ $I_{n} \left\{ M(\omega) e^{-i\frac{\pi}{2}(\alpha + \frac{1}{2})} e^{i(n + \frac{\alpha + \beta}{2} + 1)\omega} n^{-\delta} \psi(\omega) \right\}$
+ $O\left(n^{-\alpha - 3/2} \sin^{-\alpha - 3/2} \frac{\omega}{2} \cos^{-\beta - 1/2} \frac{\omega}{2} \right)$ (4.12)

561

where

$$\psi(\omega) = O(n^{\alpha + 1/2} \omega^{1-\delta})$$

and

$$\psi(\omega + \mu_n) - \psi(\omega) = O(n^{\delta + \alpha - 3/2} \log n\omega^{-1})$$

Lemma 9. If, $\gamma_n \leq \omega \leq \pi - 1/n$, $(\gamma_n \geq 1/n), E_n^1$ and G_n^1 and are respectively real and imaginary parts of

$$E^{1} = \{M(\omega)\}e^{i(\alpha+1/2)\frac{\pi}{2}} \int_{-\infty}^{\omega} (\omega-t)^{-\alpha-3/2} \sum_{k=0}^{\nu-1} A_{n-k}^{\delta-2}$$
$$\times \left\{e^{i(k+\frac{\alpha+\beta}{2}+1)\omega} - e^{i(k+\frac{\alpha+\beta}{2}+1)t}\right\} dt$$

where

$$M(\omega) = (\sin \omega/2)^{-\alpha - \frac{1}{2}} (\cos \omega/2)^{-\beta + \frac{1}{2}}$$

then

$$T_n^{\delta} = (A_n^{\delta})^{-1} E_n^1 + (A_n^{\delta})^{-1} G_n^1 + O\left[n^{-\delta} \nu^{\alpha+\delta-3/2} \left(\sin\frac{\omega}{2}\right)^{-\alpha-\frac{3}{2}} \left(\cos\frac{\omega}{2}\right)^{-\beta-\frac{1}{2}}\right]$$
(4.13)

Proof: Proof of the lemma is similar to that of lemma 5.

Lemma 10. If, $\gamma_n \leq \omega \leq \pi - 1/n$, $(\gamma_n \geq 1/n)$, $\mu_n = \frac{\pi}{n + \frac{\alpha + \beta}{2} + 1}$

 $We\ have$

$$E^{1} = O\{M(\omega)\}e^{i(\alpha+1/2)\frac{\pi}{2}}e^{i\left(n+\frac{\alpha+\beta}{2}+1\right)\omega} \phi(\omega)$$
(4.14)

such that

$$\phi(\omega) = O(n^{\alpha + 1/2} \omega^{1-\delta})$$

and

$$\phi(\omega + \mu_n) - \phi(\omega) = O(n^{\delta + \alpha - 3/2} \log n\omega^{-1})$$

Proof: Again the proof is similar to that of lemma 5.

Lemma 11. If, $\gamma_n \leq \omega \leq \pi - 1/n$, $(\gamma_n \geq 1/n)$, we have

$$L_{\nu}^{\delta} = R_n \left\{ M(\omega) e^{-i(\alpha + \frac{1}{2})\pi/2} e^{i(n + \frac{\alpha + \beta}{2} + 1)\omega} n^{-\delta} \psi(\omega) \right\}$$

+ $I_n \left\{ M(\omega) e^{-i(\alpha + \frac{1}{2})\pi/2} e^{i(n + \frac{\alpha + \beta}{2} + 1)\omega} n^{-\delta} \psi(\omega) \right\}$
+ $O\left(n^{-\delta} \nu^{\alpha + \delta - 3/2} \left(\sin \frac{\omega}{2} \right)^{-\alpha - 3/2} \left(\cos \frac{\omega}{2} \right)^{-\beta - 1/2} \right\}$ (4.15)

562

such that

$$\psi(\omega) = O(n^{\alpha + 1/2})\omega^{1-\delta}$$

and

$$\psi(\omega + \mu_n) - \psi(\omega) = O(n^{\delta + \alpha - 3/2} \log n\omega^{-1})$$

Proof: Combining lemmas 9 and 10, we have the result of lemma 11.

Proof of Theorem 1.

Calculating on the lines of Yadav [6] and using lemma 1 to 11. We find the bounded variation of $T_n^{\delta}(\cos \theta, f, X)$ at $\theta = 0$ when $1 < \delta < 2$.

Thus the sequence $\{T_n^{\delta}(\cos \theta, f, X)\}$ converges at $\theta = 0$ i.e. x = 1 of the interval [-1, 1]. This completes the proof of Theorem 1.

Proof of Theorem 2.

We have

$$T_n^{\delta}(\cos\theta, f, X) = \frac{1}{A_n^{\delta}} \sum_{k=0}^n A_{n-k}^{\delta-1} S_k(\cos\theta)$$

where

$$S_k(\cos\theta) = \sum_{i=0}^{\nu} a_i P_i^{(\alpha,\beta)}(\cos\theta)\lambda_i$$

Since the end point convergence of the sequence of operators $T_n^{\delta}(\cos \theta, f, X)$ implies its convergence in the whole interval [-1, 1] (or $[0, \pi]$) by the theorem proved by Yadav[7] for $\alpha \ge \beta \ge -1/2$. Thus

$$\left\| \left| T_n^{\delta}(\cos\theta, f, X) \right| \right|_X \le \left\| f(\cos\theta) \right\|_X$$

and

$$||T_n^o(\cos\theta, f, X) - f(\cos\theta)|| \to 0.$$

This completes the proof of theorem 2.

Acknowledgement

We express our best thanks to Professor S.P. Yadav for his valuable advice during the preparation of this paper.

References

- Du Plessis, N. The Cesàro summability of Laplace series. Journ. London Math. Soc. 27 (1952) 337-352.
- [2] Kogbetliantz, E. Sur la sommabilité (C, δ) par les moyennes arithmétiques du développement en séries des polynômes de Jacobi aux frontières de l'intervalle (-1,1). Extrait du soixante-quatrième congrès des sociétés savantes (1931).
- [3] Obrechkoff, N. Formules asymptotiques pour les polynômes de Jacobi et sur les séries suivant les mêmes polynômes. Annuaire de l'université de Sofia. Faculte Physico. Mathematique. 1 (1936), 39-133.
- [4] Pandey, G.S. On the Cesàro summability of Jacobi series, Indian Journal of Mathematics. 10(2) (1968) 121-155.
- [5] Szegö, G. Orthogonal polynomials, Amer. Math. Soc., Coll. Publ. Vol. XXIII 3rd Ed. (New York 1967).
- [6] Yadav, S.P. On Absolute Cesàro Summation of Jacobi Series. The Vikram (Journal of Vikram University), Ujjain, INDIA Vol. XVII (1973) 51-61.
- [7] Yadav, S.P. On a Banach Space Approximation by Jacobi Polynomials, Acta. Math. Hungar. 98 (1-2) (2003) 21-30.

Present Address

Dr. R. K. Dubey Visiting Associate Professor Dept. of Pure and Applied Mathematics Faculty of Science University of Namibia P. Bag-13301 Windhoek Republic of Namibia E-Mail : rdubey@unam.na, rkdubey2004@yahoo.co.in Phone : +264812790888 (cell), +264612063396(work)

R.K. Pandey Deptt. of Maths Computer Applications Govt. Model Science College Rewa (MP) 486001