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Abstract

We prove two results concerning the generalized Fermat equation x
4+y

4 =

z
p. In particular we prove that the First Case is true if p 6= 7.

1 Introduction

In this note we will prove the following results concerning the generalized Fermat
equation x4 + y4 = zp:

Theorem 1.1. Let p be a prime such that p 6≡ −1 (mod 8) and p > 13. Then

the diophantine equation x4 + y4 = zp has no solutions x, y, z with (x, y) = 1 and

xy 6= 0.

We will call a solution primitive if (x, y) = 1, and non-trivial if xy 6= 0.

Definition 1.2. Borrowing the terminology introduced by Sophie-Germain in con-

nection with Fermat’s Last Theorem, we say that a primitive solution (x, y, z) of

x4 + y4 = zp is in the First Case if p ∤ xy.

Theorem 1.3. Let p be a prime different from 7. Then the diophantine equation

x4 + y4 = zp has no primitive solutions in the First Case.
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First of all, we have to stress that we will depend heavily on the work of Ellenberg
(see [E]) on the more general equation x2 +y4 = zp. The reader should keep in mind
that the following much stronger result is proved in [E]:

Theorem 1.4. Let p be a prime, p ≥ 211. Then the equation x2 + y4 = zp has no

primitive solutions in non-zero integers.

Our results are not included in this theorem only for the lower bound p ≥ 211.
So, both our theorems are new only for those primes in the interval 13 < p < 211.
As for theorem 1.3, for p 6≡ ±1 (mod 8) this result was already solved à la Kummer
(see [P] and [C]). In fact our proof only applies for p > 13 and we can replace this
restriction by p 6= 7 only by combining our proof with this previous results.

In [E], a Q-curve E of degree 2 defined over Q(i) is attached to a given non-trivial
solution of x2 + y4 = zp, and using the modularity of E (proved in [ES]) it is shown
that there is a congruence modulo p between the modular form corresponding to
E and a modular form of weight 2, trivial nebentypus, and level 32 or 256. All
cusp forms in these spaces have complex multiplication (CM). This implies that the
prime p is dihedral for the mod p Galois representation attached to E (this is a
representation of the full Galois group of Q, see [ES], [E] for precise definitions). To
prove theorem 1.4 in [E], it is proved (using in particular some results on the Birch
and Swinnerton-Dyer conjecture and analytic estimates for zeros of special values of
L-functions) that for p ≥ 211 if the mod p representation corresponding to a degree
2 Q-curve over Q(i) is dihedral then the curve must have potentially good reduction
at every prime with residual characteristic greater than 3.
We will follow a different path in order to obtain a result holding also for small
primes: we will use the theory of modular congruences (level raising results of Ri-
bet) to study the congruences between the modular form associated to E and the
particular CM modular forms of level 32 and 256. We will restrict to the simpler
case where the curve E is associated to a solution of the equation x4 + y4 = zp to
obtain a stronger result (if we start with a solution of x2 + y4 = zp an imitation of
the arguments in this paper only proves the First Case for primes p ≡ 1, 3 (mod 8),
p > 13, and the non-existence of solutions as in theorem 1.1 only for p ≡ 1 (mod 8),
p > 13).
The third main ingredient in the proof is the theory of sum of two squares (results
of Fermat) and its relation with the CM cusp form of level 32. Let us explain this
relation before getting into the proof of theorems 1.1 and 1.3:
Let f1 be the cusp form in S2(32). Using the fact that f1 is CM and it verifies
f ∼= f ⊗ ψ where ψ is the Dirichlet character of conductor 4, we know that f1 is
induced from a Hecke character of Q(i). From this, we easily get the well-known
relation for the Hecke eigenvalues {aq} of f1:
aq = (α + βi) + (α − βi) = 2α, with α2 + β2 = q, if the prime q verifies q ≡ 1
(mod 4), and aq = 0 if q ≡ 2, 3 (mod 4).
Acknowledgement: I want to thank Virginia Balzano.
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2 The results we need

Let A,B,C be a primitive solution of A4 + B4 = Cp with AB 6= 0. Assume that
p > 13. It is an elementary exercise to see that (6, C) = 1. Thus, we can assume
that A is even.

Following Darmon and Ellenberg (cf. [D] and [E]), the following two elliptic
curves EA,B and EB,A can be attached to this triple:

EA,B : y2 = x3 + 2(1 + i)Ax2 + (−B2 + iA2)x

EB,A : y2 = x3 + 2(1 + i)Bx2 + (A2 + iB2)x

They are both degree 2 Q-curves, i.e., each of them is isogenous to its Galois con-
jugate, with a degree 2 isogeny. Both have good reduction at primes not dividing
2C, and because 3 ∤ C this already implies (cf. [ES]) that they are modular. Let
us denote by E any of these two Q-curves, whenever we do not need to distinguish
between them.
Modularity should be interpreted in terms of the compatible family of Galois repre-
sentations of GQ attached to E (see [ES] for definitions):

ρE,λ : GQ → GL2(Q(
√

2)λ)

for λ a prime in Z(
√

2). Each ρE,λ is unramified outside 2Cℓ, ℓ the rational prime
below λ. These representations are modular and by construction they correspond
to a modular form f with Qf = Q(

√
2) having an extra twist given by the character

ψ corresponding to Q(i): fσ ∼= f ⊗ ψ, σ generating Gal(Q(
√

2)/Q).
In [E], generalizing results of Mazur to the case of Q-curves, it is shown that if ℓ > 13
the residual representation ρ̄E,λ is irreducible.
¿From now on we will assume p > 13. The close relation between the discriminant of
E and Cp shows that for P | p in Z(

√
2) the residual mod P representation ρ̄E,P has

conductor equal to a power of 2. The exact value of this conductor was computed
in [E], giving 32 for the case of EA,B (recall A is even) and 256 for EB,A.
The modularity of both Q-curves together with Ribet’s level-lowering result give:

ρ̄EA,B,P
∼= ρ̄f,P f ∈ Snew

2 (32)

ρ̄EB,A,P
∼= ρ̄f ′,P f ′ ∈ Snew

2 (256)

All newforms of these levels have CM. Thus, this implies that the (projective) images
of ρ̄EA,B ,P and ρ̄EB,A,P fall both in the normalizer of a Cartan subgroup of PGL2(Fp).
Allways with the assumption p > 13, generalizing results of Momose to the case of
Q-curves, it is proved in [E] that the case of a split Cartan subgroup is impossible,
the case of a non-split Cartan subgroup remaining the only case to be considered.

3 The Proofs

Let us start by describing in more detail the newforms of levels 32 and 256:
N = 32: The cusp form f1 ∈ S2(32) corresponds to the elliptic curve y2 = x3 − x
which has CM by Q(i).
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N = 256: f2 (and its Galois conjugate) correspond to the degree 2 Q-curve y2 =
x3 + 2(1 + i)x2 + ix which has CM by Q(

√
−2). We have Qf2 = Q(

√
2), f2 has thus

both CM and an inner twist (which is not uniquely defined).
f3 and f4: Corresponding to elliptic curves defined over Q with CM by Q(i).
f5 and f6: Corresponding to elliptic curves defined over Q with CM by Q(

√
−2).

The eigenvalues ap, p ≤ 17, of these cusp forms, are:

f1 : 0, 0,−2, 0, 0, 6, 2

f2 : 0, 2
√

2, 0, 0,−2
√

2, 0, 6

f3 : 0, 0,−4, 0, 0,−4,−2

f4 : 0, 0, 4, 0, 0, 4,−2

f5 : 0,−2, 0, 0,−6, 0,−6

f6 : 0, 2, 0, 0, 6, 0,−6

The first thing to observe is that f5 and f6 can be eliminated from the possibilities
(this result will not be essential in the sequel but it may be of independent interest):

Proposition 3.1. Let E be a Q-curve of degree 2 defined over Q(i) and with good

reduction at 3. Let p > 13 be a prime and P | p such that: ρ̄E,P
∼= ρ̄ft,P for t ≤ 6,

where ft is one of the cusp forms described above. Then t ≤ 4.

Proof: We know that ρE,P is defined over Q(
√

2) and has an extra twist: ρσ
E,P

∼=
ρE,P ⊗ψ where ψ is the mod 4 character. This implies that for every good reduction
prime q ≡ 3 (mod 4): aq = z

√
2, z a rational integer; where aq = trace(ρEP

(Frob q)),
P ∤ q.
Using the bound |a3| ≤ 2

√
3 we have the only possibilities: a3 = 0,±

√
2,±2

√
2. The

cusp forms f5 and f6 have Hecke eigenvalue a3 = ±2, so the congruence ρ̄E,P
∼= ρ̄ft,P

with t = 5, 6 gives at q = 3: a ≡ ±2 (mod P ) for a ∈ {0,±
√

2,±2
√

2}, but this is
impossible for p > 2.

Proof of Theorem 1.1:
We have attached two Q-curves to a primitive non-trivial solution A,B,C of A4 +
B4 = Cp, and for the Galois representations attached to them we have the congru-
ences:

ρ̄EA,B ,P
∼= ρ̄f1,P (3.1)

ρ̄EB,A,P
∼= ρ̄ft,P (3.2)

for t = 2, 3 or 4.
Following [E], for p > 13 we can assume that the projective images lie both in the
normalizer of non-split Cartan subgroups of PGL2(Fp). Using the fact that f1 has
CM by Q(i), we know that for EA,B this is the case precisely when p ≡ 3 (mod 4).
This proves the theorem for p ≡ 1 (mod 4), p > 13.
So let p be a prime p ≡ 3 (mod 4), p > 13. Observe that this implies in particu-
lar that EA,B and EB,A have both good reduction at p, because from the equation
A4 +B4 = Cp and (A,B) = 1 it is a very old result that all primes dividing C are of
the form 4k+ 1. Let {aq} be the set traces of ρEA,B,P for q ∤ 2Cp. Congruence (3.1)
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gives at q = 3: a3 ≡ 0 (mod P ). But we know that a3 ∈ {0,±
√

2,±2
√

2}, then
the only possibility is a3 = 0. The value a3 is computed as usual by counting the
number of points of the reduction of the curve EA,B modulo 3̌ for a prime 3̌ dividing
3. It depends only on the values of A and B2 modulo 3. A direct computation shows
that a3 = 0 if and only if A ≡ 0 (mod 3) and B 6≡ 0 (mod 3). Thus, we can assume
that A and B verify these congruences (recall that by assumption A is even, so we
have in particular 6 | A). This determines up to sign the value of the trace a′3 of the
image of Frob 3 for the Galois representation ρEB,A,P (it depends only on the values

of A and B modulo 3). In fact, putting A = 0 and B = ±1 we obtain a′3 = ±2
√

2.
If we suppose that congruence (3.2) holds for t = 3 or 4, comparing traces at q = 3
we obtain: a′3 = ±2

√
2 ≡ 0 (mod P ), and this is a contradiction. So we conclude

that if B,A,C is a non-trivial primitive solution of B4 + A4 = Cp with A even
and p > 13, then congruence (3.2) has to be verified by the newform f2 (or its
Galois conjugated). Applying again Ellenberg’s generalization of results of Momose
(cf. [E]) to the case of Q-curves, we can assume that the projective images of the
congruent mod P representations in (3.2) must be contained in the normalizer of a
non-split Cartan subgroup, and using the fact that f2 has CM by Q(

√
−2) we know

that this can only happen if p ≡ 5, 7 (mod 8). This proves the result also for p ≡ 3
(mod 8), p > 13, which concludes the proof.

Proof of Theorem 1.3:
Assume as before that p > 13 and consider congruence (3.1) again. As we already
mentioned in the proof of theorem 1.1, we can restrict to p ≡ 3 (mod 4) (the non-
split Cartan case). The odd primes where EA,B has bad reduction are precisely the
primes q | C; the curve has semistable reduction at these primes (cf. [E]) and we
obviously have q ≡ 1 (mod 4). In particular EA,B has good reduction at p.
As explained in [E], from the fact that EA,B has multiplicative reduction at q ∤ p,
and the assumption that the corresponding projective mod P Galois representation
has image in the normalizer of a non-split Cartan subgroup (using the fact that the
cusps of Xns

0 (2, p) have minimal field of definition Q(ζp + ζ−1
p ), with ζp a primitive

p-th root of unity) it follows that the residue field Z[i]/q̌ must contain ζp + ζ−1
p for

q̌ | q, and this implies (because q splits in Q(i)) that q2 ≡ 1 (mod p) (3.3).
On the other hand, the level of the modular form f corresponding to EA,B is
32 · cond(C), where cond(C) is the product of the primes dividing C. This im-
plies, by Ribet’s level-lowering result, that together with congruence (3.1) there are
congruences:

ρf,P ≡ ρf1,P ≡ ρf(q),P (mod P )

for every prime q | C, with f(q) a newform of level 32q. Ribet’s level raising result
gives a constraint for such congruence primes (see [G]): using the fact that f1 has
level 32 and f(q) has level 32q, the above congruences imply that:

a2
q ≡ (q + 1)2 (mod P )

where aq is the q-th coefficient of f1, for every q | C.
Using (3.3), in the above congruence we substitute q by ±1 and we obtain: a2

q ≡ 4, 0
(mod P ) (convention: we list first the value corresponding to q ≡ 1).
As we explained in section 1, we have aq = 2α with α2 + β2 = q. Thus, the above
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congruence gives: α2 ≡ 1, 0 (mod p) (3.4).
In particular, if q ≡ −1 (mod p) we have: α ≡ 0 (mod p), then β2 = q − α2 ≡ −1
(mod p), but this is impossible because p ≡ 3 (mod 4).
Then, it must hold q ≡ 1 (mod p) and from (3.4): α2 ≡ 1 (mod p). Thus, β2 =
q − α2 ≡ 0 (mod p).
We have proved that for every q | C, if we write it as a sum of squares q = α2 + β2,
these two integers (which are, up to sign, unique) have to verify: α2 ≡ 1 (mod p)
and p | β (or viceversa); and in particular, p | αβ (*).
Applying the product formula and the properties of decompositions of numbers
as sums of two squares proved by Fermat (in particular, the fact that every such
decomposition can be recovered from the corresponding decompositions of the prime
factors), we see that property (*) “propagates” in the following sense: if all prime
divisors q of an integer N are of the form 4k + 1 and writing q = α2 + β2 property
(*) holds (for a fixed prime p), then if we decompose N as a sum of squares in any
possible way N = U2 +V 2, this decomposition will also verify property (*), namely,
p | UV .
Thus, having established property (*) for all prime factors of C, and a fortriori for
all prime factors of Cp, we conclude that if we write Cp = R2 + S2 in any possible
way, it must always hold p | RS.
Thus, in the equation A4 + B4 = Cp we have p | AB, and this proves the theorem
for p > 13. The First Case for the remaining small primes different from 7 (and
more generally for p 6≡ ±1 (mod 8)) was already solved à la Kummer (see [P] and
[C]).
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