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Abstract

We consider linear partial differential operators with constant coefficients

P and show that the inclusion of the Gevrey classes Gd
P defined by the iter-

ates of P in some multianisotropic Gevrey classes implies a growth condition

on the symbol of P . Under the hypothesis of hypoellipticity, the converse

implication is also true. These results are also related to the regular weight

of hypoellipticity, that gives a precise description of the growth of the symbol

of P with respect to its derivatives.

1 Introduction

In literature, many results deal with the interplay between the analytic-Gevrey
hypoellipticity and the problem of the iterates of an operator, cf. [1], [2], [14], [17],
[18], [19], [21] and the bibliography of these works. More recent studies concern the
problem of the iterates in relation with the anisotropic Gevrey classes (cf. Zanghirati
[25, 24]) and the multianisotropic Gevrey classes (cf. Bouzar-Chaili [3, 4, 5] and
Zanghirati [23]).To present our result, we begin by recalling some well known notions.
L. Hörmander introduced the concept of hypoellipticity for an operator P , giving
start to a wide study on the subject, cf. [15]. In our work we deal with the simpler
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case of operators with constant coefficients.
We say here that a differential operator with constant coefficients

P (D) =
∑

|α|≤m

γαDα

is hypoelliptic if all the distribution solutions of the equation P (D)u = 0 in any open
set Ω ⊂ Rn are there infinitely differentiable.
Different necessary and sufficient conditions for the hypoellipticity of P (D) have
been derived (cf. [15]), we recall in particular the following, that will be useful for
our purposes.
An operator with constant coefficients P (D) is hypoelliptic if and only if its symbol
P (ξ) =

∑
|α|≤m γαξα satisfies the condition

∣∣∣∣∣
DαP (ξ)

P (ξ)

∣∣∣∣∣→ 0 when |ξ| → +∞,

for all α ∈ Nn, α 6= 0.
As a particular case, we start to consider the elliptic operators: namely, a differential
operator P (D) of order m is elliptic if its symbol P (ξ) satisfies the growth condition

|ξ|2m ≤ C(1 + |P (ξ)|2), ∀ξ ∈ R
n (1.1)

for some constant C > 0. The estimate (1.1 ) implies the previous necessary and
sufficient condition, and therefore elliptic operators are hypoelliptic. Moreover, they
are analytic hypoelliptic, namely all the C∞ (or distribution) solutions of P (D)u = 0
are analytic, cf. for instance [15].
Komatsu [17] and Kotake-Narasimhan [18] proved another important consequence
of the ellipticity of P (D), concerning the iterates property: we recall here their
result.
Let Ω be an open nonempty set of Rn; if an operator P (D) of order m is elliptic,
then any function f ∈ C∞(Ω) is analytic in Ω if and only if for any compact subset
K of Ω there exists a constant C = C(f, K) > 0 for which it holds

‖P j(D)f‖K ≤ Cj+1(j!)m, ∀j = 1, 2, . . . , (1.2)

where P j(D) denotes the j-th iterate of the operator P (D) and ‖ · ‖K = ‖ · ‖L2(K).
This implies obviously the analytic hypoellipticity of the elliptic operators. The
condition (1.2 ) can be generalized in order to define some Gevrey classes in terms
of the operator P (D). We start with the notion of standard Gevrey classes (for their
properties and applications we can refer to [22]).
Let Ω be an open subset of Rn and let s ∈ R, s ≥ 1. We say that a function
f ∈ C∞(Ω) belongs to the Gevrey class Gs(Ω) if for any compact subset K ⊂ Ω
there is a constant C > 0 such that

‖Dαf‖K ≤ C |α|+1α!s, ∀α ∈ N
n.

Then we can introduce the Gevrey classes Gd
P (Ω) defined by the iterates of an

operator P (D) of order m.
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Let Ω be an open subset of R
n and d ∈ R, d > 0. We say that a function f ∈ C∞(Ω)

belongs to Gd
P (Ω) if for any compact subset K of Ω there is a constant C > 0 such

that
‖P j(D)f‖K ≤ Cj+1(j!)d, ∀j = 1, 2, . . . .

The inclusion Gs ⊂ Gsm
P is always satisfied by any operator of order m (cf. f.i.

[2]) and the opposite inclusion is implied by the ellipticity (cf. Bolley-Camus [1]).
Conversely, Metivier [19] proved that for any s > 1 the condition Gsm

P (Ω) = Gs(Ω)
is equivalent to the ellipticity of P (D).
The inclusions of the Gevrey classes Gd

P in Gs for some s are also related to some
growth conditions on the symbol of P . In particular, for hypoelliptic operators
Neweberger-Zielezny [21] proved the equivalence of the inequality

|Q(ξ)| ≤ C(1 + |P (ξ)|
1
d ), ∀ξ ∈ R

n

(for a d > 0) and the inclusion Gd
P ⊂ GQ = G1

Q and more generally Gsd
P ⊂ Gs

Q for
large s. In particular, if Q is elliptic of order m, the previous inequality reads

|ξ|m ≤ C(1 + |P (ξ)|
1
d ), ∀ξ ∈ R

n,

and we have Gsd
P (Ω) ⊂ Gs

Q(Ω) = G
s
m (Ω) for large s.

It is also interesting to study the relation between the inclusion of Gd
P in some

generalized Gevrey classes and growth conditions on P (ξ): namely, we introduce
the multianisotropic Gevrey classes (cf. also [6], [7], [8], [12], [11], [10]), that explain
properly the regularity of the solutions of the hypoelliptic operators. They are
related to completely regular polyhedra, of which we begin to give a rough idea.
A completely regular polyhedron is a convex polyhedron N in R

n
+ having vertices

with rational coordinates and such that the outer normals of the faces of N have
strictly positive components (cf. Definition 2.3). Now the multianisotropic Gevrey
classes GN (Ω), for any open set Ω ⊂ Rn, are defined by the following condition (cf.
Definition 2.10).
A function f ∈ C∞(Ω) belongs to the multianisotropic Gevrey class GN (Ω) if for
any compact subset K of Ω there is a constant C > 0 such that

‖Dαf‖K ≤ Cj+1j!, ∀α ∈ N (j) ∩ N
n, j = 0, 1, . . . ,

where N (j) = {ν ∈ R
n
+ : ν

j
∈ N}.

Then we will prove our main results (cf. Theorems 3.1 and 3.2).
Let P (ξ) be a polynomial (or P (D) an operator), N be a completely regular polyhe-
dron. If there is a constant d > 0 such that Gd

P (Ω) ⊂ GN (Ω), then for a constant
C > 0 we have

hN (ξ) ≤ C
(
|P (ξ)|

1
d + 1

)
, ∀ξ ∈ Rn, (1.3)

where hN (ξ) =
∑

α∈N 0 |ξα|, the sum ranging over N 0, the set of the vertices of N .
Conversely, the condition (1.3 ) implies, under the hypothesis that P is hypoelliptic,
the inclusion Gd

P (Ω) ⊂ GN (Ω).
To connect with the above mentioned result of Newberger-Zielezny [21], take as N
the Newton polyhedron of an elliptic operator Q, for which hN ∼ 1 + |ξ|m; we re-
capture Gsd

P (Ω) ⊂ GN (s)(Ω) = Gs
Q(Ω) = G

s
m (Ω) for large s.
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Our results are also related to an important feature of hypoelliptic operators, rep-
resented by the regular weight of hypoellipticity (see Definition 2.6) introduced by
Kazharyan [16] and studied also by Hakobyan-Markaryan [11, 12, 13], as expressed
in Corollary 3.4.
In the particular case that N is the Newton polyhedron of P , this subject was
studied by Zanghirati [23, 24, 25] and by Bouzar-Chaili [3, 4, 5].

2 Definitions and preliminary results

We shall use the subsets of Rn defined by Rn
0 = {ξ ∈ Rn : ξ1 . . . ξn 6= 0} and

Rn
+ = {ξ ∈ Rn : ξj ≥ 0, j = 1, . . . , n}. If Nn = {α = (α1, . . . , αn) : αi ∈ N ∪ {0}, i =

1, . . . , n} is the set of multiindeces, then we denote ξα = ξα1
1 · · · ξαn

n , for all ξ ∈ Rn

and Dα = Dα1
1 · · ·Dαn

n for any α ∈ Nn, where Dj = −i ∂
∂ξj

, j = 1, . . . , n.

Definition 2.1. Let A = {νk ∈ Rn
+, k = 0, . . . , m} be a finite set of points of Rn

+.
The characteristic polyhedron (or Newton polyhedron) (C.P.) NA of the set A is the
smallest convex polyhedron in Rn

+ containing all the points A ∪ {0}.

Now let P (D) =
∑

α γαDα be a linear differential operator with constant coeffi-
cients, and let P (ξ) be its symbol. We denote (P ) = {α : α ∈ Nn, γα 6= 0}.

Definition 2.2. The characteristic polyhedron (or Newton polyhedron) (C.P.) N =
NP of an operator P (D) (or of a polynomial P (ξ)) is N(P ), i.e. the smallest convex
polyhedron in Rn

+ containing all the points (P ) ∪ {0}.

Now we pass to consider an important class of convex polyhedra.

Definition 2.3. A convex polyhedron N ⊂ R
n
+ is completely regular (C.R.) if it

satisfies the following conditions:

1. all the vertices have rational coordinates;

2. the origin (0, 0, . . . , 0) belongs to N ;

3. dim(N ) = n;

4. the outer normals to the non-coordinate (n − 1)-dimensional faces of N have
strictly positive components.

It is well known that if P (D) is a hypoelliptic operator, then its Newton poly-
hedron is completely regular, cf. Friberg [9].
Let η ∈ R

n
+, we set

H(η) = {ξ ∈ R
n
+ : ξ 6= 0, ξ 6= η, ξj = ηj or ξj = 0, ∀j = 1, . . . , n}.

Definition 2.4. A set B ⊂ Rn
+ is completely regular (C.R.) if for any η ∈ B there

exists a neighborhood U of zero such that

(η − ξ) + b · sign(η − ξ) ∈ B, ∀ξ ∈ H(η), ∀b ∈ U ∩ R
n
+, (2.4)

where b · sign(η − ξ) = (b1sign(η1 − ξ1), . . . bnsign(ηn − ξn)).
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A polyhedron N ⊂ R
n
+ is completely regular if and only if it satisfies condition

1 of Definition 2.3 and condition (2.4 ).

Definition 2.5. A differential operator P (D) is called regular if its symbol satisfies
for a constant C > 0

1 + |P (ξ)| ≥ C
∑

α∈(P )

|ξα|, ∀ξ ∈ R
n.

If an operator has completely regular Newton polyhedron and is regular, then it
is called multi-quasi-elliptic and is hypoelliptic (cf. Bouzar-Chaili [3, 4, 5]).

Let νk ∈ Rn
+, k = 1, . . . , m, ν0 = 0. We set h(ξ) =

m∑
k=0

|ξνk

| and we denote by Nh

the characteristic polyhedron of {νk}m
k=0.

According to Kazharyan [16], we can associate to a hypoelliptic operator P (D) (or
polynomial P (ξ)) a class of functions, called regular weights of hypoellipticity of P .
They are related to important properties of P .

Definition 2.6. Let νk ∈ Rn
+, k = 1, . . . , m, ν0 = 0. A function h(ξ) =

∑k
j=0 |ξ

νj

|
is called regular weight of hypoellipticity of a polynomial P (ξ) (of an operator P (D))
if there exists a constant C > 0 such that

FP (ξ) =
∑

α6=0

(
|DαP (ξ)|

|P (ξ)|+ 1

) 1
|α|

≤
C

h(ξ)
, ∀ξ ∈ R

n. (2.5)

Definition 2.7. A weight of hypoellipticity h(ξ) of a polynomial P (ξ) (of an operator
P (D)) is called exact weight of hypoellipticity of P (ξ) (or P (D)) if (2.5 ) is satisfied
and if for any ν ∈ Rn

+\Nh it holds

sup
ξ∈Rn

|ξν|FP (ξ) = +∞.

We denote

MP = {ν : ν ∈ R
n
+, |ξ|νFP (ξ) ≤ const, ∀ξ ∈ R

n}. (2.6)

Kazharyan [16] proved that if an operator P (D) is regular hypoelliptic, then the
set MP is a completely regular polyhedron. For a class of nonregular hypoelliptic
operators, Hakobyan-Markaryan [11] proved that the set MP is a completely regular
polyhedron. In the general case, we just know that MP is a completely regular set.
Let P (D) be a hypoelliptic operator with Newton polyhedron NP . We denote by
N 0

P the set of the vertices of NP . For any t > 0 we set NP (t) = {ν ∈ Rn
+ : ν

t
∈ NP}.

Proposition 2.8. Let N be a completely regular polyhedron and let d > 0 satisfy
N 0(d) ⊂ Nn. Then there exists a natural number j0 such that for any j ≥ j0 and

for any multi-index α ∈ N + N
(

j
d

)
= N

(
d+j
d

)
there exists a multi-index β ∈ N ,

β ≤ α, such that α − β ∈ N
(

d
j

)
.

The proof is similar to Theorem 1.1 of [13].
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Definition 2.9. (cf. [21]) Let Ω be an open subset of R
n and let d > 0. For any

differential operator P (D) of order m on Rn, we denote by Gd
P (Ω) the set of all

functions f ∈ C∞(Ω) such that for every compact subset K ⊂ Ω there exists a
constant C > 0 (depending on f , K and P ) for which

‖P j(D)f‖K ≤ Cj+1(j!)d, ∀j = 0, 1, . . . .

Definition 2.10. Let N ⊂ Rn
+ be a completely regular polyhedron. We denote by

GN (Ω) the multianisotropic Gevrey class associated to N , defined as the set of the
functions f ∈ C∞(Ω) such that for every compact subset K ⊂ Ω there exists a
constant C > 0 (depending on f and K) for which it holds

‖Dαf‖K ≤ Cj+1j!, ∀α ∈ N (j), j = 1, 2, . . . .

Definition 2.11. (cf. [15]) We say that the differential operator P (D) (or the
polynomial P (ξ)) is stronger than the differential operator Q(D) (or the polynomial
Q(ξ)) and write Q ≺ P , if for some constant C > 0 it holds

Q̃(ξ) ≤ CP̃ (ξ), ∀ξ ∈ R
n,

where
R̃(ξ) =

√∑

|α|≥0

|DαR(ξ)|2

is the Hörmander function of the polynomial R(ξ). If Q ≺ P and P ≺ Q, then we
write Q ∼ P .

For any bounded set Ω ⊂ Rn and ε > 0 we denote Ωε = {x ∈ Ω : ρ(x, ∂Ω) > ε},
where ρ is the distance in Rn.

Lemma 2.12. Let P (D) be a differential operator, Ω ⊂ Rn an open set and l a
natural number. Then for any d > 0 it is satisfied

Gd
P l(Ω) = G

d
l

P (Ω).

Proof. As the theorem has a local character, then it is possible to consider a bounded
set Ω ⊂ R

n. Since P m ≺ P l for l > m, then according to Theorem 4.2 of Hörmander
[14], there is a constant γ > 0, such that for every s ≥ 0, t > 0 and for any
v ∈ C∞(Ωs) it holds

sup
0<τ≤t

τγ‖P m(D)v‖Ωs+τ
≤ C

(
sup

0<τ≤t

τγ‖P l(D)v‖Ωs+τ
+ ‖v‖Ωs

)
, (2.7)

where C > 0 is a constant depending only on P and the diameter of Ω.
From (2.7 ) it follows that

‖P m(D)v‖Ωs+t
≤ C1(‖P

l(D)v‖Ωs
+ t−γ‖v‖Ωs

), ∀v ∈ C∞(Ωs). (2.8)

Substituting j = lj1 + r, where r ≤ l, r = m, s = t = δ > 0 and v = P lj1(D)u, in
(2.8 ), we obtain

‖P j(D)u‖Ω2δ
≤ C1

(
‖P l(j1+1)(D)u‖Ωδ

+ δ−γ‖P lj1(D)u‖Ωδ

)
. (2.9)
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If u belongs to Gd
P l(Ω), then from Definition 2.9 it is satisfied

‖P l(j1+1)(D)u‖Ωδ
≤ Cj1+1+1

2 (j1 + 1)d(j1+1),

‖P lj1(D)u‖Ωδ
≤ Cj1+1

2 jdj1
1 ,

where C2 > 0 depends on u, δ and P . From (2.9 ) we can write

‖P j(D)u‖Ω2δ
≤ Cj1+1

3 jdj1
1 = C

j−r
l

+1
3

(
j − r

l

)d
j−r

l

≤ Cj
4j

d
l
j,

for suitable constants C3 = C3(u, δ) ≥ 1 and C4 = C4(u, δ) ≥ 1. Therefore u belongs

to G
d
l

P (Ω). The inclusion Gd
P l(Ω) ⊂ G

d
l

P (Ω) is proved.

Let u belong to G
d
l

P (Ω). Then for any natural j and for any compact subset K ⊂ Ω
there is a constant C5 = C5(u, K, P ) > 0 for which it holds

‖P jl(D)u‖K ≤ Cjl+1
5 (jl)

d
l
jl = Cjl+1

5 (jl)dj ≤ Cj+1
6 jdj ,

therefore u belongs to Gd
P l(Ω). The inclusion G

d
l

P (Ω) ⊂ Gd
P l(Ω) is proved. �

Lemma 2.13. Let P (D) be a regular operator with completely regular Newton poly-
hedron NP . Then for a sufficiently large d > 0 it is satisfied

Gd
P (Ω) ⊂ GNP ( 1

d)(Ω).

Proof. Because the lemma has a local character, then it is possible to consider a
bounded open set Ω ⊂ Rn. Let u belong to Gd

P (Ω). Since P (D) is regular, then for
a constant C > 0 it is satisfied (cf. [20])

∑

α∈N 0
P

|ξα| ≤ C(|P (ξ)|+ 1), ∀ξ ∈ R
n. (2.10)

Using Theorem 4.2 of [14], there is a constant γ > 0 such that for every s ≥ 0, t > 0
and any v ∈ C∞(Ω′

s) the condition (2.10 ) can be rewritten in the form

∑

α∈N 0
P

sup
0<t≤τ

τγ‖Dαv‖Ω′
s+τ

≤ C1

(
sup

0<τ≤t
τγ‖P (D)v‖Ω′

s+τ
+ ‖v‖Ω′

s

)
, (2.11)

where Ω′ ⊂⊂ Ω, and C1 is a constant depending on P and the diameter of Ω′.
Hence

∑

α∈N 0
P

‖Dαv‖Ω′
s+t

≤ C2

(
‖P (D)v‖Ω′

s
+ t−γ‖v‖Ω′

s

)
, ∀v ∈ C∞(Ω′

s). (2.12)

Since for any f ∈ C∞(Ω), any natural number r and any compact subset K ⊂ Ω
there is a constant Cr,f,K > 0 such that

sup
x∈K

|Dαf(x)| ≤ Cr,f,K , ∀α ∈ N
n, |α| ≤ r,
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therefore to prove Lemma 2.13 it is sufficient to show that

sup
x∈K

|Dβf(x)| ≤ Cj+1jj , ∀β ∈ N
(

j

d

)
, j ≥ j0 ≥ r,

where j0 is as in Proposition 2.8.
Let k =

[
j
d

]
+ 1. Let us prove the lemma for any d ≥ γ. For k > 1 (i.e. j ≥ d) from

Proposition 2.8, for any β ∈ NP ( j
d
) ∩ N

n there is a multi-index α(1) ∈ NP , α(1) ≤ β

such that β(1) = β − α(1) ∈ NP

(
j−d
d

)
.

For k = 1 (i.e. j < d) we have NP

(
j
d

)
⊂ NP , then instead of the multi-index α(1)

we can take α(1) = β and β(1) = 0.
Using (2.12 ) for v = Dβ(1)

u with s = δ − δ
k
, t = δ

k
, δ > 0, we get

‖Dβu‖Ω′
δ

= ‖Dβu‖Ω′
s+t

= ‖Dα(1)

(Dβ(1)

u)‖Ω′
s+t

≤ C2

(
‖P (D)Dβ(1)

u‖Ω′
s
+
(

K

δ

)γ

‖Dβ(1)

u‖Ω′
s

)

= C2

(
‖Dβ(1)

P (D)u‖Ω′
s
+
(

K

δ

)γ

‖Dβ(1)

u‖Ω′
s

)
.

(2.13)

If k > 2 (i.e.
[

j
d

]
> 1 and therefore β(1) /∈ NP ), then from Proposition 2.8 it follows

that there is a multi-index α(2) ∈ NP (2), α(2) ≤ β(1) such that β(2) = β(1) − α(2) ∈

NP

(
j−2d

d

)
.

Applying (2.12 ) to both terms of the right-hand side of (2.13 ) and taking v =

Dβ(2)
P (D)u for the first term and v = Dβ(2)

u for the second, after k steps we get

‖Dβu‖Ω′
δ
≤ Ck

2

k∑

j=0

C0
k

(
k

δ

)jγ

‖P (k−j)(D)u‖Ω′. (2.14)

Since Ω′ ⊂⊂ Ω and u ∈ Gd
P (Ω), we obtain

‖P j(D)u‖Ω′ ≤ Bj+1jdj , ∀j = 1, 2, . . . . (2.15)

As d ≥ γ, then from (2.15 ) we have

kjγ‖P (k−j)(D)u‖Ω′ ≤ kjγBk−j+1(k − j)(k−j)d ≤ Bk+1
1 kkd. (2.16)

Choosing δ > 0 such that A ⊂ Ω′
δ, it follows from (2.14 ) and (2.16 ) that there exist

B2, B3 > 0 such that

‖Dβu‖A ≤ Bk+1
2 kkd = B

[ j

d ]+1

2

([
j

d

]
+ 1

)([ j

d ]+1)d

≤ Bj+1
3 jj,

for all β ∈ NP

(
j
d

)
, j = 1, 2, . . . . Thus u belongs to GNP ( 1

d)(Ω). �

An alternative proof of Lemma 2.13 can be found in Bouzar-Chaili [3]. Referring
to [1], we have the following
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Lemma 2.14. Let a polynomial P (ξ) have completely regular Newton polyhedron
NP . Then for any d > 0

GNP ( 1
d)(Ω) ⊂ Gd

P (Ω).

Proof. Let u belong to GNP
1
d (Ω). For any compact subset A ⊂ Ω and any natural

number j we have

‖P j(D)u‖A ≤ Lj max
α∈NP (j)

‖Dαu‖A

≤ Lj max
α∈NP ( [dj]+1

d )
‖Dαu‖A

≤ LjC [dj]+1 ([dj] + 1)[dj]+1 ≤ Cj+1
1 jdj ,

where L is the number of the multi-indeces α ∈ NP . Thus u belongs to Gd
P (Ω). �

Remark 2.15. Lemmas 2.13 and 2.14 hold in particular for hypoelliptic operators
(or polynomials), as their Newton polyhedron is completely regular.

Corollary 2.16. If a polynomial P (ξ) (or an operator P (D)) having completely
regular Newton polyhedron is regular, then for a sufficiently large d > 0

Gd
P (Ω) = GNP ( 1

d)(Ω).

Lemma 2.17. Let P (ξ) be a hypoelliptic polynomial, Q(ξ) be a regular polynomial
having completely regular Newton polyhedron such that for a constant C > 0 they
satisfy

|Q(ξ)| ≤ C (|P (ξ)| + 1) , ∀ξ ∈ R
n.

Then for d > 0 sufficiently large it holds

Gd
P (Ω) ⊂ Gd

Q(Ω) = GNQ( 1
d)(Ω).

The proof follows by combining Theorem 1 of [21] and Corollary 2.16.
For a hypoelliptic polynomial P (ξ) of order m we denote

D(P ) = {ζ ∈ C
n : P (ζ) = 0},

dP (ξ) = inf
ζ∈D(P )

|ξ − ζ |.

Let M be a completely regular polyhedron, assume that hM(ξ) is a regular weight
of hypoellipticity of P , cf. Definition 2.6, and let r be a natural number such that
r
m

is rational and M0(r) is included in Nn. We set

Q(ξ) =
∑

α∈M0(r)

ξ2α.

It is easy to see that

a) M(2r) = NQ;

b) for a constant C1 > 0 it is satisfied

C−1
1 h2r

M(ξ) ≤ Q(ξ) ≤ C1h
2r
M(ξ), ∀ξ ∈ R

n.



470 D. Calvo – G. H. Hakobyan

From Lemma 4.1.1 of [15] and the previous Definition 2.6, there are two constants
C2, C3 > 0 such that

hM(ξ) ≤ C2(dP (ξ) + 1) ≤ C3(|P (ξ)|
1
m + 1), ∀ξ ∈ R

n. (2.17)

Taking into account b) and (2.17 ), we get for a constant C > 0

|Q(ξ)| ≤ C(|P (ξ)|
2r
m + 1), ∀ξ ∈ R

n.

Proposition 2.18. Let P (ξ) be a hypoelliptic polynomial, M as before, correspond-
ing to a regular weight of hypoellipticity of P , Ω ⊂ Rn be an open nonempty set,
then for sufficiently large d > 0 the following inclusion holds

Gd
P (Ω) ⊂ GM(m

d )(Ω).

Proof. From Theorem 1 of [21] it follows that

Gd
P (Ω) ⊂ G

2r
m

d

Q (Ω),

where Q(ξ) =
∑

α∈N 0
P

ξ2α. From Corollary 2.16 and a) it follows that for a sufficiently

large d > 0 it holds

G
2r
m

d

Q (Ω) ⊂ GNQ( m
2rd) = GM(m

d )(Ω).

This completes the proof. �

3 Main Results

Theorem 3.1. Let P (ξ) be a polynomial (or an operator P (D)), M be a completely
regular polyhedron. If there is a d > 0 such that Gd

P (Ω) ⊂ GM(Ω), then for a
constant C > 0 it is satisfied

hM(ξ) ≤ C
(
|P (ξ)|

1
d + 1

)
, ∀ξ ∈ R

n. (3.18)

Proof. Because the vertices of polyhedron M have rational coordinates, then for
some natural number r we have M0(r) ⊂ N

n
0 . We set

Q(ξ) =
∑

α∈M0(r)

ξ2α.

The polynomial Q(ξ) is obviously regular. From Corollary 2.16 it follows

GM(Ω) ≡ GM(2r 1
2r )(Ω) = G

1
2r

Q (Ω).

Hence from the conditions of Theorem 3.1 we get Gd
P (Ω) ⊂ G

1
2r

Q (Ω). According to
Theorem 2 of [21], we have for a constant C > 0

|Q(ξ)| ≤ C
(
|P (ξ)|

2r
d + 1

)
, ∀ξ ∈ R

n. (3.19)

Since h2r
M(ξ) ∼ Q(ξ), the proof of the theorem follows from (3.19 ). �
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Conversely, we have the following result

Theorem 3.2. Let P (ξ) be a hypoelliptic polynomial (or P (D) a hypoelliptic oper-
ator), M a completely regular polyhedron. If the inequality (3.18 ) holds for some
d ≥ m, then the inclusion Gd

P (Ω) ⊂ GM(Ω) is satisfied.

The proof follows from Lemma 2.17 and the computations in the proof of The-
orem 3.1.

Remark 3.3. Theorem 3.2 implies that if P is a hypoelliptic operator, then we
have Gd

P (Ω) ⊂ Gs(Ω) for suitable s, d ≥ 1, since the multianisotropic Gevrey classes
GM(Ω) are always included in a standard Gevrey class Gs(Ω) for s sufficiently large,
cf. [7].

By taking d = m in Proposition 2.18, we have the following result.

Corollary 3.4. Let P (D) be a hypoelliptic operator and let hM(ξ) =
∑

α∈M |ξα| be a
regular weight of hypoellipticity of P associated to the completely regular polyhedron
M, then

Gm
P (Ω) ⊂ GM(Ω).

Theorem 3.5. Let a polynomial P (ξ) (or an operator P (D)) have completely regular
Newton polyhedron NP , Ω ⊂ Rn be a nonempty open set. Then P (ξ) (or P (D)) is
regular if and only if there is d > 0 such that

Gd
P (Ω) ⊂ GNP ( 1

d)(Ω). (3.20)

Remark 3.6. Under the hypotheses of Theorem 3.5, the condition (3.20 ) implies
also the hypoellipticity of P , as any regular polynomial (or operator) with completely
regular Newton polyhedron is hypoelliptic.

Proof. If P is regular, we apply Theorem 3.2 with M = NP (1
d
), to obtain (3.20 ).

In the opposite direction, assume (3.20 ) is valid. It follows from Lemma 2.12 that

G2d
P 2 = Gd

P (Ω) ⊂ GNP ( 1
d)(Ω).

From Corollary 2.16 it follows

GNP( 1
d)(Ω) = G2d

Q2(Ω),

where Q(ξ) =
∑

α∈N 0
P

ξ2α.

Using Theorem 2 of [21], for some constant C > 0 it is satisfied

∑

α∈N 0
P

|ξ2α| ≤ C
(
|P (ξ)|2 + 1

)
, ∀ξ ∈ R

n.

Therefore from [20] the polynomial P (ξ) is regular. �
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Remark 3.7. An alternative proof of Theorem 3.5 can be found in Bouzar-Chaili
[3]; in [4, 5] the case of operators with variable coefficients in suitable Gevrey classes
is also considered.

Remark 3.8. In the case that M is the Newton polyhedron of an elliptic opera-
tor, we recapture the results of [17] for elliptic operators, in the case of constant
coefficients.

We end by an example clarifying the results of Theorems 3.1 and 3.2. In partic-
ular, it is interesting to consider the case of nonregular operators. Let

P (ξ) = (ξ1 − ξ2)
6 + ξ4

1 + ξ4
2 .

P (ξ) is a non regular hypoelliptic polynomial. In this case the set MP defined by
(2.6 ) has the form

MP =
{
ν ∈ R

n
+ : (ν, λ) ≤

2

3

}
,

therefore the set MP is a completely regular polyhedron, with λ = (1, 1), and NP

is
NP =

{
ν ∈ R

n
+(ν, λ) ≤ 6

}
.

It is easy to see that 9MP = NP .
If we take Q(ξ) = ξ6

1 + ξ6
2 then NP = NQ, 9MP = NQ and

|Q(ξ)| ≤ c(|P (ξ)|
3
2 + 1).

We may therefore apply Corollary 3.4, or Theorem 3.2 with d = 6, and conclude
that G6

P is included in GM = G
3
2 . In view of Theorem 3.1, this result is sharp in

the frame of multianisotropic Gevrey classes.
For any ε > 0

|Q(ξ)| 6≤ c(|P (ξ)|
3
2
−ε + 1).

Then, the estimate
|Q(ξ)|r ≤ c(|P (ξ)| + 1)

is a sufficient and necessary condition in order that Gd
P (Ω) ⊂ G

d
r

Q(Ω) for some large
d > 0. It holds

Gd
P (Ω) ⊂ G

d
2
3
Q (Ω) = G

3d
2

Q (Ω) = GNQ( 2
3d

)(Ω) = GNP ( 2
3d

)(Ω)

= GMP (9 2
3d

)(Ω) = GMP (6d)(Ω)

and

Gd
P (Ω) 6⊂ G

d
2

3−ε

Q (Ω) = GNP ( 2
(3−ε)d

)(Ω).

In the other hand
GNP ( 1

d
)(Ω) ⊂ GNP ( 2

(3−ε)d
)(Ω)

for 2
(3−ε)

< 1, or 0 < ε < 1.

So, for the nonregular polynomial P (ξ) the inclusion

Gd
P (Ω) ⊂ GNP ( 1

d
)(Ω)

is false.
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