Pairs of solutions of constant sign for nonlinear periodic equations with unbounded nonlinearity

Shouchuan Hu Nikolaos S. Papageorgiou

Abstract

We consider periodic problems driven by the ordinary scalar p-Laplacian with a Caratheodory nonlinearity. Using variational techniques, coupled with the method of upper and lower solutions, we obtain two nontrivial solutions, with one positive and the other negative.

1 Introduction

In this paper we study the following periodic problem:

$$
\left\{\begin{array}{l}
-\left(\left|x^{\prime}(t)\right|^{p-2} x^{\prime}(t)\right)^{\prime}=f(t, x(t)) \text { a.e. on } T \tag{1}\\
x(0)=x(b), x^{\prime}(0)=x^{\prime}(b), 1<p<\infty .
\end{array}\right.
$$

We are looking for multiple solutions of constant sign. Recently, the periodic problem for equations driven by the ordinary p-Laplacian has been studied by various researchers. We refer to the works of Del Pino-Manasevich-Murua [3], FabryFayyad [5], Guo [6], Dang-Opperheimer [2] and Fan-Zhao-Huang [13] (for scalar problems), and Manasevich-Mawhin [8], Mawhin [9,10] Papageorgiou-Yannakakis [12] and Mawhin-Ward [14] (for vector problems). In all these works, the approach is degree theoretic or using the theory of nonlinear operators of monotone type (Papageorgiou-Yannakakis [12]). The question of existence of multiple periodic solutions was addressed only by Del Pino-Manasevich-Murua [3]. In their work the

[^0]right hand side nonlinearity $f(t, x)$ is jointly continuous, and they assume that asymptotically there is no interaction between f and the Fucik spectrum of the scalar ordinary p-Laplacian.

Here in many respects, we go beyond the aforementioned work of Del Pino-Manasevich-Murua [3]. We establish the existence of at least two nontrivial solutions of constant sign. One is strictly positive and the other negative. The nonlinearity $f(t, x)$ is Caratheodory and in general unbounded. Our approach is variational, coupled with the method of upper and lower solutions.

2 Positive Solutions

In this section we prove the existence of a negative solution. For this purpose, we introduce the following hypotheses on the nonlinearity $f(t, x)$.
$\mathbf{H}(f)_{1}: f: T \times \mathbb{R} \rightarrow \mathbb{R}$ is a function such that $f(t, 0) \leq 0$ a.e. on T and
(i) $t \rightarrow f(t, x)$ is measurable for all $x \in \mathbb{R}$;
(ii) $x \rightarrow f(t, x)$ is continuous for almost all $t \in T$;
(iii) $|f(t, x)| \leq a(t)+c|x|^{s-1}$ for a.e. $t \in T$ and all $x \in \mathbb{R}$, with some $c>0$, and $a \in L^{s^{\prime}}(T)$ such that $\frac{1}{s}+\frac{1}{s^{\prime}}=1,1 \leq s<\infty ;$
(iv) $\lim _{x \rightarrow-\infty} \frac{p F(t, x)}{|x|^{p}}=0$ uniformly for a.e. $t \in T$ with the potential $F(t, x)=$ $\int_{0}^{x} f(t, r) d r$ and there is $M>0$ such that $f(t, x) \leq 0$ or $f(t, x) \geq 0$ for a.e. $t \in T$ and all $x \leq-M$;
(v) $\lim _{x \rightarrow-\infty}(x f(t, x)-p F(t, x))=\infty$ uniformly for almost all $t \in T$;
(vi) $F(t, \eta)>0$ a.e. on T for some $\eta<0$.

Remark: Hypothesis $H(i v)$ implies that asymptotically at $-\infty$, the potential function F interacts with the first part of the spectrum of the negative ordinary scalar p-Laplacian with periodic boundary conditions.

Let $W_{p e r}^{1, p}(T)=\left\{x \in W^{1, p}(T): x(0)=x(b)\right\}$ and let $\varphi_{1}: W_{p e r}^{1, p}(T) \rightarrow \mathbb{R}$ be defined by

$$
\varphi_{1}(x)=\frac{1}{p}\left\|x^{\prime}\right\|_{p}^{p}-\int_{0}^{b} F(t, x(t)) d t
$$

and $\varphi_{2}: W_{p e r}^{1, p}(T) \rightarrow \overline{\mathbb{R}}=\mathbb{R} \cup\{+\infty\}$ be defined by

$$
\varphi_{2}(x)= \begin{cases}0 & \text { if } x \in C \\ \infty & \text { if } x \notin C\end{cases}
$$

where $C=\left\{x \in W_{p e r}^{1, p}(T): x(t) \leq 0\right.$ for all $\left.t \in T\right\}$. We know that $\varphi_{1} \in C^{1}\left(W_{p e r}^{1, p}(T)\right)$, and φ_{2} is lower semicontinuous and convex (hence also weakly lower semicontinuous), i.e. $\varphi_{2} \in \Gamma_{0}\left(W_{p e r}^{1, p}(T)\right)$. Set $\varphi=\varphi_{1}+\varphi_{2}$.

Proposition 1. If hypothesis $H(f)_{1}$ holds, then problem (1) has a nontrivial solution $x \in C^{1}(T)$ such that $x(t) \leq 0$ for all $t \in T$.

Proof. By virtue of $H(f)_{1}(v)$, given $\beta>0$ we can find $M_{\beta}>0$ such that for almost all $t \in T$ and all $x \leq-M_{\beta}$ we have

$$
x f(t, x)-p F(t, x) \geq \beta
$$

Then for almost all $t \in T$ and all $x \leq-M_{\beta}$ we have

$$
\begin{aligned}
\frac{d}{d t} \frac{F(t, x)}{|x|^{p}} & =\frac{|x|^{p} f(t, x)-p|x|^{p-2} x F(t, x)}{|x|^{2 p}} \\
& =\frac{|x|^{p-1}(p F(t, x)-x f(t, x))}{|x|^{2 p}} \\
& =\frac{p F(t, x)-x f(t, x)}{|x|^{1+p}} \\
& \leq-\frac{\beta}{|x|^{p+1}} \\
& =(-1)^{p} \frac{\beta}{x^{p+1}} .
\end{aligned}
$$

Let $z, y \in\left(-\infty,-M_{\beta}\right]$ with $z \leq y$. Integrating on the interval $[z, y]$ we obtain

$$
\frac{F(t, y)}{|y|^{p}}-\frac{F(t, z)}{|z|^{p}} \leq(-1)^{p} \frac{\beta}{p}\left(\frac{1}{z^{p}}-\frac{1}{y^{p}}\right),
$$

so,

$$
\frac{F(t, y)}{|y|^{p}}-\frac{F(t, z)}{|z|^{p}} \leq \frac{\beta}{p}\left(\frac{1}{|z|^{p}}-\frac{1}{|y|^{p}}\right) .
$$

Let $z \rightarrow-\infty$. Because of the $H(f)_{1}(i v)$, we obtain $\frac{F(t, y)}{|y|^{p}} \leq-\frac{\beta}{p} \frac{1}{|y|^{p}}$. Therefore, for almost all $t \in T$ and all $y \leq-M_{\beta}$,

$$
\begin{equation*}
F(t, y) \leq-\frac{\beta}{p} \tag{2}
\end{equation*}
$$

Since $\beta>0$ is arbitrary, it follows that $F(t, y) \rightarrow-\infty$ uniformly for a.e. $t \in T$ as $y \rightarrow-\infty$.

Now we will show that φ is coercive. Suppose this not true. Then we could find $\left\{x_{n}\right\}_{n \geq 1} \subset W_{p e r}^{1, p}(T)$ such that $\left\|x_{n}\right\| \rightarrow \infty$, and $\varphi\left(x_{n}\right) \leq M_{1}$ for some $M_{1}>0$ and all $n \geq 1$. Let $y_{n}=\frac{x_{n}}{\left\|x_{n}\right\|}$. By passing to a subsequence if necessary, we may assume that $y_{n} \xrightarrow{w} y$ in $W_{p e r}^{1, p}(T)$, and $y_{n} \rightarrow y$ in $C(T)$. We recall that $W^{1, p}(T)$ is embedded compactly in $C(T)$. We have that

$$
\begin{equation*}
\frac{\varphi\left(x_{n}\right)}{\left\|x_{n}\right\|^{p}}=\frac{1}{p}\left\|y_{n}^{\prime}\right\|_{p}^{p}-\int_{0}^{b} \frac{F\left(t, x_{n}(t)\right)}{\left\|x_{n}\right\|^{p}} d t \leq \frac{M_{1}}{\left\|x_{n}\right\|^{p}} \tag{3}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\int_{0}^{b} \frac{F\left(t, x_{n}(t)\right)}{\left\|x_{n}\right\|^{p}} d t=\int_{\left\{x_{n} \leq-M_{\beta}\right\}} \frac{F\left(t, x_{n}(t)\right)}{\left\|x_{n}\right\|^{p}} d t+\int_{\left\{-M_{\beta}<x_{n} \leq 0\right\}} \frac{F\left(t, x_{n}(t)\right)}{\left\|x_{n}\right\|^{p}} d t \tag{4}
\end{equation*}
$$

By the hypothesis $H(f)_{1}(i i i)$, we can find $a_{1} \in L^{1}(T)$ such that

$$
\begin{equation*}
\int_{\left\{-M_{\beta}<x_{n} \leq 0\right\}} \frac{F\left(t, x_{n}(t)\right)}{\left\|x_{n}\right\|^{p}} d t \leq \int_{0}^{b} \frac{a_{1}(t)}{\left\|x_{n}\right\|^{p}} d t \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{5}
\end{equation*}
$$

Also from (2) we have that

$$
\int_{\left\{x_{n} \leq-M_{\beta}\right\}} \frac{F\left(t, x_{n}(t)\right)}{\left\|x_{n}\right\|^{p}} d t \leq \frac{1}{\left\|x_{n}\right\|^{p}}\left(-\frac{\beta}{p}\right) \lambda\left(\left\{x_{n} \leq-\beta\right\}\right) \leq \frac{\beta b}{p} \frac{1}{\left\|x_{n}\right\|^{p}},
$$

where λ denotes the Lebesgue measure on \mathbb{R}
Therefore we obtain

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \int_{\left\{x_{n} \leq-M_{\beta}\right\}} \frac{F\left(t, x_{n}(t)\right)}{\left\|x_{n}\right\|^{p}} d t \leq 0 \tag{6}
\end{equation*}
$$

So, returning to (4), and using (5) and (6), we obtain

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \int_{0}^{b} \frac{F\left(t, x_{n}(t)\right)}{\left\|x_{n}\right\|^{p}} d t \leq 0 \tag{7}
\end{equation*}
$$

Therefore if we pass to the limit in (3), and use (7) and the weak lower semicontinuity of the norm in a Banach space, we obtain

$$
\left\|y^{\prime}\right\|_{p}=0 \text {, i.e., } y=\xi \in \mathbb{R}
$$

If $\xi=0$, then we have $\left\|y_{n}^{\prime}\right\|_{p} \rightarrow 0$ and so $y_{n} \rightarrow 0$ in $W_{p e r}^{1, p}(T)$, a contradiction to the fact that $\left\|y_{n}\right\|=1$ for all $n \geq 1$. Therefore, $\xi \neq 0$. Thus for any $t \in T$, we have $x_{n}(t) \rightarrow-\infty$ as $n \rightarrow \infty$. We claim that this convergence is uniform in $t \in T$. Indeed, let $\delta>0$ be such that $\delta<|\xi|$. Since $y_{n} \rightarrow \xi$ in $C(T)$, we can find $n_{0} \geq 1$ such that for all $n \geq n_{0}$ and $t \in T$, we have $\left|y_{n}(t)-\xi\right|<\delta$. Therefore,

$$
\left|y_{n}(t)\right| \geq|\xi|-\delta=\delta_{1}>0
$$

Since by hypothesis $\left\|x_{n}\right\| \rightarrow \infty$, given $\beta_{1}>0$ we can find $n_{1} \geq 1$ such that for all $n \geq n_{1}$ we have

$$
\left\|x_{n}\right\| \geq \beta_{1}>0
$$

Let $n_{2}=\max \left\{n_{0}, n_{1}\right\}$. Then for all $t \in T$ and all $n \geq n_{2}$ we have

$$
\frac{\left|x_{n}(t)\right|}{\beta_{1}} \geq \frac{\left|x_{n}(t)\right|}{\left\|x_{n}\right\|}=\left|y_{n}(t)\right| \geq \delta_{1}>0 .
$$

Therefore, $\left|x_{n}(t)\right| \geq \delta_{1} \beta_{1}$.
Since $\beta_{1}>0$ is arbitrary and $\delta_{1}>0$, we can conclude that $x_{n}(t) \rightarrow-\infty$ uniformly in $t \in T$. Recall that $F(t, y) \rightarrow-\infty$ uniformly for almost all $t \in T$ as $y \rightarrow-\infty$, see
(2). So, given $\beta_{2}>0$ we can find $n_{3} \geq 1$ such that $F\left(t, x_{n}(t)\right) \leq-\beta_{2}$ for almost all $t \in T$ and all $n \geq n_{3}$. Then from the choice of the sequence of $\left\{x_{n}\right\}_{n \geq 1} \subset W_{p e r}^{1, p}(T)$, for all $n \geq n_{3}$ we have $\varphi\left(x_{n}\right) \leq M_{1}$. Thus,

$$
-\int_{0}^{b} F\left(t, x_{n}(t)\right) d t \leq M_{1}
$$

So, $b \beta_{2} \leq M_{1}$.
Because $\beta_{2}>0$ is arbitrary, this last inequality leads to a contradiction. Thus, we have proved the claim that φ is coercive.

Since φ is coercive, it is bounded below. Moreover, it is also lower semicontinuous. Since $W_{p e r}^{1, p}(T)$ is reflexive, by the Weierstrass theorem it follows that we can find $x \in W_{p e r}^{1, p}(T)$ such that

$$
m=\inf \varphi=\varphi(x)
$$

Evidently, $x \in C$. Moreover, by hypothesis $H(f)_{1}(v i)$ we can find $\eta<0$ such that $F(t, \eta)>0$ a.e. on T, and so $\varphi(\eta)<0$. Therefore, $m=\varphi(x)<0=\varphi(0)$, which implies that $x \neq 0$

By the Ekeland's variational principle, see Mawhin-Willem [11,p.75], we can find $\left\{x_{n}\right\}_{n \geq 1} \subset C$, a minimizing sequence for φ, i.e. $\varphi\left(x_{n}\right) \downarrow m=\inf \varphi=\varphi(x)$, such that

$$
-\frac{1}{n}\left\|u-x_{n}\right\| \leq \varphi(u)-\varphi\left(x_{n}\right) \text { for all } u \in W_{p e r}^{1, p}(T)
$$

Let $u=(1-\lambda) x_{n}+\lambda v$, with some $\lambda \in(0,1)$ and $v \in W_{p e r}^{1, p}(T)$. Since φ_{2} is convex, we obtain

$$
-\frac{\lambda}{n}\left\|v-x_{n}\right\| \leq \varphi_{1}\left(x_{n}+\lambda\left(v-x_{n}\right)\right)-\varphi_{1}\left(x_{n}\right)+\lambda\left(\varphi_{2}(v)-\varphi_{2}\left(x_{n}\right)\right) .
$$

Therefore, for all $v \in W_{p e r}^{1, p}(T)$ we have

$$
\begin{equation*}
-\frac{1}{n}\left\|v-x_{n}\right\| \leq\left\langle\varphi_{1}^{\prime}\left(x_{n}\right), v-x_{n}\right\rangle+\varphi_{2}(v)-\varphi_{2}\left(x_{n}\right) \tag{8}
\end{equation*}
$$

Since $\left\{\varphi_{1}\left(x_{n}\right)=\varphi\left(x_{n}\right)\right\}_{n \geq 1}$ is bounded and φ is coercive, it follows that the sequence $\left\{x_{n}\right\} \subset C$ is bounded. So, we may assume that $x_{n} \xrightarrow{w} x$ in $W_{p e r}^{1, p}(T)$ and $x_{n} \rightarrow x$ in $C(T)$. In (8) let $v=x \in C$ and note that $\varphi_{1}^{\prime}\left(x_{n}\right)=A\left(x_{n}\right)-N_{f}\left(x_{n}\right)$ with $A: W_{p e r}^{1, p}(T) \rightarrow W_{p e r}^{1, p}(T)^{*}$ being the nonlinear operator defined by

$$
\langle A(x), y\rangle=\int_{0}^{b}\left|x^{\prime}(t)\right|^{p-2} x^{\prime}(t) y^{\prime}(t) d t
$$

for all $x, y \in W_{p e r}^{1, p}(T)$. Here $\langle\cdot, \cdot\rangle$ denotes the duality brackets for the pair

$$
\left(W_{p e r}^{1, p}(T), W_{p e r}^{1, p}(T)^{*}\right)
$$

and $N_{f}: L^{s}(T) \rightarrow L^{s^{\prime}}(T)$ is the Nemitskii operator corresponding to the function f, i.e., $N_{f}(x)(\cdot)=f(\cdot, x(\cdot))$. Then, from (8) with $v=y \in C$,

$$
\left\langle A\left(x_{n}\right), x_{n}-x\right\rangle-\int_{0}^{b} f\left(t, x_{n}(t)\right)\left(x_{n}-x\right)(t) d t \leq \frac{1}{n}\left\|x_{n}-x\right\| .
$$

Observe that $\int_{0}^{b} f\left(t, x_{n}(t)\right)\left(x_{n}-x\right)(t) d t \rightarrow 0$ and $\frac{1}{n}\left\|x_{n}-x\right\| \rightarrow 0$, as $n \rightarrow \infty$. So

$$
\lim \sup \left\langle A\left(x_{n}\right), x_{n}-x\right\rangle \leq 0
$$

It is easy to check that A is demicontinuous and monotone, hence it is maximal monotone. Therefore, it is generalized pseudomonotone, see Hu-Papageorgiou [7, p.365]. So

$$
\left\langle A\left(x_{n}\right), x_{n}\right\rangle \rightarrow\langle A(x), x\rangle .
$$

Thus, $\left\|x_{n}^{\prime}\right\|_{p} \rightarrow\left\|x^{\prime}\right\|_{p}$.
Recall that $x_{n}^{\prime} \xrightarrow{w} x^{\prime}$ in $L^{p}(T)$ and because $L^{p}(T)$ is uniformly convex, we have that $x_{n}^{\prime} \rightarrow x^{\prime}$ in $L^{p}(T)$ due to the Kadec-Klee property of the Banach space $L^{p}(T)$, see Hu-Papageorgiou [7, p.28]. Therefore, $x_{n} \rightarrow x$ in $W_{p e r}^{1, p}(T)$. Returning to (8) and passing to the limit, we obtain for all $v \in W_{p e r}^{1, p}(T)$

$$
0 \leq\left\langle\varphi_{1}^{\prime}(x), v-x\right\rangle+\varphi_{2}(v)-\varphi_{2}(x) .
$$

Hence we have $-\varphi_{1}^{\prime}(x) \in \partial \varphi_{2}(x)=N_{C}(x)$, where $\partial \varphi_{2}(x)$ denotes the convex subdifferential of φ_{2} at x which is equal to the normal cone to C at x, see HuPapageorgiou [7, p.345]. So, we have

$$
0 \leq\left\langle\varphi_{1}^{\prime}(x), v-x\right\rangle \text { for all } v \in C
$$

thus $0 \leq\left\langle A(x)-N_{f}(x), v-x\right\rangle$ for all $v \in C$.
Assume that the first alternative of the last part of hypothesis $H(f)_{1}(i v)$ holds, namely that $f(t, y) \geq 0$ for almost all $t \in T$ and all $y \leq-M$. Let $h \in W_{p e r}^{1, p}(T), \varepsilon>0$, and set $v=-(\varepsilon h-x)^{+}=-(\varepsilon h-x)-(\varepsilon h-x)^{-} \in W_{p e r}^{1, p}(T)$, see Evans-Gariepy [4, p.130]. Here for $g \in L^{p}(T), g^{+}=\max \{g, 0\}$ and $g^{-}=\max \{-g, 0\}$. We have $v-x=-\varepsilon h-(\varepsilon h-x)^{-}$. If $x^{*}=A(x)-N_{f}(x)$, we have $0 \leq\left\langle x^{*}, v-x\right\rangle$. Therefore,

$$
-\varepsilon\left\langle x^{*}, h\right\rangle \geq\left\langle x^{*},(\varepsilon h-x)^{-}\right\rangle=\left\langle A(x),(\varepsilon h-x)^{-}\right\rangle-\int_{0}^{b} f(t, x)(\varepsilon h-x)^{-} d t .
$$

Set $T_{-}^{\varepsilon}=\{t \in T:(\varepsilon h-x)(t)<0\}$. We know that

$$
\left[(\varepsilon h-x)^{-}\right]^{\prime}(t)= \begin{cases}0 & \text { a.e. on }\left(T_{-}^{\varepsilon}\right)^{c} \\ -(\varepsilon h-x)^{\prime}(t) & \text { a.e. on } T_{-}^{\varepsilon},\end{cases}
$$

see Evans-Gariepy [4, p.130]. Therefore,

$$
\begin{aligned}
\left\langle A(x),(\varepsilon h-x)^{-}\right\rangle & =\int_{0}^{b}\left|x^{\prime}\right|^{p-2} x^{\prime}\left[(\varepsilon h-x)^{-}\right]^{\prime} d t \\
& =-\int_{T_{\varepsilon}^{\varepsilon}}\left|x^{\prime}\right|^{p-2} x^{\prime}(\varepsilon h-x)^{\prime} d t \\
& \geq-\varepsilon \int_{T_{-}^{\varepsilon}}\left|x^{\prime}\right|^{p-2} x^{\prime} h^{\prime} d t .
\end{aligned}
$$

Also we have

$$
\begin{aligned}
-\int_{0}^{b} f(t, x)(\varepsilon h-x)^{-} d t= & \int_{T_{-}^{\varepsilon}} f(t, x)(\varepsilon h-x) d t \\
= & \int_{T_{-}^{\varepsilon} \cap\{x \leq-M\}} f(t, x)(\varepsilon h-x) d t \\
& +\int_{T_{\varepsilon}^{\varepsilon} \cap\{x>-M\}} f(t, x)(\varepsilon h-x) d t .
\end{aligned}
$$

By assumption, we have $f(t, x(t)) \geq 0$ a.e. on $T_{-}^{\varepsilon} \cap\{x(t) \leq-M\}$ and $x(t) \leq 0$ for all $t \in T$. So,

$$
-\int_{T_{-}^{\varepsilon} \cap\{x \leq-M\}} f(t, x) x d t \geq 0
$$

Therefore, we obtain

$$
\int_{T^{\varepsilon} \cap\{x \leq-M\}} f(t, x)(\varepsilon h-x) d t \geq \varepsilon \int_{T_{-}^{\varepsilon} \cap\{x \leq-M\}} f(t, x) h d t .
$$

Also, by hypothesis $H(f)_{1}(i i i)$ we see that $|f(t, x(t))| \leq \xi_{1}(t)$ for a.e. $t \in T_{-}^{\varepsilon} \cap$ $\{x(t)>-M\}$ and some $\xi_{1} \in L^{s^{\prime}}(T)_{+}$. So, a.e. on $T_{-}^{\varepsilon} \cap\{x(t)>-M\}$ we have

$$
f(t, x(t))(\varepsilon h-x)(t) \geq \xi_{1}(t)(\varepsilon h-x)(t) .
$$

Therefore, if $\hat{T}_{-}^{\varepsilon}=T_{-}^{\varepsilon} \cap\{x<0\}$, then
$\int_{T_{-}^{\varepsilon} \cap\{x>-M\}} f(t, x)(\varepsilon h-x) d t \geq \varepsilon \int_{T_{-}^{\varepsilon} \cap\{x \leq-M\}} f(t, x) h d t+\int_{\hat{T}_{-}^{\varepsilon} \cap\{x>-M\}} \xi_{1}(\varepsilon h-x) d t$.
Thus we finally obtain
$-\left\langle x^{*}, h\right\rangle \geq-\int_{T_{-}^{\varepsilon}}\left|x^{\prime}\right|^{p-2} x^{\prime} h^{\prime} d t+\int_{T_{-}^{\varepsilon} \cap\{x \leq-M\}} f(t, x) h d t+\frac{1}{\varepsilon} \int_{\hat{T}_{-}^{\varepsilon} \cap\{x>-M\}} \xi_{1}(\varepsilon h-x) d t$.

Note that since $x(t) \leq 0$ on T, we have $T_{-}^{\varepsilon} \rightarrow T_{0}=\{x=0\}$ as $\varepsilon \downarrow 0$ and $\lambda\left(T_{-}^{\varepsilon} \cap\{x \leq-M\}\right) \rightarrow 0$ as $\varepsilon \downarrow 0$. So, from the last inequality we obtain

$$
0 \geq\left\langle x^{*}, h\right\rangle \text { for all } h \in W_{p e r}^{1, p}(T)
$$

which implies that $x^{*}=A(x)-N_{f}(x)=0$ and therefore,

$$
A(x)=N_{f}(x) .
$$

Now assume that the second option in the last part of hypothesis $H(f)_{1}(i v)$ holds, namely $f(t, y) \leq 0$ for almost all $t \in T$ and all $y \leq-M$. In this case we have

$$
\begin{aligned}
-\int_{0}^{b} f(t, x)(\varepsilon h-x)^{-} d t= & \int_{T_{-}^{\varepsilon}} f(t, x)(\varepsilon h-x) d t \\
= & \int_{T_{\varepsilon}^{\varepsilon} \cap\{x \leq-M\}} f(t, x)(\varepsilon h-x) d t \\
& +\int_{T_{-}^{\varepsilon} \cap\{x>-M\}} f(t, x)(\varepsilon h-x) d t \\
\geq & \int_{T_{-}^{\varepsilon} \cap\{x>-M\}} f(t, x)(\varepsilon h-x) d t \\
\geq & \int_{\hat{T}_{-}^{\varepsilon} \cap\{x>-M\}} \xi_{1}(\varepsilon h-x) d t .
\end{aligned}
$$

Therefore,

$$
-\left\langle x^{*}, h\right\rangle \geq-\int_{T_{-}^{\varepsilon}}\left|x^{\prime}\right|^{p-2} x^{\prime} h^{\prime} d t+\frac{1}{\varepsilon} \int_{\left.\hat{T}_{-}^{\varepsilon} \cap\{x\rangle-M\right\}} \xi_{1}(\varepsilon h-x) d t .
$$

Again, let $\varepsilon \downarrow 0$ to see $0 \geq\left\langle x^{*}, h\right\rangle$ for all $h \in W_{p e r}^{1, p}(T)$. Thus,

$$
x^{*}=A(x)-N_{f}(x)=0 .
$$

Finally, $A(x)=N_{f}(x)$.
So, in both cases we have proved that $A(x)=N_{f}(x)$. From the representation theorem for the elements of $W^{-1, q}(T)=W_{0}^{1, p}(T)^{*}$, with $\frac{1}{p}+\frac{1}{q}=1$, we have

$$
\left(\left|x^{\prime}\right|^{p-2} x^{\prime}\right)^{\prime} \in W^{-1, q}(T)
$$

see Adams [1, p.50]. Let $\langle\cdot, \cdot\rangle_{0}$ denote the brackets for the pair $\left(W_{0}^{1, p}(T), W^{-1, q}(T)\right)$. For each $v \in C_{0}^{1}(T)=\left\{v \in C^{1}(T): v(0)=v(b)=0\right\}$ we have

$$
\langle A(x), v\rangle_{0}=\int_{0}^{b} f(t, x(t)) v(t) d t
$$

hence integration by parts leads to $\left\langle-\left(\left|x^{\prime}\right|^{p-2} x^{\prime}\right)^{\prime}, v\right\rangle_{0}=\int_{0}^{b} f(t, x(t)) v(t) d t$.
Since $C_{0}^{1}(T)$ is dense in $W_{0}^{1, p}(T)$, we obtain

$$
\left\{\begin{array}{l}
-\left(\left|x^{\prime}(t)\right|^{p-2} x^{\prime}(t)\right)^{\prime}=f(t, x(t)) \text { a.e. on } T \tag{9}\\
x(0)=x(b)
\end{array}\right.
$$

Also, for each $y \in W_{p e r}^{1, p}(T)$ by Green's identity, using (9), we have

$$
\left|x^{\prime}(0)\right|^{p-2} x^{\prime}(0) y(0)=\left|x^{\prime}(b)\right|^{p-2} x^{\prime}(b) y(b),
$$

so $|x(0)|^{p-2} x^{\prime}(0)=\left|x^{\prime}(b)\right|^{p-2} x^{\prime}(b)$ and consequently,

$$
x^{\prime}(0)=x^{\prime}(b) .
$$

Therefore, $x \in W_{p e r}^{1, p}(T)$, with $x \neq 0, x(t) \leq 0$ for all $t \in T$, which is a solution of (1). Since $\left|x^{\prime}\right|^{p-2} x^{\prime} \in W^{1, r^{\prime}}(T)$, with $r^{\prime}=\min \{q, r\}$, we have $\left|x^{\prime}\right|^{p-2} x^{\prime} \in C(T)$ and so, $x^{\prime} \in C(T)$. Thus, $x \in C^{1}(T)$.

3 Positive Solutions

In this section we establish the existence of a strictly positive solution for problem (1). Now the hypotheses on $f(t, x)$ are the following:
$\mathbf{H}(f)_{2}: f: T \times \mathbb{R} \rightarrow \mathbb{R}$ is a function such that
(i) $t \rightarrow f(t, x)$ is measurable for all $x \in \mathbb{R}$;
(ii) $x \rightarrow f(t, x)$ is continuous for almost all $t \in T$;
(iii) $|f(t, x)| \leq a(t)+c|x|^{s-1}$, for almost all $t \in T$ and all $x \in \mathbb{R}$, some $c>0$ and $a \in L^{s^{\prime}}(T)$ with $\frac{1}{s}+\frac{1}{s^{\prime}}=1$ and $1 \leq s<\infty ;$
(iv) $f(t, x) \leq g(t)$ a.e. $t \in T$ and all $x \geq M_{0}$ for some $M_{0}>0$ and all $g \in L^{1}(T)$ with $\int_{0}^{b} g(t) d t \leq 0$;
(v) $f(t, \eta) \geq 0$ a.e. on T for some $\eta>0$.

We now recall the definitions of upper and lower solutions for problem (1).
Definition: (a) A function $\psi \in C^{1}(T)$ with $\left|\psi^{\prime}\right|^{p-2} \psi^{\prime} \in W^{1,1}(T)$ is called a lower solution for problem (1) if

$$
\left\{\begin{array}{l}
-\left(\left|\psi^{\prime}(t)\right|^{p-2} \psi^{\prime}(t)\right) \leq f(t, \psi(t)) \text { a.e. on } T, \\
\psi(0)=\psi(b), \psi^{\prime}(0) \geq \psi^{\prime}(b)
\end{array}\right.
$$

(b) A function $\varphi \in C^{1}(T)$ with $\left|\varphi^{\prime}\right|^{p-2} \varphi^{\prime} \in W^{1,1}(T)$ is called an upper solution for problem (1) if

$$
\left\{\begin{array}{l}
-\left(\left|\varphi^{\prime}(t)\right|^{p-2} \varphi^{\prime}(t)\right) \geq f(t, \varphi(t)) \text { a.e. on } T, \\
\varphi(0)=\varphi(b), \varphi^{\prime}(0) \leq \varphi^{\prime}(b) .
\end{array}\right.
$$

Proposition 2. If hypothesis $H(f)_{2}$ holds, then problem (1) has a solution $x \in$ $C^{1}(T)$ such that $x(t)>0$ for all $t \in T$.

Proof. Let $h(t)=g(t)-\bar{g}$ with $\bar{g}=\frac{1}{b} \int_{0}^{b} g(t) d t$, and consider the periodic problem

$$
\left\{\begin{array}{l}
-\left(\left|u^{\prime}(t)\right|^{p-2} u^{\prime}(t)\right)^{\prime}=h(t) \text { a.e. on } T \tag{10}\\
u(0)=u(b), u^{\prime}(0)=u^{\prime}(b) .
\end{array}\right.
$$

Let $a_{0}: \mathbb{R} \rightarrow \mathbb{R}$ be the homeomorphism defined by $a_{0}(x)=|x|^{p-2} x$. For every $\theta \in C(T)$, let $G_{0}: \mathbb{R} \rightarrow \mathbb{R}$ be the map defined by

$$
G_{0}(\xi)=\int_{0}^{b} a_{0}^{-1}(\xi-\theta(t)) d t
$$

From Proposition 2.2 of Manasevich-Mawhin [8], we know that the equation $G_{0}(\xi)=0$ has a unique solution $\hat{\xi} \in \mathbb{R}$. Let $P: C(T) \rightarrow \mathbb{R}$ and $H: L^{1}(T) \rightarrow C(T)$ be the continuous linear maps defined by

$$
P(x)=x(0) \text { for all } x \in C(T)
$$

and

$$
H(\sigma)(t)=\int_{0}^{t} \sigma(s) d s \text { for all } \sigma \in L^{1}(T) .
$$

Then, problem (10) has solutions $u \in W_{p e r}^{1, p}(T)$ given by

$$
u(t)=P u+H\left(a_{0}^{-1}(\hat{\xi}(H(h))-H(h))\right)(t) .
$$

Let $\varphi(t)=u(t)+\gamma$ with $\gamma=\|u\|_{\infty}+M_{0}+\eta$, where M_{0} and η are from $H(f)_{2}(i v)$ and (v), respectively. Evidently, $\varphi(t)>M_{0}$ for all $t \in T$. So, we have, since $\bar{g} \leq 0$ and because of $H(f)_{2}(i v)$,

$$
\begin{aligned}
-\left(\left|\varphi^{\prime}(t)\right|^{p-2} \varphi^{\prime}(t)\right)^{\prime} & =-\left(\left|u^{\prime}(t)\right|^{p-2} u^{\prime}(t)\right)^{\prime} \\
& =h(t) \\
& \geq h(t)+\bar{g} \\
& =g(t) \\
& \geq f(t, \varphi(t)) \text { a.e. on } T .
\end{aligned}
$$

Hence $\varphi \in C^{1}(T)$ is an upper solution of problem (1).
Also, let $\psi(t)=\eta$, where η is from $H(f)_{2}(v)$. We have $f(t, \psi(t))=f(t, \eta)$ on T and so, $\psi \in C^{1}(T)$ is a lower solution of problem (1). Moreover, $\psi(t)=\eta<\varphi(t)$ on T.

Next, let $w: T \times \mathbb{R} \rightarrow \mathbb{R}_{+}$be the truncation function defined by

$$
w(t, x)= \begin{cases}\psi(t) & \text { if } x<\psi(t) \\ x & \text { if } \psi(t) \leq x \leq \varphi(t) \\ \varphi(t) & \text { if } \varphi(t)<x\end{cases}
$$

Evidently, w is a Caratheodory function, i.e., measurable in t and continuous in x, thus jointly measurable, see Hu-Papageorgiou [7, p.142]. So, $|w(t, x)|=w(t, x) \leq$ $\|\varphi\|_{\infty}$ for a.e. $t \in T$ and all $x \in \mathbb{R}$. Also, if $r=\max \{p, s\}$, we introduce the penalty function $\beta: T \times \mathbb{R} \rightarrow \mathbb{R}$, defined by

$$
\beta(t, x)= \begin{cases}|\psi(t)|^{r-2} \psi(t)-|x|^{r-2} x & \text { if } x<\psi(t) \\ 0 & \text { if } \psi(t) \leq x \leq \varphi(t) \\ |\varphi(t)|^{r-2} \varphi(t)-|x|^{r-2} x & \text { if } \varphi(t)<x\end{cases}
$$

Set $f_{1}(t, x)=f(t, w(t, x))$ and let $G: W_{p e r}^{1, p}(T) \rightarrow L^{r^{\prime}}(T)$, with $r^{\prime}=\min \left\{q, s^{\prime}\right\}$, be defined by

$$
G(x)=N_{f_{1}}(x)+N_{\beta}(x) .
$$

Here $N_{f_{1}}$ and N_{β} are the Nemitskii operators corresponding to f_{1} and β respectively, i.e., $N_{f_{1}}(x)(\cdot)=f_{1}(\cdot, x(\cdot))$ while $N_{\beta}(x)(\cdot)=\beta(\cdot, x(\cdot))$ for all $x \in W_{p e r}^{1, p}(T)$. From Krasnoselskii's theorem we know that G is continuous. Also, let

$$
\mathcal{D}=\left\{x \in C^{1}(T):\left|x^{\prime}\right|^{p-2} x^{\prime} \in W^{1, r^{\prime}}(T), x(0)=x(b), x^{\prime}(0)=x^{\prime}(b)\right\},
$$

and let $L: \mathcal{D} \subset L^{r}(T) \rightarrow L^{r^{\prime}}(T)$ be defined by

$$
L(x)=-\left(\left|x^{\prime}\right|^{p-2} x^{\prime}\right)^{\prime}, \text { for } x \in \mathcal{D}
$$

We claim that L is maximal monotone. An easy application of Green's identity shows that L is monotone. Now let $J: L^{r}(T) \rightarrow L^{r^{\prime}}(T)$ be defined by $J(x)=$ $|x|^{r-2} x$. Clearly, this is continuous and strictly monotone. To show the maximality of L, it suffices to show that $L+J$ is surjective, i.e., $R(L+J)=L^{r^{\prime}}(T)$. Indeed, suppose that $L+J$ is surjective. Let $(\cdot, \cdot)_{r r^{\prime}}$ denote the duality brackets for the pair $\left(L^{r}(T), L^{r^{\prime}}(T)\right)$. Let $y \in L^{r}(T)$ and $v \in L^{r^{\prime}}(T)$ be such that

$$
\begin{equation*}
0 \leq(L(x)-v, x-y)_{r r^{\prime}} \tag{11}
\end{equation*}
$$

Since we assumed that $L+J$ to be surjective, we can find $x_{1} \in \mathcal{D}$ such that $L\left(x_{1}\right)+J\left(x_{1}\right)=v+J(y)$. So, in (11) let $x=x_{1} \in \mathcal{D}$, to obtain

$$
\begin{aligned}
0 & \leq\left(L\left(x_{1}\right)-L\left(x_{1}\right)-J\left(x_{1}\right)+J(y), x_{1}-y\right)_{r r^{\prime}} \\
& =\left(J(y)-J\left(x_{1}\right), x_{1}-y\right)_{r r^{\prime}} .
\end{aligned}
$$

But recall that J is strictly monotone. So from the last inequality it follows that $y=x_{1} \in \mathcal{D}$ and $v=L\left(x_{1}\right)$, which proves the maximality of L.

Thus it remains to prove that $R(L+J)=L^{r^{\prime}}(T)$. This is equivalent to saying that for every $v \in L^{r^{\prime}}(T)$ the following periodic problem has a solution:

$$
\left\{\begin{array}{l}
-\left(\left|x^{\prime}(t)\right|^{p-2} x^{\prime}(t)\right)^{\prime}+|x(t)|^{r-2} x(t)=v(t) \text { a.e. on } T \tag{12}\\
x(0)=x(b), x^{\prime}(0)=x^{\prime}(b) .
\end{array}\right.
$$

But the solvability of (12) follows from Corollary 3.1 of Manasevich-Mawhin [8]. This proves the maximality of the strictly monotone operator $L+J$. Since $0 \in \mathcal{D}$ and $L(0)=0$, for each $x \in \mathcal{D}$ we have

$$
(L(x), x)_{r r^{\prime}}+(J(x), x)_{r r^{\prime}} \geq\|x\|_{r}^{r},
$$

so $L+J$ is coercive.
Because $L+J$ is maximal monotone and coercive, it is surjective, see $\mathrm{Hu}-$ Papageorgiou [7, p.322]. This, together with the strict monotonicity of $L+J$, implies that $K=(L+J)^{-1}: L^{r^{\prime}}(T) \rightarrow \mathcal{D} \subset W^{1, p}(T)$ is well-defined and single-valued. We claim that K is completely continuous. To this end, we need to show that if $v_{n} \xrightarrow{w} v$ in $L^{r^{\prime}}(T)$, then $K\left(v_{n}\right) \rightarrow K(v)$ in $W^{1, p}(T)$. Set $x_{n}=K\left(v_{n}\right)$ and $x=K(v)$. Then, $x_{n} \in \mathcal{D}$ for all $n \geq 1$ and, we have

$$
L\left(x_{n}\right)+J\left(x_{n}\right)=v_{n} \text { for all } n \geq 1,
$$

which implies that $\left(L\left(x_{n}\right), x_{n}\right)_{r r^{\prime}}+\left(J\left(x_{n}\right), x_{n}\right)_{r r^{\prime}}=\left(v_{n}, x_{n}\right)_{r r^{\prime}}$. Thus by Green's identity and Hölder's inequality we have

$$
\left\|x_{n}^{\prime}\right\|_{p}^{p}+\left\|x_{n}\right\|_{r}^{r} \leq\left\|v_{n}\right\|_{r^{\prime}}\left\|x_{n}\right\|_{r},
$$

hence for some $c_{1}>0$, due to $p \leq r$ and $W^{1, p}(T) \subset L^{r}(T)$,

$$
c_{1}\left\|x_{n}\right\|_{1, p}^{p} \leq\left\|v_{n}\right\|_{r^{\prime}}\left\|x_{n}\right\|_{1, p} .
$$

Therefore, $\left\{x_{n}\right\}_{n \geq 1} \subset W^{1, p}(T)$ is bounded since $\sup _{n \geq 1}\left\|v_{n}\right\|_{r^{\prime}}<\infty$.
Thus, we may assume that $x_{n} \xrightarrow{w} y$ in $W^{1, p}(T)$ and $x_{n} \rightarrow y$ in $C(T)$. Also, from the equation $L\left(x_{n}\right)+J\left(x_{n}\right)=v_{n}$ it follows that $\left\{\left|x_{n}^{\prime}\right|^{p-2} x_{n}^{\prime}\right\}_{n \geq 1} \subset W^{1, r^{\prime}}(T)$ is bounded and so we may assume that $\left|x_{n}^{\prime}\right|^{p-2} x_{n}^{\prime} \xrightarrow{w} v$ in $W^{1, r^{\prime}}(T)$, hence $\left|x_{n}^{\prime}\right|^{p-2} x_{n}^{\prime} \rightarrow v$ in $C(T)$. Recall that $a_{0}: \mathbb{R} \rightarrow \mathbb{R}$ is the homeomorphism $a_{0}(x)=|x|^{p-2} x$. Let ${\hat{a_{0}}}^{-1}: C(T) \rightarrow C(T)$ be defined by

$$
{\hat{a_{0}}}^{-1}(x)(\cdot)=a_{0}^{-1}(x(\cdot))
$$

Clearly, ${\hat{a_{0}}}^{-1}$ is continuous and bounded. So, in $C(T)$ we have

$$
{\hat{a_{0}}}^{-1}\left(\left|x_{n}^{\prime}\right|^{p-2} x_{n}^{\prime}\right)=x_{n}^{\prime} \rightarrow{\hat{a_{0}}}^{-1}(v) .
$$

Hence, $v=\left|y^{\prime}\right|^{p-2} y^{\prime}$. So

$$
\left|x_{n}^{\prime}\right|^{p-2} x_{n}^{\prime} \rightarrow\left|y^{\prime}\right|^{p-2} y^{\prime},
$$

from which it follows that $x_{n}^{\prime} \rightarrow y^{\prime}$ in $C(T)$ and so, $x_{n} \rightarrow y$ in $W^{1, p}(T)$. Therefore, we conclude that $L(y)+J(y)=v$, so $y=K(v)$ and thus $y=x$. Consequently, $x_{n} \rightarrow x$ in $W^{1, p}(T)$ and this proves the complete continuity of K.

Let $G_{1}(x)=G(x)+J(x)$. Clearly, from the definition of G we see that there exists $M_{1}>0$ such that for all $x \in W^{1, p}(T)$ we have

$$
\left\|G_{1}(x)\right\|_{r^{\prime}} \leq M_{1} .
$$

Define

$$
V=\left\{v \in L^{r^{\prime}}(T):\|v\|_{r^{\prime}} \leq M_{1}\right\} .
$$

Then, $K G_{1}\left(W^{1, p}(T)\right)=K(V)$ and the latter is relatively compact in $W^{1, p}(T)$ since K is completely continuous. So, by Schauder fixed point theorem, we can find $x \in \mathcal{D} \subset W^{1, p}(T)$ such that

$$
x=K G_{1}(x)
$$

so $L(x)=G(x)$. Therefore, we have

$$
\left\{\begin{array}{l}
-\left(\left|x^{\prime}(t)\right|^{p-2} x^{\prime}(t)\right)^{\prime}=f(t, w(t, x(t)))+\beta(t, x(t)) \text { a.e. on } T \\
x(0)=x(b), x^{\prime}(0)=x^{\prime}(b) .
\end{array}\right.
$$

We need to show now that $\psi(t)=\eta \leq x(t) \leq \varphi(t)$ on T. Recall that $f(t, \psi(t))=$ $f(t, \eta) \geq 0$ a.e. on T, see $H(f)_{2}(v)$. So, we have

$$
-\left(\left|x^{\prime}(t)\right|^{p-2} x^{\prime}(t)\right)^{\prime} \geq f(t, w(t, x(t)))+\beta(t, x(t))-f(t, \eta) \text { a.e. on } T,
$$

hence

$$
\begin{aligned}
\int_{0}^{b}-\left(\left|x^{\prime}(t)\right|^{p-2} x^{\prime}(t)\right)^{\prime}(\psi & -x)_{+}(t) d t \\
& \geq \int_{0}^{b}(f(t, w(t, x(t)))-f(t, \eta)+\beta(t, x(t)))(\psi-x)_{+}(t) d t
\end{aligned}
$$

Employing Green's identity and because of the periodic boundary conditions, we obtain

$$
\begin{aligned}
\int_{0}^{b}-\left(\left|x^{\prime}(t)\right|^{p-2} x^{\prime}(t)\right)^{\prime}(\psi-x)_{+}(t) d t & =\int_{0}^{b}\left|x^{\prime}(t)\right|^{p-2} x^{\prime}(t)(\psi-x)_{+}^{\prime}(t) d t \\
& =\int_{\{\psi>x\}}-\left|x^{\prime}(t)\right|^{p} d t .
\end{aligned}
$$

Also, by the definition of w and the fact that $\psi(t)=\eta$, we have

$$
\begin{aligned}
0 & =\int_{\{\psi>x\}}(f(t, \psi(t))-f(t, \eta))(\psi-x)(t) d t \\
& =\int_{0}^{b}(f(t, w(t, x(t)))-f(t, \eta))(\psi-x)_{+}(t) d t .
\end{aligned}
$$

So, we obtain

$$
\begin{aligned}
0 & \geq-\int_{\{\psi>x\}}\left|x^{\prime}(t)\right|^{p} d t \\
& \geq \int_{0}^{b} \beta(t, x(t))(\psi-x)_{+}(t) d t \\
& =\int_{\{\psi>x\}}\left(|\psi(t)|^{r-2} \psi(t)-|x(t)|^{r-2} x(t)\right)(\psi-x)_{+}(t) d t \\
& >0,
\end{aligned}
$$

a contradiction. This proves that $\psi(t) \leq x(t)$ on T. Similarly, we can show that $x(t) \leq \varphi(t)$ on T. Therefore, $w(t, x(t))=x(t)$ and $\beta(t, x(t))=0$ for all $t \in T$. Thus,

$$
\left\{\begin{array}{l}
-\left(\left|x^{\prime}(t)\right|^{p-2} x^{\prime}(t)\right)^{\prime}=f(t, x(t)) \text { a.e. on } T, \\
x(0)=x(b), x^{\prime}(0)=x^{\prime}(b)
\end{array}\right.
$$

Hence, $x \in C^{1}(T)$ is a solution of problem (1) and, $x(t) \geq \psi(t)=\eta>0$ for all $t \in T$.

4 Pairs of Solutions of Constant Sign

Combining Propositions 1 and 2, we can prove a multiplicity result for problem (1) with an unbounded nonlinearity f. The hypotheses on $f(t, x)$ are the following:
$\mathbf{H}(f)_{3}: f: T \times \mathbb{R} \rightarrow \mathbb{R}$ is a function such that $f(t, 0) \leq 0$ a.e. on T and
(i) $t \rightarrow f(t, x)$ is measurable for all $x \in \mathbb{R}$;
(ii) $x \rightarrow f(t, x)$ is continuous for almost all $t \in T$;
(iii) $|f(t, x)| \leq a(t)+c|x|^{s-1}$ for a.e. $t \in T$ and all $x \in \mathbb{R}$, with some $c>0$ and $a \in L^{s^{\prime}}(T)$ with $\frac{1}{s}+\frac{1}{s^{\prime}}=1$ and $1 \leq s<\infty ;$
(iv) $\lim _{x \rightarrow-\infty} \frac{p F(t, x)}{\mid x x^{p}}=0$ uniformly for a.e. $t \in T$ with $F(t, x)=\int_{0}^{x} f(t, r) d r$, and there exists $M>0$ such that $f(t, x) \geq 0$ or $f(t, x) \leq 0$ for a.e. $t \in T$ and all $x \leq-M$;
(v) $\lim _{x \rightarrow-\infty}(x f(t, x)-p F(t, x))=\infty$ uniformly for almost all $t \in T$;
(vi) $f(t, x) \leq g(t)$ for a.e. $t \in T$ and all $x \geq M_{0}$ with some $M_{0}>0$, and some $g \in L^{1}(T)$ with $\int_{0}^{b} g(t) d t \leq 0 ;$
(vii) $F\left(t, \eta_{1}\right)>0$ and $f\left(t, \eta_{2}\right) \geq 0$ a.e. on T, for some $\eta_{1}<0<\eta_{2}$.

Theorem 3. If hypothesis $H(f)_{3}$ holds, then problem (1) has two solutions $x, y \in$ $C^{1}(T)$ such that

$$
x \neq 0, x(t) \leq 0 \text { and } y(t)>0 \text { for all } t \in T
$$

Consider the following function (the t-dependence is dropped for simplicity):

$$
f(x)= \begin{cases}x^{2} & \text { if } x<-1 \\ x & \text { if }-1 \leq x \leq 1 \\ \sin x^{2}-\sin 1-x \ln x & \text { if } x>1\end{cases}
$$

Then if $p>3$, it is easy to check that f satisfies $H(f)_{3}$ with the first option in $H(f)_{3}(i v)$ valid. Similarly, with $p=2$, we can have the function

$$
f(x)= \begin{cases}\sqrt{|x|} & \text { if } x<-1 \\ x & \text { if } x \in[-1,0] \\ 0 & \text { if } x \in[0,5] \\ -x^{4} & \text { if } x>5\end{cases}
$$

Finally, if $p>7$ the function

$$
f(x)= \begin{cases}-x^{6} & \text { if } x<-1 \\ 2 x+1 & \text { if } x \in[-1,1] \\ 4-x & \text { if } x>1\end{cases}
$$

satisfies $H(f)_{3}$ with the second option in $H(f)_{3}(i v)$ valid.
ACKNOWLEDGEMENT: The authors wish to thank a knowledgeable referee for his corrections.

References

[1] R. Adams, "Sobolev Spaces," Academic Press, New York, 1975.
[2] H. Dang and S.F. Oppenheimer, Existence and uniqueness results for some nonlinear boundary value problems, J. Math. Anal. Appl., 198 (1996), 35-48.
[3] M. Del Pino, R. Manasevich, and A. Murua, Existence and multiplicity of solutions with prescribed period for a second order quasilinear ode, Nonlin. Anal., 18 (1992), 79-92.
[4] L. Evans and R. Gariepy, "Measure Theory and Fine Properties of Functions," CRC Press, Boca Raton, 1992.
[5] C. Fabry and D. Fayyad, Periodic solutions of second order differential equations with a p-Laplacian and asymmetric nonlinearities, Rend. Istit. Mat. Univ. Triest, 24 (1992), 207-227.
[6] Z. Guo, Boundary value problems of a class of quasilinear differential equations, Diff. Integ. Eqns., 6 (1993), 705-719.
[7] Shouchuan Hu and N.S. Papageorgiou, "Handbook of Multivalued Analysis Volume I: Theory," Kluwer, Dordrecht, The Netherlands, 1997.
[8] R. Manasevich and J. Mawhin, Periodic solutions for nonlinear systems with p-Laplacian like operators, J. Diff. Eqns., 145 (1998), 367-393.
[9] J. Mawhin, Periodic solutions of systems with p-Laplacian like operators, in "Nonlinear Analysis and Applications to Differential Equations," Lisbon (1997), Progress in Nonlinear Differential Equations and Applications, Birkhauser, Boston (1998), 37-63.
[10] J. Mawhin, Some boundary value problems for Hartman-type perturbations of the ordinary vector p-Laplacian, Nonlin. Anal., 40 (2000), 497-503.
[11] J. Mawhin and M. Willem, "Critical Point Theory and Hamiltonian Systems," Springer-Verlag, New York, 1989.
[12] N.S. Papageorgiou and N. Yannakakis, Nonlinear boundary value problems, Proc. Indian Acad. Sci., 109 (1999), 211-230.
[13] Xianling Fan, Yuanzhang Zhao and Guifang Huang, Existence of solutions for the p-Laplacian with crossing nonlinearity, Discrete and Continuous Dynamical Systems, 8 (2002), 1019-1024.
[14] J. Mawhin and J.R. Ward Jr, Guiding-like functions for periodic or bounded solutions of ordinary differential equations, Discrete and Continuous Dynamical Systems, 8 (2002), 39-54.

Shouchuan Hu

Department of Mathematics
Southwest Missouri State University
Springfield, MO 65804, USA
email: shh209f@smsu.edu
Nikolaos S. Papageorgiou
Department of Mathematics
National Technical University
Athens 15780, GREECE
email: npapg@math.ntua.gr

[^0]: Received by the editors February 2003 - In revised form in September 2003.
 Communicated by J. Mawhin.
 1991 Mathematics Subject Classification : 34B18, 34C25.
 Key words and phrases : p-Laplacian, positive solution, Ekeland variational principle, maximal monotone operator, Green's identity, periodic solution, method of upper and lower solutions.

