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Abstract

We consider linear partial differential operators with constant coefficients
P and show that the inclusion of the Gevrey classes Gﬁlg defined by the iter-
ates of P in some multianisotropic Gevrey classes implies a growth condition
on the symbol of P. Under the hypothesis of hypoellipticity, the converse
implication is also true. These results are also related to the regular weight
of hypoellipticity, that gives a precise description of the growth of the symbol
of P with respect to its derivatives.

1 Introduction

In literature, many results deal with the interplay between the analytic-Gevrey
hypoellipticity and the problem of the iterates of an operator, cf. [1], [2], [14], [17],
[18], [19], [21] and the bibliography of these works. More recent studies concern the
problem of the iterates in relation with the anisotropic Gevrey classes (cf. Zanghirati
25, 24]) and the multianisotropic Gevrey classes (cf. Bouzar-Chaili [3, 4, 5] and
Zanghirati [23]).To present our result, we begin by recalling some well known notions.
L. Hormander introduced the concept of hypoellipticity for an operator P, giving
start to a wide study on the subject, cf. [15]. In our work we deal with the simpler
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case of operators with constant coefficients.
We say here that a differential operator with constant coefficients

P(D)= > ~.D®

lal<m

is hypoelliptic if all the distribution solutions of the equation P(D)u = 0 in any open
set 0 C R™ are there infinitely differentiable.

Different necessary and sufficient conditions for the hypoellipticity of P(D) have
been derived (cf. [15]), we recall in particular the following, that will be useful for
our purposes.

An operator with constant coefficients P(D) is hypoelliptic if and only if its symbol
P(&) = Xjaj<m Vab® satisfies the condition

‘D;Z(f)‘ — 0  when |£] — o0,

for all a € N*, a # 0.
As a particular case, we start to consider the elliptic operators: namely, a differential
operator P(D) of order m is elliptic if its symbol P () satisfies the growth condition

€™ < C(L+|PE)P), VEeR™ (1.1)

for some constant C' > 0. The estimate (1.1 ) implies the previous necessary and
sufficient condition, and therefore elliptic operators are hypoelliptic. Moreover, they
are analytic hypoelliptic, namely all the C*° (or distribution) solutions of P(D)u = 0
are analytic, cf. for instance [15].

Komatsu [17] and Kotake-Narasimhan [18] proved another important consequence
of the ellipticity of P(D), concerning the iterates property: we recall here their
result.

Let Q2 be an open nonempty set of R™; if an operator P(D) of order m 1is elliptic,
then any function f € C*(Q) is analytic in Q if and only if for any compact subset
K of Q there exists a constant C = C(f, K) > 0 for which it holds

IP/(D)fllx < C7HHEH™, Vi=1,2,..., (1.2)

where P(D) denotes the j-th iterate of the operator P(D) and || - ||k = || - |-
This implies obviously the analytic hypoellipticity of the elliptic operators. The
condition (1.2 ) can be generalized in order to define some Gevrey classes in terms
of the operator P(D). We start with the notion of standard Gevrey classes (for their
properties and applications we can refer to [22]).

Let Q2 be an open subset of R™ and let s € R, s > 1. We say that a function
f € C=(Q) belongs to the Gevrey class G*(2) if for any compact subset K C €
there is a constant C' > 0 such that

|DYf||x < CloHlal®, Vo e N™.

Then we can introduce the Gevrey classes G%(Q) defined by the iterates of an
operator P(D) of order m.
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Let Q2 be an open subset of R™ and d € R, d > 0. We say that a function f € C*(Q)
belongs to G%L(QY) if for any compact subset K of §) there is a constant C > 0 such
that

IP/(D)fllre < C7H(GDY Wi=1,2,....

The inclusion G* C G%" is always satisfied by any operator of order m (cf. fi.
[2]) and the opposite inclusion is implied by the ellipticity (cf. Bolley-Camus [1]).
Conversely, Metivier [19] proved that for any s > 1 the condition G3*(2) = G*(2)
is equivalent to the ellipticity of P(D).

The inclusions of the Gevrey classes G% in G* for some s are also related to some
growth conditions on the symbol of P. In particular, for hypoelliptic operators
Neweberger-Zielezny [21] proved the equivalence of the inequality

QO] < CA+|P©)]1), VeeR"

(for a d > 0) and the inclusion G} C G = G§, and more generally G C G for
large s. In particular, if () is elliptic of order m, the previous inequality reads

" < CU+IPE), VEER",
and we have G3¢(Q) C G§(Q2) = G () for large s.
It is also interesting to study the relation between the inclusion of G4 in some
generalized Gevrey classes and growth conditions on P(§): namely, we introduce
the multianisotropic Gevrey classes (cf. also [6], [7], [8], [12], [11], [10]), that explain
properly the regularity of the solutions of the hypoelliptic operators. They are
related to completely regular polyhedra, of which we begin to give a rough idea.
A completely regular polyhedron is a convex polyhedron N in R? having vertices
with rational coordinates and such that the outer normals of the faces of N have
strictly positive components (cf. Definition 2.3). Now the multianisotropic Gevrey
classes GV (), for any open set Q C R”, are defined by the following condition (cf.
Definition 2.10).
A function f € C®(Q) belongs to the multianisotropic Gevrey class GN(Q) if for
any compact subset K of ) there is a constant C' > 0 such that

|1D*fllx < C7HY5l Yae N(j)NN",j=0,1,...,

where N'(j) = {v e R} : % e N}
Then we will prove our main results (cf. Theorems 3.1 and 3.2).
Let P(€) be a polynomial (or P(D) an operator), N be a completely reqular polyhe-
dron. If there is a constant d > 0 such that G%(Q) C GN(Q), then for a constant
C > 0 we have 1

hw(§) <C([PE©)7+1), Vee R, (1.3)

where ha(§) = X peno |€2], the sum ranging over N, the set of the vertices of N
Conversely, the condition (1.3 ) implies, under the hypothesis that P is hypoelliptic,
the inclusion G%H(Q) € GN(9).

To connect with the above mentioned result of Newberger-Zielezny [21], take as N/
the Newton polyhedron of an elliptic operator @, for which hy ~ 1+ |£|™; we re-

capture G34(Q) c GNO)(Q) = G5(Q) = G () for large s.
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Our results are also related to an important feature of hypoelliptic operators, rep-
resented by the regular weight of hypoellipticity (see Definition 2.6) introduced by
Kazharyan [16] and studied also by Hakobyan-Markaryan [11, 12, 13|, as expressed
in Corollary 3.4.

In the particular case that N is the Newton polyhedron of P, this subject was
studied by Zanghirati [23, 24, 25] and by Bouzar-Chaili [3, 4, 5].

2 Definitions and preliminary results

We shall use the subsets of R" defined by Ry = {{ € R" : & ..., # 0} and
Rt ={{eR":¢>0,j=1,...,n}. IN"={a=(a1,...,a,) : oy e NU{0},i =
1,...,n} is the set of multiindeces, then we denote £* = £ --- €2~ for all £ € R™
and D* = D{" --- D2~ for any a € N, where D; = —ia%j, j=1,...,n.

Definition 2.1. Let A = {v* € R? k= 0,...,m} be a finite set of points of R..
The characteristic polyhedron (or Newton polyhedron) (C.P.) Ny of the set A is the
smallest convex polyhedron in R} containing all the points AU {0}.

Now let P(D) = >, v.D“ be a linear differential operator with constant coeffi-
cients, and let P(&) be its symbol. We denote (P) = {a: a € N, 4, # 0}.

Definition 2.2. The characteristic polyhedron (or Newton polyhedron) (C.P.) N =
Np of an operator P(D) (or of a polynomial P(£)) is N(py, i.e. the smallest convex
polyhedron in R, containing all the points (P) U {0}.

Now we pass to consider an important class of convex polyhedra.

Definition 2.3. A convex polyhedron N° C R% is completely reqular (C.R.) if it
satisfies the following conditions:

1. all the vertices have rational coordinates;

2. the origin (0,0, ...,0) belongs to N;
3. dim(N') = n;
4. the outer normals to the non-coordinate (n — 1)-dimensional faces of N have

strictly positive components.

It is well known that if P(D) is a hypoelliptic operator, then its Newton poly-
hedron is completely regular, cf. Friberg [9)].
Let n € R, we set

Hn) ={§ Ry : {#0,E#n, {=n0r§;=0,Vj=1,...,n}

Definition 2.4. A set B C R is completely reqular (C.R.) if for any n € B there
exists a neighborhood U of zero such that

(n—&+b-sign(n—¢&) € B, Y¢&e H(n),VbeUNRY, (2.4)

where b - Szgn(T/ - f) = (blsign(nl - 51)7 ce bnSZgn(nn - gn))
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A polyhedron N' C R is completely regular if and only if it satisfies condition
1 of Definition 2.3 and condition (2.4 ).

Definition 2.5. A differential operator P(D) is called regular if its symbol satisfies
for a constant C' > 0

L+IP@E)[2C Y ], veeR™

a€g(P)

If an operator has completely regular Newton polyhedron and is regular, then it
is called multi-quasi-elliptic and is hypoelliptic (cf. Bouzar-Chaili [3, 4, 5]).

Let v* € R, k=1,...,m, v° = 0. We set h(£) = in: 1£"| and we denote by A
k=0

the characteristic polyhedron of {v*}7 .

According to Kazharyan [16], we can associate to a hypoelliptic operator P(D) (or
polynomial P(£)) a class of functions, called regular weights of hypoellipticity of P.
They are related to important properties of P.

Definition 2.6. Let v* e R}, k=1, ..., m, v° =0. A function h(§) = ?:0 €7
is called reqular weight of hypoellipticity of a polynomial P(&) (of an operator P(D))
if there exists a constant C' > 0 such that
1
[ DP(¢)]

Ta] C "
Fp(g)zc;#)(iw(@Hl) S@, V¢ e R™. (2.5)

Definition 2.7. A weight of hypoellipticity h(£) of a polynomial P(§) (of an operator
P(D)) is called exact weight of hypoellipticity of P(§) (or P(D)) if (2.5 ) is satisfied
and if for any v € R}\N, it holds

sup [€/|Fp(€) = +oc.

§eR

We denote
Mp={v:veRl, [£]"Fp(§) < const,VE € R"}. (2.6)

Kazharyan [16] proved that if an operator P(D) is regular hypoelliptic, then the
set Mp is a completely regular polyhedron. For a class of nonregular hypoelliptic
operators, Hakobyan-Markaryan [11] proved that the set Mp is a completely regular
polyhedron. In the general case, we just know that M p is a completely regular set.
Let P(D) be a hypoelliptic operator with Newton polyhedron Np. We denote by
N3 the set of the vertices of Np. For any t > 0 we set Np(t) = {v € R : £ € Np}.

Proposition 2.8. Let N be a completely reqular polyhedron and let d > 0 satisfy
NO(d) C N*. Then there exists a natural number jo such that for any j > jo and

for any multi-index o € N+ N (%) =N (%) there exists a multi-index 3 € N,
6 < «a, such that o — 3 EN(?).

The proof is similar to Theorem 1.1 of [13].
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Definition 2.9. (¢f. [21]) Let Q2 be an open subset of R™ and let d > 0. For any
differential operator P(D) of order m on R™, we denote by G%4(Q) the set of all
functions f € C®(Q) such that for every compact subset K C ) there exists a
constant C' > 0 (depending on f, K and P) for which

IP/(D)fllx < CITP G, Vi=0,1,....

Definition 2.10. Let N' C R be a completely reqular polyhedron. We denote by
GN(Q) the multianisotropic Gevrey class associated to N, defined as the set of the
functions f € C®(Q) such that for every compact subset K C ) there exists a
constant C' > 0 (depending on f and K ) for which it holds

1D fllx < CT7H5, Ya € N(G), =1,2, ...

Definition 2.11. (¢f. [15]) We say that the differential operator P(D) (or the
polynomial P(§)) is stronger than the differential operator Q(D) (or the polynomial
Q(§)) and write Q < P, if for some constant C' > 0 it holds

Q&) < CP(), VYEeR",

where

R = [> |D*R(©)?

o] 20

is the Hormander function of the polynomial R(§). If Q < P and P < @, then we
write Q) ~ P.

For any bounded set Q@ C R™ and € > 0 we denote 2. = {z € Q : p(x,00) > £},
where p is the distance in R"™.

Lemma 2.12. Let P(D) be a differential operator, Q@ C R™ an open set and | a
natural number. Then for any d > 0 it is satisfied

GL(Q) = GHQ).

Proof. As the theorem has a local character, then it is possible to consider a bounded
set O C R™. Since P™ < P! for [ > m, then according to Theorem 4.2 of Hormander

[14], there is a constant v > 0, such that for every s > 0, ¢ > 0 and for any
v € C() it holds

sup 7P (D)ol < € ( sup 7P Dl + o

0<r<t

) e

where C' > 0 is a constant depending only on P and the diameter of 2.
From (2.7 ) it follows that

1P"(D)vlla.,., < Ci(IIP'(D)o]

a, +177v|

0), Ywel=(Q,). (28

Substituting j = lj; + 7, where r < I, 7 =m, s =t =4 > 0 and v = P (D)u, in
(2.8 ), we obtain

|P(D)ulla,, < Cr (1P (Dyullg, + 677 |PP(D)ullg,) . (29)
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If u belongs to G%,(9), then from Definition 2.9 it is satisfied

PO (D)ullo, < CF (G + 1)),
P2 (D)l < €345

where Cy > 0 depends on u, 6 and P. From (2.9 ) we can write

j—1 ) — d s . .
Pi(D)ul|q,. < ChtH1dn — AL Ty <Y 4
25 3 1 3 I aJt,

for suitable constants C5 = C5(u, d) > 1 and Cy = Cy(u,d) > 1. Therefore u belongs
d d
to G5(£2). The inclusion G%,(Q) C GH(R) is proved.

d
Let u belong to GH(€2). Then for any natural j and for any compact subset K C
there is a constant C5 = Cs(u, K, P) > 0 for which it holds

|P!(Dyullic < GG = CE (DY < oY,
d
therefore u belongs to G%,(£2). The inclusion G5(Q2) C G%,(?) is proved. ]

Lemma 2.13. Let P(D) be a regular operator with completely reqular Newton poly-
hedron N'p. Then for a sufficiently large d > 0 it is satisfied

G4(Q) c M) (Q).

Proof. Because the lemma has a local character, then it is possible to consider a
bounded open set  C R". Let u belong to G4(€). Since P(D) is regular, then for
a constant C' > 0 it is satisfied (cf. [20])

> €< C(PE+1), VEeR™ (2.10)

aE/\/’g

Using Theorem 4.2 of [14], there is a constant v > 0 such that for every s > 0, ¢ > 0
and any v € C*°(€2,) the condition (2.10 ) can be rewritten in the form

Z sup 77||D%|q

s+T

sa(wnﬂwwwmﬁ+wm), 2.11)
0<r<t

where ' CC Q, and (] is a constant depending on P and the diameter of 2.
Hence

> 1Dy, < O (IP(D)ollay +t 7 oller) Vo€ Co(). (212)

aENg

Since for any f € C*°(Q2), any natural number r and any compact subset K C
there is a constant C, r x > 0 such that

sup |Daf<x)‘ < CT,f,K7 Va € Nn7 |Oé‘ < T,
zeEK
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therefore to prove Lemma 2.13 it is sufficient to show that

sup |D7f ()| < C7I, W8 EN ($). 5= o=

zeK

where jg Is as in Proposition 2.8.
Let k = [l} + 1. Let us prove the lemma for any d > ~. For k > 1 (i.e. j > d) from

Proposition 2.8, for any 3 € Np(% ) N N™ there is a multi-index o € Np, oV < 33
such that BV = 5 —a® € Np ( )
For k =1 (i.e. j < d) we have Np ( ) C Np, then instead of the multi-index a(!

we can take o) = 3 and g0
Using (2.12 ) for v = D"y With s=0—

EliST]

t:%,5>0,weget
Dul|q, = ||D° = | D" (DP"
[D"ullgy = [[D%uller,, = [[D* (D" u)llar,

1 K\ g0
< Cy <||P(D)D5( ullo; + <g> ||D5()U||ﬂg> (2.13)

KN\7 s0
o (5) 107 k).

If k> 2 (ie. [%} > 1 and therefore 3 ¢ Np), then from Proposition 2.8 it follows
that there is a multi-index a® € Np(2), a® < BW such that g2 = M) — @ ¢
Np (524,

Applying (2.12) to both terms of the right-hand side of (2.13 ) and taking v =
DP? P(D)u for the first term and v = D?®y for the second, after k steps we get

=, <||D5(1)P(D)u

k k’ 7 .
HDﬁuH% <oy Oy (5) 1P (D[ (2.14)
Jj=0

Since ' CC Q and u € G%(Q2), we obtain
| P/(D)ulloy < B4 Vj=1,2,.... (2.15)
As d > #, then from (2.15 ) we have
K| PR (DYul|r < KYBEIT (| — )k < phlpkd (2.16)

Choosing ¢ > 0 such that A C €, it follows from (2.14 ) and (2.16 ) that there exist
Bsy, B3 > 0 such that

([§]+1)d L
HDBUHA < B§+1kkd BQ[ ]H( il] 4 1) d < Bgﬂjj,

for all B € Np (%) , 7 =1,2,.... Thus u belongs to GNP(é)(Q). [

An alternative proof of Lemma 2.13 can be found in Bouzar-Chaili [3]. Referring
to [1], we have the following
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Lemma 2.14. Let a polynomial P(§) have completely reqular Newton polyhedron
Np. Then for any d >0

M (3)(Q) c GL(Q).

Proof. Let u belong to GNP 5(9) For any compact subset A C €2 and any natural
number j we have

PI(D)ull4 < I ma D%u
IPA(D)ulla < 17 _mas [ D%ulla

<L max Dl
aENP<[dJ]T+1>

< LJC[dJ}Jrl ([dj] + 1)[dﬂ+1 < C{Jrljdj’
where L is the number of the multi-indeces o € Np. Thus u belongs to G4(Q2). m
Remark 2.15. Lemmas 2.13 and 2.14 hold in particular for hypoelliptic operators
(or polynomials), as their Newton polyhedron is completely regular.

Corollary 2.16. If a polynomial P(§) (or an operator P(D)) having completely
reqular Newton polyhedron is regular, then for a sufficiently large d > 0

G Q) = ¢ (@)(q).

Lemma 2.17. Let P(§) be a hypoelliptic polynomial, Q(§) be a regular polynomial
having completely regular Newton polyhedron such that for a constant C' > 0 they
satisfy

QI <C(IP(E)|+1), VEeR™
Then for d > 0 sufficiently large it holds
GL(Q) C GL(Q) = ¢Meli) ().

The proof follows by combining Theorem 1 of [21] and Corollary 2.16.
For a hypoelliptic polynomial P(&) of order m we denote

D(P)={C e C": P(¢) =0},
dp() = inf 16— Cl.

ceD(P

Let M be a completely regular polyhedron, assume that h(€) is a regular weight
of hypoellipticity of P, cf. Definition 2.6, and let r be a natural number such that
L is rational and M°(r) is included in N". We set

Qe = > &

aEMO(r)
It is easy to see that
a) M(2r) = No:
b) for a constant Cy > 0 it is satisfied

CrIR(E) < Q(€) < Cihiy(€), Ve e R™
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From Lemma 4.1.1 of [15] and the previous Definition 2.6, there are two constants
C5,C3 > 0 such that

haa(§) < Coldp(€) +1) < Ca(|PE)[ +1), VE€R" (2.17)
Taking into account b) and (2.17 ), we get for a constant C' > 0
QI < CUPE* +1), VEER"

Proposition 2.18. Let P(§) be a hypoelliptic polynomial, M as before, correspond-
ing to a reqular weight of hypoellipticity of P, 2 C R™ be an open monempty set,
then for sufficiently large d > 0 the following inclusion holds

G(Q) c M Q).
Proof. From Theorem 1 of [21] it follows that
GH(®) € G5 (@),
where Q(¢) = ¥ £€2%. From Corollary 2.16 and a) it follows that for a sufficiently

aENY

large d > 0 it holds
G5'(Q) c ¢Ve(3) = M%) (@),
This completes the proof. [ |

3 Main Results

Theorem 3.1. Let P(£) be a polynomial (or an operator P(D)), M be a completely
regular polyhedron. If there is a d > 0 such that G%(Q) € GM(Q), then for a
constant C' > 0 it 1s satisfied

ha(§) < C (P +1), vEER" (3.18)

Proof. Because the vertices of polyhedron M have rational coordinates, then for
some natural number r we have M°(r) C N2. We set

Q)= > &

aeMO(r)

The polynomial Q() is obviously regular. From Corollary 2.16 it follows
aM(Q) = MTE)(Q) = GF ().

1
Hence from the conditions of Theorem 3.1 we get G%(Q2) C G (Q2). According to
Theorem 2 of [21], we have for a constant C' > 0

QE)I <C(IPEIT +1), VEeR™ (3.19)

Since h3, () ~ Q(E), the proof of the theorem follows from (3.19 ). [



Gevrey Regularity and Iterates of Operators with Constant Coefficients 471

Conversely, we have the following result

Theorem 3.2. Let P(£) be a hypoelliptic polynomial (or P(D) a hypoelliptic oper-
ator), M a completely reqular polyhedron. If the inequality (3.18 ) holds for some
d > m, then the inclusion GL(Q2) C GM(Q) is satisfied.

The proof follows from Lemma 2.17 and the computations in the proof of The-
orem 3.1.

Remark 3.3. Theorem 3.2 implies that if P is a hypoelliptic operator, then we
have G%L(Q)) € G*() for suitable s,d > 1, since the multianisotropic Gevrey classes
GM(Q) are always included in a standard Gevrey class G*(Q) for s sufficiently large,

cf. [7].
By taking d = m in Proposition 2.18, we have the following result.

Corollary 3.4. Let P(D) be a hypoelliptic operator and let ha(§) = Y aer [€%] be a
reqular weight of hypoellipticity of P associated to the completely reqular polyhedron
M, then

Gm(Q) € GM(Q).

Theorem 3.5. Let a polynomial P(§) (or an operator P(D)) have completely reqular
Newton polyhedron Np, Q C R™ be a nonempty open set. Then P(§) (or P(D)) is
reqular if and only if there is d > 0 such that

GL(Q) c M@ (Q). (3.20)

Remark 3.6. Under the hypotheses of Theorem 3.5, the condition (3.20 ) implies
also the hypoellipticity of P, as any regular polynomial (or operator) with completely
reqular Newton polyhedron is hypoelliptic.

Proof. If P is regular, we apply Theorem 3.2 with M = Np(2), to obtain (3.20 ).
In the opposite direction, assume (3.20 ) is valid. It follows from Lemma 2.12 that

G4 = G4(Q) c (@),
From Corollary 2.16 it follows
V() () = GEL (),

where Q(€) = & €2,

ae./\fg
Using Theorem 2 of [21], for some constant C' > 0 it is satisfied

> e < C(IPEP+1), WEeR™

aE/\/’g

Therefore from [20] the polynomial P() is regular. ]
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Remark 3.7. An alternative proof of Theorem 3.5 can be found in Bouzar-Chaili
[3]; in [4, 5] the case of operators with variable coefficients in suitable Gevrey classes
s also considered.

Remark 3.8. In the case that M is the Newton polyhedron of an elliptic opera-
tor, we recapture the results of [17] for elliptic operators, in the case of constant
coefficients.

We end by an example clarifying the results of Theorems 3.1 and 3.2. In partic-
ular, it is interesting to consider the case of nonregular operators. Let

PE)=(&L-&)°+&+6.

P(&) is a non regular hypoelliptic polynomial. In this case the set Mp defined by
(2.6 ) has the form

Mp:{ue]Ri:(y,)\)gg},

therefore the set Mp is a completely regular polyhedron, with A = (1,1), and Np
is

Np={v eR}(r,)) <6}.

It is easy to see that 9IMp = Np.
If we take Q(&) = &9 + &5 then Np = Ny, IMp = Ny and

Q)] < c(|P(€)]? +1).

We may therefore apply Corollary 3.4, or Theorem 3.2 with d = 6, and conclude
that G% is included in GM = G%. In view of Theorem 3.1, this result is sharp in
the frame of multianisotropic Gevrey classes.

For any € > 0

Q| £ c(|P()P~ +1).
Then, the estimate
Q)" < c(|P()]+ 1)

da
is a sufficient and necessary condition in order that G$(Q) C G5(€2) for some large
d > 0. It holds

2 2

(@ = 6§ (@ = @) = (@)
_ GMP(9%)(Q) = GMr(6d) ()

Qo

GL(Q) Cc G

and
d

GLQ) ¢ GEF () = GMrET0(Q).

In the other hand
GNP(%)(Q) C GNP(ﬁ)(Q)

forﬁ<1,or0<e<l.

So, for the nonregular polynomial P(§) the inclusion
GH(Q) c GNP (Q)

is false.
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