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Abstract

Let q be a power of a prime p 6= 3. We characterize the following two
sets of polynomials: M(q) = {P ∈ Fq[t] such that P is a strict sum of cubes
in Fq[t]} and S(q) = {P ∈ Fq[t] such that P is a strict sum of cubes and
squares in Fq[t]}. Let g(3,Fq [t]) = g ≥ 0 be the minimal integer such that
every P ∈ M(q) is a strict sum of g cubes. Similarly let g1(3, 2,Fq [t]) = g be
the minimal integer such that every P ∈ S(q) is a strict sum of g cubes and
a square. Our main result is:

i) 4 ≤ g(3,Fq [t]) ≤ 9 for q ∈ {2, 4}.

ii) 3 ≤ g1(3, 2,Fq [t]) ≤ 4 for q = 4.

1 Introduction

Waring’s problem for cubes or for cubes and squares of polynomials in F[t] over some
field F, is the analogue of the same problem over the integers Z. We can represent
an integer n in the form

n = n3

1 + . . . + n3

g,

for some positive integer g, where the integers ni, i = 1, . . . , g and n have all the
same sign, so that |n3

i | ≤ |n| for all i = 1, . . . , g. In particular no cancellation of any
terms can occur in the above sum. Waring’s problem for cubes over Z consists in
determining or at least bounding the minimal such g, say g(3,Z). It is well known
by work of Wieferich, simplified by Scholz, that g(3,Z) = 9, (See [17] and [11]).
Two related problems arise.
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a) The (so called)“easy” Waring problem in which we allow negative and positive
cubes to appear in the decomposition above. Let v(3,Z) represent the analogue
of g(3,Z). The exact value of v(3,Z) is unknown, however:

4 ≤ v(3,Z) ≤ 5.

(See [8]).

b) The “asymptotic” Waring problem in which we restrict our attention to rep-
resent only “big” or “sufficiently large” integers, i.e., we try to represent all
integers bigger than some bound b. Let G(3,Z) represent the analogue of
g(3,Z). In (see [15]) Linnik and Watson proved that G(3,Z) ≤ 7.

Moreover, in (see [9]) Mc Curley proved that d ≤ exp(exp(13.94)), where d is
the largest integer that requires eigth cubes for its representation.

Note that it might be necessary to restrict the integers to be represented since
some congruence obstructions may appear. For example an integer congruent to 4
or 5 modulo 9 cannot be expressed as a sum of 3 cubes.

For polynomials, the notion of positivity used for integers, is replaced by condi-
tions on degrees. We want to write all possible polynomials, not barred by congru-
ences, as sums of cubes and squares in such a manner that the minimum cancellation
occurs:

Let F be a field, and let P ∈ F[t] be a polynomial such that

P = c3

1 + . . . + c3

s

for some polynomials c1, . . . , cs ∈ F[t] such that deg(c3
i ) < deg(P ) + 3 for all i =

1, . . . , s. We say that P is a strict sum of s cubes. Similarly, for any positive integer
k we say that P is a strict sum of cubes and k squares if there exist polynomials
d1, . . . , dk ∈ F[t] such that deg(d2

i ) < deg(P ) + 2 for all i = 1, . . . , k, and for which

P − (d2

1 + . . . + d2

k)

is a sum of cubes A3 with deg(A3) < deg(P ) + 3.

For any A ∈ {c1, . . . , cs} we say that A3 appear in the decomposition of P. We
also say that a polynomial Q ∈ F[t] is a strict sum of cubes if for some integer r ≥ 1,
Q is a strict sum of r cubes. Similarly we say that Q is a strict sum of cubes and
squares if for some integer k ≥ 1, Q is a strict sums of cubes and k squares.
We denote by g(3,F[t]) = g, the minimal positive integer, such that every P that
is a strict sum of cubes is a strict sum of g cubes. If it does not exists, then we
put g(3,F[t]) = ∞. Similarly, we denote by g1(3, 2,F[t]) = g the minimal positive
integer such that every P that is a strict sum of cubes and squares is a strict sum
of g cubes and a square. If it does not exists, then we put g1(3, 2,F[t]) = ∞.
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Let q be a power of a prime p 6= 3 and let Fq be the finite field with q elements.
Set

M(q) = {P ∈ Fq[t] such that P is a strict sum of cubes in Fq[t]},

and let α be a nontrivial 3-root of 1 in a fixed algebraic closure of Fq.

It is easy to prove (See Lemma 5.2) that M(q) equals the full ring Fq[t] if and
only if q /∈ {2, 4}. In the same lemma we give the exact description of M(4) and
M(2). It is also convenient to study

S(q) = {P ∈ Fq[t] / P is a strict sum of cubes and squares in Fq[t]}.

It is easy to prove (See Lemma 5.3) that S(q) equals the full ring Fq[t] if and only
if q 6= 4. In the same lemma we give the exact description of S(4).

The aim of this paper is to prove that:

a) Every polynomial P ∈ Fq[t], where q ∈ {2, 4}, that is a strict sum of cubes, it
is a strict sum of 9 cubes. Moreover, for q ∈ {2, 4}, there are polynomials in
M(q) that are not strict sums of 3 cubes. In other words, we have

4 ≤ g(3,Fq[t]) ≤ 9 for q ∈ {2, 4}.

(See Theorem 6.1).

b) Similarly, we have

3 ≤ g1(3, 2,F4[t]) ≤ 4

(See Theorem 7.1).

For details on g1(3, 2,Fq[t]) for odd q, see our paper [7].

1.1 Upper bounds for g(3,Fq[t]) and g1(3, 2,Fq[t])

Assume that gcd(3, q) = 1 and that M(q) is strictly included in the full ring Fq[t],
i.e. assume that q ∈ {2, 4}. There are not known upper bounds for the minimal
length g(3,Fq[t]) necessary to represent every polynomial P ∈ M(q) as a strict sum
of cubes.

The strongest bounds in restricted problems of this type usually stem from ap-
plications of the Hardy-Littlewood method, (circle method), suitably modified to
apply in function fields, (see, e.g. [3]). Observe that conventional approaches are
ineffective when the characteristic of the field in question divides 3!. The reason is
that Weyl differencing becomes trivial as soon as this differencing operation causes
all terms to be divisible by the field characteristic.

However, when q is a power of 2, and the polynomials P to be represented have
sufficiently large degree and are sums of cubes (this is required only for q < 8) M.
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Car and J. Cherly proved in [1] that 11 cubes suffice, (for q < 8 these polynomials
were taken in R(2) or in R(4), see definitions in Lemma 5.1 ) by using a special
variant of the circle method. No explicit value was given for the minimal degree d
for which deg(P ) ≥ d, implies that P is a sum of 11 cubes in Fq[t].

Furthermore, this analytic method does not give an explicit representation of the
polynomials that is able to represent.

In [4],[5],[6],[2] there are explicit representations of all polynomials and also up-
per bounds for g(3,Fq[t]) when gcd(q, 3) = 1 and M(q) = Fq[t].

More precisely: For q > 16 and even, we have: g(3,Fq[t]) ≤ 10 when Fq

contains F4 and g(3,Fq[t]) ≤ 15 otherwise. (See [4]). For q > 4 and even,
we have: g(3,Fq[t]) ≤ 9 when q 6= 16 and g(3,F16[t]) ≤ 10. (See [5]). For
any q > 4, with gcd(q, 3) = 1, we have: g(3,Fq[t]) ≤ 7 when q /∈ {7, 13, 16},
max(g(3,F13[t]), g(3,F16[t])) ≤ 8, and g(3,F7[t]) ≤ 9. (See [6] for the case gcd(q, 6) =
1, and [2] for the general case).

The case where q ∈ {2, 4} remained open.

In [5] it is proven that g1(3, 2,Fq[t]) ≤ 4 for all even q 6= 4, leaving open the case
where q = 4.

The analogue of our results (but without restrictions on degrees), i.e. the ana-
logue of the “easy” Waring’s problem over the integers Z, was obtained by Vaserstein
as a special case in [12,13], where it is proven that for q ∈ {2, 4} the minimal length
w(3,Fq[t]) = w necessary to represent every sum of cubes in Fq[t], as a sum of w
cubes in Fq[t], satisfy

3 ≤ w(3,Fq[t]) ≤ 4, for q ∈ {2, 4}.

Determining the exact value of w(3,Fq[t]) or g(3,Fq[t]) for q ∈ {2, 4} seems to be a
difficult task. The determination of the exact value of g1(3, 2,Fq[t]) for any q with
gcd(q, 3) = 1 seems to be also of the same degree of difficulty (for us). Indeed, even
the simpler problem of providing good lower bounds seems non trivial.

A word on some classical notation used in the paper: Given some field F, we say
that a polynomial P ∈ F[t] is monic if his leading coefficient equals 1.

2 Method of proof

We choosed a wholly elementary method (linear algebra and identities) to get our
results. Indeed, mathematically more interesting and powerful methods as the circle
method or (see [3]) a generalization of Serre’s method (for the strict sums of squares
decomposition of the polynomials in Fq[t] for q 6= 3) seems to produce only weaker
results on the Waring’s problem for cubes and for cubes and squares over Fq[t].
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The method consists, for a given polynomial P ∈ Fq[t]), say monic and of degree
3n > 6,

P = t3n + ... + a0,

to be decomposed, say as a strict sum of cubes; roughly in:

a) Find a cube A3 such that P and A3 have a maximum of equal consecutive
coefficients beginning by the leading coefficient.

b) Repeat a) with P replaced by P −A3 till get a polynomial R which degree be
less than n + 1. Care is taken so that this can be done.

c) Apply some polynomial identities to R that show R equal to a sum of cubes
of polynomials S3 in which the polynomials S, R have the same degree.

Parts a) and b) are covered in section “Descent” and part c) in section “Iden-
tities”. When our polynomial P has small degree, i.e. when deg(P ) ≤ 6, then an
special analogue procedure is applied to represent it by a strict sum of 5 cubes (See
Lemma 5.1).

3 Identities

All results in this section are easily checked by a computation.
First of all, we present Paley’s identities (see [10]) (slightly modified).

Lemma 3.1. (Paley) − Suppose that F is a field of characteristic 2. Then the
following identities hold in the ring F[x, y].

a) y(x4 + x) = (yx + x2)3 + (yx + 1)3 + (y(x + 1) + x2)3 + (yx + y)3 + 13.

b) y(x4 + x) + x3 + x2 + x = (y(x + 1) + x3 + x2 + x)3 + (y(x + 1) + x3 + x2 +
x + 1)3 + (y + x2 + 1)3 + y3.

c) y(x4 + x) + x2 + x + 1 = (yx + x2 + x + 1)3 + (yx + x)3 + (y(x + 1) + x2 + x +
1)3 + (y(x + 1) + x + 1)3.

d) y(x4 + x) + x3 + 1 = (yx + x3 + 1)3 + (yx + x3)3 + (y + x2)3 + y3.

Secondly, we have the identity of Serre, (see [12]) (slightly modified), as well as
two complementary identities covering some special cases.

Lemma 3.2. (Serre) − Let F be a field of characteristic not equal to 3, such that
the equation

1 = x3 + y3

has at least one solution x ∈ F, y ∈ F, with xy 6= 0. Then for any nonzero p ∈ F

we have the identity

uw2 =

(

p6(x3 + 1)w + u

3xp4

)3

+

(

p6(x3 − 2)w + u

3yp4

)3

+

(

p6(2x3 − 1)w − u

3xyp4

)3

.



354 L. Gallardo

Lemma 3.3. − We have

a) 48t = (t + 3)3 + (t − 3)3 − (t + 1)3 − (t − 1)3

over any field F and the identity

b) t = (rt + r5)3 + (rt + r5 + 1)3 + (t + r7)3 + (t + r2 + r7)3

over a field F with 16 elements where r ∈ F satisfies r4 = r + 1.

It is convenient to put together some identities (even if some of them are in-
stances of some of the identities in Lemma 3.1 and some redundance occurs):

Lemma 3.4. − Assume that F is a field of characteristic 2, and let a ∈ F. Then
the following identities hold in F[t].

(a) t = (t + 1)3 + t3 + (t + 1)2.

(b) at5 = (t2 + at)3 + (at)3 + (t3 + at2)2.

(c) t2 + t = (t + 1)3 + t3 + 13.

Lemma 3.5. − Every sum of cubes equals 0 or 1 in the finite field with 4 elements
F4, so that any nonzero sum of cubes equals 1.

4 Descent

Lemma 4.1. − Let F be a field of characteristic 2, in which every sum of cubes is a
cube. Let n ≥ 0 be an integer and let P ∈ F[t] be a polynomial that is a strict sum
of cubes in F[t], that has degree d ∈ {3n, 3n − 1, 3n − 2} for n ≥ 1 and that satisfy
P ∈ F for n = 0.

Then there exist A, B, R ∈ F[t] such that

a) P = A3 + B3 + R,

b) deg(A3) < d + 3, and deg(B3) < d + 3.

c) R is monic and r = deg(R) is the least multiple of 3 that exceeds 2n − 1.

d) If 3 divides deg(P ) then A = 0.

Proof : Write P = pdt
d + . . . + p0. We define A = −tn if 3 does not divide d and

A = 0 otherwise. Observe that Q = P −A3 is a strict sum of cubes in F[t] and that
Q has degree 3n. Then, the leading coefficient of Q is a nonzero cube c3, since it is
a sum of cubes in F. Set now r equal to the least multiple of 3 that exceeds 2n − 1
and let B = ctn + bn−1t

n−1 + . . . + b0, with unknowns bn−1, . . . , b0 in F to determine
in such a manner that all coefficients of R = Q−B3, from the coefficient of t3n−1, to
those of tr+1, be equal to zero and such that the coefficient of tr in R be equal to 1.
This results on a triangular linear system over F in at most n unknowns bn−1, . . . , b0

soluble since c 6= 0.
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5 Polynomials that are strict sums of cubes and squares

Let q be a power of a prime number p 6= 3. When q = 4 we write

F4 = F2[α]

with α an element of a fixed algebraic closure of F2 = {0, 1} such that α2 = α + 1.

First of all, we study the case where our polynomials are of small degree. For
q ∈ {2, 4} we show that every polynomial of degree ≤ 6 not barred by congruences
is represented by a strict sum of 5 cubes.

Lemma 5.1. − Let

R(2) = {P ∈ F2[t] / P (α) ∈ F2}.

Let

R(4) = {P ∈ F4[t] / P (r) ∈ F2 for all r ∈ F4, and such that, either 3 does not
divide deg(P ), or 3 divides deg(P ) and P is monic}.

and let P ∈ R(2) ∪ R(4), with deg(P ) ≤ 6. Then deg(P ) 6= 1 and

a) If deg(P ) = 0 then P is a cube.

b) If deg(P ) = 2 then P is a strict sum of 3 cubes.

c) If deg(P ) = 3 then P is a strict sum of 2 cubes.

d) If deg(P ) = 4 then P is a strict sum of 5 cubes.

e) If deg(P ) = 5 then P is a strict sum of 5 cubes.

f) If deg(P ) = 6 then P is a strict sum of 4 cubes.

Proof : First of all, we assume that P ∈ R(2).
Constant polynomials β ∈ F2 satisfy β = β3 while polynomials of degree 1 are not
in R(2) by definition of R(2). From Lemma 3.1 part c) with y = 0, or from Lemma
3.4 part c), we obtain b) since t2 + at + b ∈ R(2) forces a = 1. Now assume that
P = t3 + at2 + bt + c ∈ R(2). It follows from

P = (t + a)3 + (b + a2)t + (c + a3)

that b = a2, so that P is a strict sum of 2 cubes.

Let P be of degree 6 and write P = t6+bt5+ct4+dt3+et2+ft+g. By completing
the cube one has

P = (t2 + bt + (b2 + c))3 + C

with deg(C) ≤ 3. This result, together with a), b) and c), proves f).
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Finally, when deg(P ) ∈ {4, 5}, the polynomial Q = t6 + P has degree 6. Hence,

P = (t2)3 + Q

is a strict sum of 1 + 4 = 5 cubes.

Now we take P ∈ R(4).

If deg(P ) ≤ 1 then P = P (0) + bt with P (0) ∈ F2 and b = P (1) − P (0) ∈ F2.
Hence, P (α) ∈ F2 forces b = 0, i.e. P ∈ F2 so that P = P (0)3 is a cube.
Assume that P = at2 + bt + c with a 6= 0. The condition P (α) ∈ F2 gives b = a2

so that b2 = a and P = (bt)2 + (bt) + c with c = P (0) ∈ F2. From formula (c) of
Lemma 3.4 it follows that P is a strict sum of 3 cubes.

The rest of the proof is the same as the proof of the case where P ∈ R(2), since
polynomials of degree 3 in R(4) and polynomials of degree 6 in R(4) are monic.

In the following lemmas we characterize the polynomials in Fq[t], with gcd(q, 3) =
1, that are strict sums of cubes or strict sums of cubes and squares. While in the
corollary below, we compare the set of those polynomials with the full ring of poly-
nomials Fq[t].

Lemma 5.2. − We recall that

M(q) = {P ∈ Fq[t] / P is a strict sum of cubes in Fq[t]}

and that R(2) and R(4) are defined in Lemma 5.1.
Let

R(q) = Fq[t], for q > 4.

Then M(q) = R(q) for all q.

Proof : Case 1. First of all, we show the egality when q ∈ {2, 4}. The inclusion
M(q) ⊆ R(q) follows from Lemma 3.5. Take now P ∈ R(q). It follows from Lemma
5.1 that we can take deg(P ) > 6. There are polynomials Q, r ∈ Fq[t] with either
r = 0 or deg(r) < 3, such that

P = t3Q + r = t3(Q + r) + (t3 + 1)r. (1)

This implies clearly that Q + r ∈ R(q) so that we can assume by induction that
Q + r ∈ M(q). Since deg((t3 + 1)r) < 6, it follows from (1) and from Lemma 5.1
that the polynomial (t3 + 1)r ∈ M(q), i.e. we are done by induction.

Case 2. We assume that q > 4. Observe that Lemma 3.2 applies exactly when
q /∈ {7, 13, 16} (See [12]). By putting w = 1 in the Serre identity in Lemma 3.2 and
in the identities in Lemma 3.3, we obtain that every polynomial u of degree at most
1 is in M(q). These latter identities cover the special cases when q ∈ {7, 13, 16}.
Similarly, by putting u = 1 and w = p2t where p2 ∈ Fq, in the Serre identity in
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Lemma 3.2 and in the identities in Lemma 3.3, we obtain that every monomial p2
2t

2

is in M(q). Observe that every element a of Fq is a sum of 2 squares. Therefore,
every monomial at2 with a ∈ Fq is in M(q). It follows that every polynomial P
with deg(P ) ≤ 2 is an element of M(q). The result follows by induction for the
polynomials P of degree ≥ 3, by observing that any such P =

∑n
r=0 prt

r can be
written as

P = t3(pntn−3 + ... + p3) + p2t
2 + p1t + p0.

Another proof, that applies for even q > 4, follows from Theorem 7 in [5].

Lemma 5.3. − Let q be a power of a prime number p 6= 3. We recall that
S(q) = {P ∈ Fq[t] / P is a strict sum of cubes and squares in Fq[t]}. Then

S(q) = Fq[t]

unless q = 4.
Let define the subsets Ti of F4[t] for i ∈ {1, 2, 3, 4, 5} by:

a) T1 = {P ∈ F4[t] / deg(P ) ∈ {0, 1, 2}}.

b) T2 = {P ∈ F4[t] / deg(P ) = 3 and P is monic }.

c) T3 = {P ∈ F4[t] / deg(P ) ∈ {4, 5, 6} and the coefficient p3 of t3 in P satisfy
p3 ∈ {0, 1}}.

d) T4 = {P ∈ F4[t] / deg(P ) ≥ 7, deg(P ) ≡ 3 (mod 6) and P is monic }.

e) T5 = {P ∈ F4[t] / deg(P ) ≥ 7, deg(P ) 6≡ 3 (mod 6) }.

and define T as the union of all the above Ti’s, i.e. T =
⋃

5

i=1 Ti.
Then

S(4) = T.

Proof : It is well known that every polynomial in Fq[t] is a strict sum of 4 squares
when q is odd. If q is even and q 6= 4 the result follows from [5, Theorem 9] where
we proved that for all q even such that q 6= 4, every polynomial P ∈ Fq[t] is a strict
sum of 4 cubes and a square. For the rest of the proof we assume that q = 4.
First step: we claim that S(4) ⊆ T . Let P =

∑n
r=0 prt

r ∈ S(4).
If n ∈ {0, 1, 2}, then P ∈ T1 ⊆ T. Suppose that n = 3. At least one cube A3 appear
in the decomposition of P since n = 3 is odd. Hence, we obtain deg(A) ≤ 1 from
deg(A3) < n + 3 = 6.

Therefore, the leading coefficient p3 6= 0 of P is a sum of cubes in F4. From
Lemma 3.5 we obtain p3 = 1, so that P ∈ T2 ⊆ T.
Suppose now that n ∈ {4, 5, 6}. If A3 appear in the decomposition of P then
deg(A) ≤ 2. The coefficient p3 of t3 in P is a sum of cubes in F4 since for a+bt+ct2 ∈
F4[t] one has

(a + bt + ct2)3 = c3t6 + bc2t5 + c(ac + b2)t4 + b3t3 + a(ac + b2)t2 + a2bt + a3.

It follows from Lemma 3.5 that p3 ∈ {0, 1}, so that P ∈ T3 ⊆ T.
Suppose that n = 6k+3 for some integer k ≥ 1; we claim that P is monic. Since n is
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odd and pn 6= 0, at least one A3 with deg(A) = 2k + 1 appear in the decomposition
of P. The leading coefficient pn of P is the sum of all the leading coefficients of the
cubes B3 appearing in the decomposition of P such that deg(B) = 2k+1. Therefore
pn is a nonzero sum of cubes in F4. It follows from Lemma 3.5 that pn = 1. Hence,
P ∈ T4 ⊆ T.
To finish the first step, we suppose now that deg(P ) ≥ 7 and that n 6≡ 3 (mod 6).
Then P ∈ T5 ⊆ T. Hence, S(4) ⊆ T.

Second step: we claim that T ⊆ S(4). Let P =
∑n

r=0 prt
r ∈ T.

First of all, if n < 2 then the identity a) of Lemma 3.4 proves that P ∈ S(4). It
follows that P ∈ S(4) for n = 2, since P = (q0 + q2t)

2 + p1t. Therefore, T1 ⊆ S(4).
If P ∈ T2, and we set Q = P + t3, then deg(Q) = 2 so Q ∈ S(4) by the preceding
result. It follows that P = t3 + Q ∈ S(4). So T2 ⊆ S(4). Suppose now that P ∈ T3,
so that

P = (q6t
3 + q4t

2)2 + p5t
5 + R.

where p6 = q2
6, p4 = q2

4, and R = p3t
3 + p2t

2 + p1t + p0 ∈ T2 ∪T1. By the identity b)
in Lemma 3.4 it follows that p5t

5 ∈ S(4). Therefore, P ∈ S(4), and then T3 ⊆ S(4).
Suppose now that P ∈ T4. We will prove by induction on n = deg(P ) that P ∈ S(4).
If n = 9 then P = t6A + B where

A = t3 + p8t
2 + p7t + p6 ∈ S(4) and B = p5t

5 + ... + p0 ∈ S(4).

Since A and B are elements of S(4) we obtain P ∈ S(4). Suppose that the result
is true when deg(P ) = 6k + 3 for k ≥ 1. We will prove it for P with deg(P ) =
6(k + 1) + 3 = 6k + 9. Observe that the division of P by t6 with quotient K and
remainder L give P = t6K + L, where

K = t6k+3 +
∑

6k+8

j=6 pjt
j−6 and L = p5t

5 + ... + p0.

Now by induction K ∈ S(4) and we have already proved that L ∈ S(4). Therefore
P ∈ S(4). It follows that T4 ⊆ S(4).
The proof that T5 ⊆ S(4) is similar. It follows that T ⊆ S(4). This result together
with the result of the first step S(4) ⊆ T give the equality S(4) = T, thereby finish-
ing the proof of the lemma.

In the following corollary we compare M(q), S(q) and the full ring Fq[t] :

Corollary 5.4. − Let q be a power of a prime number p 6= 3. We recall that
M(q) = {P ∈ Fq[t] / P is a strict sum of cubes in Fq[t]}, and that S(q) = {P ∈
Fq[t] / P is a strict sum of cubes and squares in Fq[t]}. Then

a) If q /∈ {2, 4} then M(q) = S(q) = Fq[t].

b) M(2) is strictly included in S(2) = F2[t].

c) M(4) is strictly included in S(4) and S(4) is strictly included in F4[t].

Proof : The proof of the first result follows from Lemmas 5.2 and 5.3. All the
other inclusions are trivial. To finish the proof observe that the same two lemmas
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implies the following. Since t /∈ M(2), M(2) is strictly included in S(2) = F2[t].
Observe that t ∈ S(4) but t /∈ M(4) so that M(4) is a strict subset of S(4). Finally
αt3 /∈ S(4) where F4 = F2[α] since αt3 is not monic.

The following lemma generalizes the results in Lemma 8 of [5].

Lemma 5.5. − Let F be a perfect field of characteristic 2 in which every sum of
cubes is a sum of 2 cubes. Let n ≥ 1 be an integer and let S ∈ F[t] be a polynomial
of degree m ∈ {3n+2, 3n+1, 3n}, such that tS2 is a strict sum of cubes and squares.
Then there exist polynomials A, B, C, D, Q ∈ F[t] such that

S = A2B + C2D + t(B3 + D3) + Q,

where deg(B) = n, deg(C) ≤ n, deg(D) ≤ n, deg(Q) < n−1. Moreover, if deg(S) =
3n + 2 then deg(A) = n + 1; otherwise deg(A) ≤ n.

Proof : Set m = 3n + 2 and S = pmtm + ... + p0. We can find polynomials
A, B, C, D ∈ F[t] of the following form: A = atn+1+

∑n
k=0 akt

k, B = ctn+etn−1, C =
∑n

k=0 ckt
k, D = dtn + tn−1, satisfying the conditions of the lemma. By equating co-

efficients of tk, in the expansion of A2B+C2D+t(B3+D3) in powers of t, with those
of S, for k descending from 3n+2 to 3n+1 we obtain a, c, d, e and for k descending
from 3n to n−1, we obtain an, ..., a0, cn, ..., c0 in the order cn, an, cn−1, an−1, ... corre-
sponding to the values 3n−1, 3n, 3n−3, 3n−2, ... of k, by solving the corresponding
linear equations in which the condition c 6= 0 guarantees the resolution.
We give the details to find a, c, d, e ∈ F with c 6= 0 : Suppose that deg(S) 6= 3n + 1.
If pm = 0, then deg(S) = 3n and we take a = 0, c = 1, d = 1, e = 0. If pm 6= 0,
then deg(S) = m and we take a = 1, c = p3n+2, d = 0, e = p3n+1 − c3. Therefore,
we may assume that deg(S) = 3n + 1, and take a = 0, e = 0. Hence, it suffices to
show that p3n+1 = c3 + d3 with c, d ∈ F and c 6= 0. To prove the claim, we note that
K(t) = tS(t)2 has odd degree 6n + 3. The leading coefficient of K(t) is a sum of
cubes in F since K(t) is a strict sum of cubes and squares.

It follows that the same result is true for the polynomial L(t) = (K(t2))1/2. But
the leading coefficients of the polynomials L(t) and S are equal, thereby finishing
the proof of the lemma.

6 Representation by cubes for q ≤ 4

First of all, we observe that for 3 | q the problem is trivial and for q > 4, there are
already results on it in [4],[5],[6] and [2]. Hence, we assume that q ∈ {2, 4} in this
section.

Theorem 6.1. − Every polynomial P ∈ Fq[t], where q ∈ {2, 4} and that is a
strict sum of cubes, is a strict sum of 9 cubes. Moreover for q ∈ {2, 4} there are
polynomials in M(q) that are not strict sums of 3 cubes. In other words, we have

4 ≤ g(3,Fq[t]) ≤ 9 for q ∈ {2, 4}.
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Proof : The lower bound follows from a computer computation. The result is
already proved in Lemma 5.1 when deg(P ) ≤ 6. We assume then that deg(P ) > 6.
The upper bound follows readily from Lemma 4.1 applied three times. Indeed,
one get at most 4 cubes that appear in the strict representation of P − R, where
deg(R3) < deg(P ) + 3. The proof is finished applying the identities of Paley in
Lemma 3.1 to the above rest R. That shows at most 5 new cubes with the right
degrees to represent R, and so appearing in the strict representation of P. Note that
this can be done since the class modulo t4 + t of P do not change, or is translated
by 1 when substracting cubes to P.

7 Representation by a square and cubes

It is not known if every positive integer n can be expressed as a sum of a square and
5 cubes. However, G.L. Watson proved in [16] that this is true for every sufficiently
large integer n and R.C. Vaughan showed in [14] that the number of such represen-
tations is ≫ n7/6. No value is given in these two papers for the minimal large integer
d such that n is a sum of a square and five cubes for all n ≥ d .

For the far less demanding analogue problem, where the integer n is replaced by
a suitable polynomial P with coefficients in a finite field Fq, with q even, we prove
here below that every such polynomial P is a strict sum of 4 cubes and a square.

Note that this has been proved in [5, Theorem 9] when q 6= 4. It remains the
case q = 4 :

Theorem 7.1. − Every polynomial P ∈ F4[t] that is a strict sum of cubes and
squares is a strict sum of 4 cubes and a square. Moreover, there are polynomials in
M(4) that are not strict sums of 2 cubes and a square. In other words, we have

3 ≤ g1(3, 2,F4[t]) ≤ 4

Proof : The lower bound follows from some computer calculations. We prove
here below the upper bound.

For any H ∈ F4[t] we write H ′ for the derivative of H relative to t. Put P ′ = S2,
and s = deg(S) ∈ {3n+2, 3n+1, 3n} for some integer n ≥ 0. Since (tP )′ is a square
in F4[t] of degree < deg(P ) + 2 and P = (tP )′ + tP ′ it suffices to prove the result
for tP ′.
If s = 0 then S is constant, so that tP ′ = tS2 is a sum of 2 cubes and 1 square
by the identity (a) in Lemma 3.4. If s = 1 then S = p0 + p1t has degree 1 so that
tP ′ is a polynomial of degree 3 that is a strict sum of cubes and squares. Therefore
tP ′ is monic by Lemma 5.3 b). It follows that tP ′ = tS2 = p2

0t + t3 so that by
the preceding result it follows that tP ′ is a strict sum of at most 3 cubes and 1
square. If s = 2 then S = p2t

2 + p1t + p0 with p2 6= 0 hence tP ′ has degree 5,
say tP ′ = q2t

5 + q1t
3 + q0t. From Lemma 5.3 c) it follows that q1 ∈ {0, 1}, so that

q1t
3 = (q1t)

3 is a cube in {0, t3}. By the identity b) in Lemma 3.4 the monomial
q2t

5 is a sum of 2 cubes and 1 square, and by the identity a) in the same lemma q0t
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is a sum of 2 cubes and 1 square. Therefore

tP ′ = (t2 + q2t)
3 + (q2t)

3 + (q1t)
3 + (q0t + 1)3 + (q0t)

3 + (t3 + q2t
2 + q0t + 1)2.

Observe that by Lemma 3.5 one has q3
2 + q3

1 + q3
0 ∈ {0, 1}, so that the above formula

shows indeed at most 3 cubes.
We may then assume that n ≥ 1. Since P is a strict sum of cubes and squares and
(tP )′ is a square we see that tS2 = P + (tP )′ is also a strict sum of cubes and
squares. Therefore it follows from Lemma 5.5 that

(tP ′)′ = S2 = K2K ′ + L2L′ + Q2 (2)

where K = A2 + tB2, L = C2 + tD2. We also have deg(L) ≤ 2n + 1 and deg(Q) <
n − 1, while deg(K) = 2n + 1 if d 6≡ 2 (mod 3) and deg(K) = 2n + 2 if d ≡ 2 (mod
3). Integrating (2) over t and using identity (a) in Lemma 3.4, we obtain

tP ′ = K3 + L3 + (tQ2 + 1)3 + (tQ2)3 + (R + tQ2 + 1)2 (3)

for some R ∈ F4[t].
The rest of the proof consists in checking up that the decomposition of tP ′ in
(3) is a strict one . We give the detail when s = deg(S) 6≡ 2 (mod 3); in the
other case the proof is similar. First of all deg(tQ2)2) ≤ deg(tQ2)3 < 6n − 3 <
deg(tP ′)+2 < deg(tP ′)+3. We also have deg(L3) ≤ 6n+3 < 6n+4 ≤ deg(tP ′)+3,
and similarly deg(K3) ≤ 6n + 3 < 6n + 4 ≤ deg(tP ′) + 3. Therefore, rewriting
(3) as R2 = tP ′ + K3 + L3 + tQ2, we obtain deg(R2) ≤ 6n + 3. It follows that
deg(R2) < 6n + 3 ≤ deg(tP ′) + 2 since 6n + 3 is odd, thereby finishing the proof of
the theorem.
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