Nonexistence of weak solutions for evolution problems on \mathbb{R}^{n}

Ali Hakem

Abstract

We study the nonexistence of global weak solutions for equations of the following type: $$
\begin{equation*} u_{t t}-\Delta u+g(t) u_{t}=|u|^{p} \tag{1} \end{equation*}
$$ where $g(t)$ behaves like $t^{\beta}, 0 \leq \beta<1$. Then the situation is extended to systems of equations of the same type, and more general equation than (1).

1 Introduction

This article discusses the following problem

$$
\begin{equation*}
u_{t t}-\Delta u+g(t) u_{t}=|u|^{p} \tag{2}
\end{equation*}
$$

for $(t, x) \in(0,+\infty) \times \mathbb{R}^{n}$, which the initial conditions are defined as

$$
\begin{equation*}
u(0, x)=u_{0}(x), \quad u_{t}(0, x)=u_{1}(x), \quad x \in \mathbb{R}^{n} \tag{3}
\end{equation*}
$$

where $p>1, g(t)$ is a function behaving like $t^{\beta}, 0 \leq \beta<1$. We provide conditions relating the space dimension n with parameters β, and p for which every global solution of (2) is trivial.
In [3], M. Qafsaoui and M. Kirane showed that the critical exponent for the semilinear wave equation with linear damping

$$
u_{t t}+(-1)^{m}|x|^{\alpha} \Delta^{m} u+u_{t}=f(t, x)|u|^{p}+w(t, x), t>0, x \in \mathbb{R}^{n}
$$

Received by the editors November 2002 - In revised form in February 2003.
Communicated by P. Godin.
1991 Mathematics Subject Classification : 35K22, 35K55, 35L60, 35B33.
Key words and phrases : blow-up, critical exponent.
is $1+\frac{m(\lambda+2)-\alpha}{n}$, where $\alpha<m(\lambda+2), \lambda>0$. In a recent paper [10], Todorova and Yordanov deal with the problem

$$
u_{t t}-\Delta u+u_{t}=|u|^{p} .
$$

They gave a Fujita's type results. For their proof, they used the fondamental solution of $\left(\partial_{t t}-\Delta_{x}+\partial_{t}\right)^{k}$ and a series of two propositions and four lemmas. However, they did not decide for the critical case $p_{c}=1+\frac{2}{n}$. In [11], Qi S. Zhang uses a different and much shorter approach, he proves a blow up result more general than the interesting blow up result in [10]. He also showed that the critical exponent belongs to the blow up case. This problem had been left open by Todorova and Yordanov. Here, we present a brief and versatile proof of (2) based on Mitidieri, Pohozaev, Tesei and Véron [7], [8], [9] methods. This consists in a judicious choice of the test function in the weak formulation of the sought for solution of (2). The same method is applied for the more general equation:

$$
\begin{equation*}
u_{t t}+(-1)^{m} \Delta^{m} u+g(t) u_{t}=f(t, x)|u|^{p}+w(t, x), \quad t>0, x \in \mathbb{R}^{n} \tag{4}
\end{equation*}
$$

where $\Delta^{m}, m \geq 1$ is the m-iterated Laplacian, $g(t)$ behaves like $t^{\beta}, 0 \leq \beta<1$, $w(t, x)$ is a given function, and $f(t, x)$ is a given function behaving, like $t^{\sigma}|x|^{\delta}$, and the system:

$$
\left\{\begin{array}{l}
u_{t t}-\Delta u+g(t) u_{t}=|v|^{p} \tag{5}\\
v_{t t}-\Delta v+f(t) v_{t}=|u|^{q}
\end{array}\right.
$$

subjected to the conditions

$$
u(0, x)=u_{0}(x), v(0, x)=v_{0}(x), u_{t}(0, x)=u_{1}(x), v_{t}(0, x)=v_{1}(x)
$$

2 Notations and Definitions

Definition. 2.1. A weak solution u of the differential equation (2) on $\mathbb{R}^{+} \times \mathbb{R}^{n}$ with initial data $u(., 0)=u_{0}($.$) and u_{t}(., 0)=u_{1}($.$) belonging to L_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$, is a locally integrable function $u \in L_{\text {loc }}^{p}\left(\mathbb{R}^{+} \times \mathbb{R}^{n}\right)$ which satisfies

$$
\begin{aligned}
\iint|u|^{p} \zeta= & \int_{\mathbb{R}^{n}} u_{0}(x) \zeta_{t}(0, x) d x+\iint u \zeta_{t t}-\iint u g(t) \zeta_{t}-\iint u g^{\prime}(t) \zeta-\iint u \Delta \zeta \\
& -\int_{\mathbb{R}^{n}} u_{0}(x) \zeta(0, x) d x-\int_{\mathbb{R}^{n}} u_{1}(x) \zeta(0, x) d x
\end{aligned}
$$

for any smooth nonnegative test function ζ.

3 Statement and proof of the main result

In this section, we give the critical exponent for the equation (2). More precisely, we have the following result:

Theorem 3.1. Assume that

1. $u_{0}, u_{1} \in L^{1}\left(\mathbb{R}^{n}\right)$ such that $\int_{\mathbb{R}^{n}}\left(u_{0}+u_{1}\right) d x \geq 0$,
2. $1<p \leq p_{c}=\frac{n+2}{n+2 \beta}$,
hold, then there exist no weak solution u to (2) defined on $\mathbb{R}^{+} \times \mathbb{R}^{n}$.
Proof. Let u be such a weak solution to (2) and ζ be a smooth test function which will be specified later. We have from the definition of the weak solution

$$
\begin{array}{r}
\iint|u|^{p} \zeta+\int_{\mathbb{R}^{n}} u_{0}(x) \zeta(0, x) d x+\int_{\mathbb{R}^{n}} u_{1}(x) \zeta(0, x) d x=\int_{\mathbb{R}^{n}} u_{0}(x) \zeta_{t}(0, x) d x+\iint u \zeta_{t t} \\
-\iint u g(t) \zeta_{t}-\iint u g^{\prime}(t) \zeta-\iint u \Delta \zeta .
\end{array}
$$

If ζ is chosen such that

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} u_{0}(x) \zeta_{t}(0, x) d x=0 \tag{6}
\end{equation*}
$$

and

$$
\iint \zeta^{-\frac{1}{p-1}}\left(\left|\zeta_{t t}\right|^{\frac{p}{p-1}}+\left|g \zeta_{t}\right|^{\frac{p}{p-1}}+|\Delta \zeta|^{\frac{p}{p-1}}+\left|g^{\prime}\right|^{\frac{p}{p-1}}\right)<\infty
$$

then

$$
\begin{align*}
\iint|u|^{p} \zeta+\int_{\mathbb{R}^{n}} u_{0}(x) \zeta(0, x) d x+\int_{\mathbb{R}^{n}} & u_{1}(x) \zeta(0, x) d x \leq \iint|u|\left|\zeta_{t t}\right| \\
& +\iint|u| g\left|\zeta_{t}\right|+\iint u g^{\prime} \zeta+\iint|u||\Delta \zeta| \tag{7}
\end{align*}
$$

By applying Hölder's inequality, with parameters p and p^{\prime}, to the right hand side of inequality (7), we obtain

$$
\begin{gather*}
\iint|u|^{p} \zeta+\int_{\mathbb{R}^{n}}\left(u_{0}+u_{1}\right) \zeta(0, x) d x \leq\left(\iint|u|^{p} \zeta\right)^{\frac{1}{p}}\left[\left(\iint\left|\zeta_{t t}\right|^{p^{\prime}} \zeta^{-\frac{p^{\prime}}{p}}\right)^{\frac{1}{p^{\prime}}}\right. \\
\left.+\left(\iint\left(g\left|\zeta_{t}\right|\right)^{p^{\prime}} \zeta^{-\frac{p^{\prime}}{p}}\right)^{\frac{1}{p^{\prime}}}+\left(\iint\left(g^{\prime} \zeta\right)^{p^{\prime}} \zeta^{-\frac{p^{\prime}}{p}}\right)^{\frac{1}{p^{\prime}}}+\left(\iint|\Delta \zeta|^{p^{\prime}} \zeta^{-\frac{p^{\prime}}{p}}\right)^{\frac{1}{p^{\prime}}}\right]= \tag{8}\\
\left(\iint|u|^{p} \zeta\right)^{\frac{1}{p}}\left[\mathcal{A}_{p, \zeta t t}+\mathcal{B}_{p, \zeta_{t}}+\mathcal{C}_{p, \zeta}+\mathcal{D}_{p, \zeta}\right]
\end{gather*}
$$

where $p^{\prime}=\frac{p}{p-1}$. An application of the ε-Young's inequality to the right hand side of (8), yields for some $C(\varepsilon)>0$,

$$
\begin{equation*}
\iint|u|^{p} \zeta+\int_{\mathbb{R}^{n}}\left(u_{0}+u_{1}\right) \zeta(0, x) d x \leq C(\varepsilon)\left(\mathcal{A}_{p, \zeta_{t t}}+\mathcal{B}_{p, \zeta_{t}}+\mathcal{C}_{p, \zeta}+\mathcal{D}_{p, \zeta}\right)^{\frac{p}{p-1}} \tag{9}
\end{equation*}
$$

Now we take $\zeta(t, x)=\phi\left(\frac{t^{2}+|x|^{4}}{R^{4}}\right)$ where $\phi \in C_{c}^{\infty}\left(\mathbb{R}^{+}\right)$satisfies $0 \leq \phi \leq 1$ and

$$
\phi(r)=\left\{\begin{array}{lll}
0 & \text { if } & r \geq 2 \tag{10}\\
1 & \text { if } & 0 \leq r \leq 1
\end{array}\right.
$$

Since $\partial_{t} \zeta(t, x)=2 t R^{-4} \phi^{\prime}\left(\frac{t^{2}+|x|^{4}}{R^{4}}\right)$, the estimate (6) holds. In order to estimate the right hand side of (9) we consider the scale of variables

$$
\begin{equation*}
t=R^{2} \tau ; \quad x=R y \tag{11}
\end{equation*}
$$

Denoting $\Omega=\left\{(t, x) \in \mathbb{R}^{+} \times \mathbb{R}^{n}: t^{2}+|x|^{4} \leq R^{4}\right\}$. With such choice of ζ and by using the scaled variables (11) we get from (9) that

$$
\begin{equation*}
\iint_{\Omega}|u|^{p}+\int\left(u_{0}+u_{1}\right) \leq C\left(R^{\lambda_{1}}+R^{\lambda_{2}}+R^{\lambda_{3}}+R^{\lambda_{4}}\right) \tag{12}
\end{equation*}
$$

for R sufficiently large and the constant C is positive and independent of R, and

$$
\begin{aligned}
\lambda_{1}=2+n-\frac{4 p}{p-1} ; \quad \lambda_{2}=2+n+ & \frac{(2 \beta-2) p}{p-1} ; \\
\lambda_{3} & =2+n+\frac{(2 \beta-2) p}{p-1} ; \quad \lambda_{4}=2+n-\frac{2 p}{p-1} .
\end{aligned}
$$

Since R is large and $\lambda_{1}<\lambda_{4}<\lambda_{3}=\lambda_{2}$ then inequality (12) can be rewritten as

$$
\begin{equation*}
\iint_{\Omega}|u|^{p}+\int\left(u_{0}+u_{1}\right) \leq 4 C R^{\lambda_{2}} . \tag{13}
\end{equation*}
$$

Now, if $\lambda_{2}<0$, ie

$$
\begin{equation*}
p<\frac{n+2}{n+2 \beta} \tag{14}
\end{equation*}
$$

then it follows from (13) by letting $R \rightarrow \infty$ that $\iint_{\Omega}|u|^{p}+\int\left(u_{0}+u_{1}\right)=0$ and hence $u \equiv 0$. This proves Theorem 3.1 in the case of $p<\frac{n+2}{n+2 \beta}$.
Next, consider the case $\lambda_{2}=0$ and let \mathcal{M} denote the restriction to $B_{t, R}=\{(t, x) \in$ $\left.\mathbb{R}^{+} \times \mathbb{R}^{n}: R^{4}<t^{2}+|x|^{4}<2 R^{4}\right\}$ of $\left(\mathcal{A}_{p, \zeta t t}+\mathcal{B}_{p, \zeta_{t}}+\mathcal{C}_{p, \zeta}+\mathcal{D}_{p, \zeta}\right)$. We have

$$
\begin{equation*}
\int\left(u_{0}+u_{1}\right) \zeta+\iint_{\Omega}|u|^{p} \zeta \leq C \mathcal{M}\left(\iint_{B_{t, R}}|u|^{p} \zeta\right)^{\frac{1}{p}} \tag{15}
\end{equation*}
$$

By letting $R \rightarrow \infty$, the inequality (13) with $\lambda_{2}=0$ leads to

$$
\iint_{\mathbb{R}^{+} \times \mathbb{R}^{n}}|u|^{p}<\infty
$$

Since $\lambda_{2}=0$, it follows from (8) that

$$
\iint_{\mathbb{R}^{+} \times \mathbb{R}^{n}}|u|^{p} \zeta \leq\left(\iint_{B_{t, R}}|u|^{p} \zeta\right)^{\frac{1}{p}}\left(\mathcal{A}_{p, \zeta_{\tau \tau}}+\mathcal{B}_{p, \zeta_{\tau}}+\mathcal{C}_{p, \zeta}+\mathcal{D}_{p, \zeta}\right)
$$

Since

$$
\iint_{\mathbb{R}^{+} \times \mathbb{R}^{n}}|u|^{p}<\infty
$$

we get

$$
\lim _{R \rightarrow+\infty} \iint_{B_{t, R}}|u|^{p} \zeta=0
$$

Now, letting $R \rightarrow \infty$ in (15), we obtain

$$
\int\left(u_{0}+u_{1}\right) d x+\iint|u|^{p}=0 \Longrightarrow u=0
$$

This ends the proof of Theorem 3.1.

4 Remarks

Remark 4.1. We notice that, in the case where $\beta=0$, we retrieve the critical exponent $p_{d w}=1+\frac{n}{2}$ obtained by Todorova and Yordanov [10].

The following remark is devoted to some generalization of equation (2).
Remark 4.2. We can treat, in the same manner, the more general equation with linear damping

$$
\begin{equation*}
u_{t t}+(-1)^{m} \Delta^{m} u+g(t) u_{t}=f(x, t)|u|^{p}+w(t, x), \quad t>0, x \in \mathbb{R}^{n} \tag{16}
\end{equation*}
$$

subjected to the initial conditions

$$
u(0, x)=u_{0}(x), \quad u_{t}(0, x)=u_{1}(x), \quad x \in \mathbb{R}^{n}
$$

where $\Delta^{m}, m \geq 1$, is the m-iterated Laplacian, $p>1, f(t, x) \geq 0$ is a given function behaving like $t^{\sigma}|x|^{\delta}, w(t, x)$ is a given function, and $g(t)$ behaves like $t^{\beta}, 0 \leq \beta<1$.

Our assumption on the initial conditions reads

$$
\int_{\mathbb{R}^{n}}\left(u_{0}+u_{1}\right) d x \geq 0, \quad \iint w(t, x) d t d x \geq 0 .
$$

Taking in the weak formulation of the solution of (16) the test function ζ such that

$$
\int_{\mathbb{R}^{n}} u_{0}(x) \zeta_{t}(0, x) d x=0
$$

this can be obtained by choosing $\zeta(t, x)=\phi\left(\frac{t^{2}+|x|^{4 m}}{R^{4}}\right)$. We obtain as before

$$
\begin{align*}
& \iint w \zeta+\int_{\mathbb{R}^{n}}\left(u_{0}+u_{1}\right) d x+\int f|u|^{p} \zeta \leq C\left[\left(\iint(f \zeta)^{-\frac{p^{\prime}}{p}}\left|\zeta_{t t}\right|^{p^{\prime}}\right)^{\frac{1}{p^{\prime}}}\right. \\
& \left.+\left(\iint(f \zeta)^{-\frac{p^{\prime}}{p}}\left(g\left|\zeta_{t}\right|\right)^{p^{p^{\prime}}}\right)^{\frac{1}{p^{\prime}}}+\left(\iint(f \zeta)^{-\frac{p^{\prime}}{p}}\left(g^{\prime} \zeta\right)^{p^{\prime}}\right)^{\frac{1}{p^{\prime}}}+\left(\iint(f \zeta)^{-\frac{p^{\prime}}{p}}\left|\Delta^{m} \zeta\right|^{p^{\prime}}\right)^{\frac{1}{p^{\prime}}}\right] \tag{17}
\end{align*}
$$

Applying ε-Young's inequality to the right hand side to (17), we obtain for some $C(\varepsilon)>0$

$$
\iint w \zeta+\int_{\mathbb{R}^{n}}\left(u_{0}+u_{1}\right) d x+\int f|u|^{p} \zeta \leq C(\varepsilon)\left(\mathcal{A}_{p, \zeta_{t t}}+\mathcal{B}_{p, \zeta_{t}}+\mathcal{C}_{p, \zeta}+\mathcal{D}_{p, \zeta}\right)^{\frac{p}{p-1}}
$$

Using the scale variables $\tau=R^{-2} t, y=R^{-\frac{1}{m}} x$, we obtain

$$
1<p \leq \frac{n+m(2+\lambda)}{n+2 \beta m}
$$

for the nonexistence of global solutions of equation (16).

5 Case of system of equations

In this section we consider nonnegative solutions to

$$
\begin{cases}u_{t t}-\Delta u+g(t) u_{t}=|v|^{p} & (t, x) \in(0, \infty) \times \mathbb{R}^{n} \tag{18}\\ v_{t t}-\Delta v+f(t) v_{t}=|u|^{q} & (t, x) \in(0, \infty) \times \mathbb{R}^{n}\end{cases}
$$

subjected to the conditions

$$
\begin{gathered}
u(0, x)=u_{0}(x) \geq 0, \quad u_{t}(0, x)=u_{1}(x) \geq 0 \\
v(0, x)=v_{0}(x) \quad v_{t}(0, x)=v_{1}(x)
\end{gathered}
$$

Theorem 5.1. Assume that

1. $g(t)$ behaves like $t^{\beta}, 0 \leq \beta<1$
2. $f(t)$ behaves like $t^{\alpha}, 0 \leq \alpha<1$
3. $n \leq-2 \max (\alpha, \beta)+\frac{2}{p q-1} \max (1-\beta+p(1-\alpha), 1-\alpha+q(1-\beta))$,
then problem (18) has only the trivial solution $(u, v)=(0,0)$.

Proof. Set $\zeta(t, x)=\phi\left(\frac{t^{2}+|x|^{4}}{R^{4}}\right)$. Now multiplying equation of (18) by ζ and integrating over $Q_{T}=(0, T) \times \mathbb{R}^{n}$, we get

$$
\begin{align*}
\int_{Q_{T}}|v|^{p} \zeta & =\int_{\mathbb{R}^{n}} u_{0}(x) \zeta_{t}(0, x) d x+\int_{Q_{T}} u \zeta_{t t}-\int_{Q_{T}} u g(t) \zeta_{t}-\int_{Q_{T}} u g^{\prime}(t) \zeta-\int_{Q_{T}} u \Delta \zeta \\
& -\int_{\mathbb{R}^{n}} u_{0}(x) \zeta(0, x) d x-\int_{\mathbb{R}^{n}} u_{1}(x) \zeta(0, x) d x \tag{19}
\end{align*}
$$

hence

$$
\begin{equation*}
\int_{Q_{T}}|v|^{p} \zeta \leq \int_{Q_{T}}|u|\left|\zeta_{t t}\right|+\int_{Q_{T}}|u| g(t)\left|\zeta_{t}\right|+\int_{Q_{T}}|u| g^{\prime}(t) \zeta+\int_{Q_{T}}|u||\Delta \zeta| \tag{20}
\end{equation*}
$$

To estimate

$$
\int_{Q_{T}}|u|\left|\zeta_{t t}\right|
$$

we observe that it can be rewritten as

$$
\int_{Q_{T}}|u|\left|\zeta_{t t}\right|=\int_{Q_{T}}|u| \zeta^{\frac{1}{q}}\left|\zeta_{t t}\right| \zeta^{-\frac{1}{q}}
$$

Using Hölder's inequality, we obtain

$$
\int_{Q_{T}}|u|\left|\zeta_{t t}\right| \leq\left(\int_{Q_{T}}|u|^{q} \zeta\right)^{\frac{1}{q}}\left(\int_{Q_{T}}\left|\zeta_{t t}\right|^{\frac{q}{q-1}} \zeta^{-\frac{1}{q-1}}\right)^{\frac{q-1}{q}}
$$

Arguing as above we have

$$
\begin{aligned}
\int_{Q_{T}}|u||\Delta \zeta| & \leq\left(\int_{Q_{T}}|u|^{q} \zeta\right)^{\frac{1}{q}}\left(\int_{Q_{T}}|\Delta \zeta|^{\frac{q}{q-1}} \zeta^{-\frac{1}{q-1}}\right)^{\frac{q-1}{q}} \\
\int_{Q_{T}}|u| g(t)\left|\zeta_{t}\right| & \leq\left(\int_{Q_{T}}|u|^{q} \zeta\right)^{\frac{1}{q}}\left(\int_{Q_{T}} g^{\frac{q}{q-1}}\left|\zeta_{t}\right|^{\frac{q}{q-1}} \zeta^{-\frac{1}{q-1}}\right)^{\frac{q-1}{q}}
\end{aligned}
$$

and

$$
\int_{Q_{T}}|u| g^{\prime}(t) \zeta \leq\left(\int_{Q_{T}}|u|^{q} \zeta\right)^{\frac{1}{q}}\left(\int_{Q_{T}} g^{\frac{q}{q-1}} \zeta\right)^{\frac{q-1}{q}}
$$

Finally, we obtain

$$
\begin{equation*}
\int_{Q_{T}}|v|^{p} \zeta \leq\left(\int_{Q_{T}}|u|^{q} \zeta\right)^{\frac{1}{q}} A_{q} \tag{21}
\end{equation*}
$$

where

$$
\begin{aligned}
& A_{q}=\left(\int_{Q_{T}}\left|\zeta_{t t}\right|^{\frac{q}{q-1}} \zeta^{-\frac{1}{q-1}}\right)^{\frac{q-1}{q}}+\left(\int_{Q_{T}}|\Delta \zeta|^{\frac{q}{q-1}} \zeta^{-\frac{1}{q-1}}\right)^{\frac{q-1}{q}} \\
&+\left(\left.\int_{Q_{T}} g^{\frac{q}{q-1}} \zeta_{t}\right|^{\frac{q}{q-1}} \zeta^{-\frac{1}{q-1}}\right)^{\frac{q-1}{q}}+\left(\int_{Q_{T}} g^{\prime \frac{q}{q-1}} \zeta\right)^{\frac{q-1}{q}}
\end{aligned}
$$

Also, we have

$$
\begin{equation*}
\int_{Q_{T}}|u|^{q} \zeta \leq\left(\int_{Q_{T}}|v|^{p} \zeta\right)^{\frac{1}{p}} A_{p} \tag{22}
\end{equation*}
$$

where

$$
\begin{aligned}
& A_{p}=\left(\int_{Q_{T}}\left|\zeta_{t t}\right|^{\frac{p}{p-1}} \zeta^{-\frac{1}{p-1}}\right)^{\frac{p-1}{p}}+\left(\int_{Q_{T}}|\Delta \zeta|^{\frac{p}{p-1}} \zeta^{-\frac{1}{p-1}}\right)^{\frac{p-1}{p}} \\
&+\left(\int_{Q_{T}} f^{\frac{p}{p-1}} \zeta_{t} \frac{p}{p-1} \zeta^{-\frac{1}{p-1}}\right)^{\frac{p-1}{p}}+\left(\int_{Q_{T}} f^{\prime \frac{p}{p-1}} \zeta\right)^{\frac{p-1}{p}}
\end{aligned}
$$

Using the later inequality into the former one, we obtain

$$
\begin{equation*}
\left(\int_{Q_{T}}|v|^{p} \zeta\right)^{\frac{p q-1}{p q}} \leq A_{q} \cdot A_{p}^{\frac{1}{q}} \tag{23}
\end{equation*}
$$

Next we consider the scale of variables

$$
t=R^{2} \tau, \quad x=R y
$$

then

$$
\begin{equation*}
\left(\int_{Q_{T}}|v|^{p} \zeta\right)^{\frac{p q-1}{p q}} \leq C\left[R^{s_{1}}+R^{s_{2}}+R^{s_{3}}+R^{s_{4}}\right] \times\left[R^{s_{5}}+R^{s_{6}}+R^{s_{7}}+R^{s_{8}}\right]^{\frac{1}{q}} \tag{24}
\end{equation*}
$$

where

$$
\begin{gathered}
s_{1}=-4+(2+n) \frac{q-1}{q}, \quad s_{2}=-2+(2+n) \frac{q-1}{q}, \quad s_{3}=2 \beta-2+(2+n) \frac{q-1}{q}, \\
s_{4}=2 \beta-2+(2+n) \frac{q-1}{q}, \quad s_{5}=-4+(2+n) \frac{p-1}{p}, \quad s_{6}=-2+(2+n) \frac{p-1}{p}, \\
s_{7}=2 \alpha-2+(2+n) \frac{p-1}{p}, \quad s_{8}=2 \alpha-2+(2+n) \frac{p-1}{p} .
\end{gathered}
$$

We deduce

$$
\begin{equation*}
\left(\int_{Q_{T}}|v|^{p} \zeta\right)^{\frac{p q-1}{p q}} \leq C R^{s_{4}+\frac{s_{8}}{q}} \tag{25}
\end{equation*}
$$

If $s_{4}+\frac{s_{8}}{q}<0$, the right hand side of (25) goes to 0 , as R goes to infinity, while the left hand side of (25) goes to

$$
\left(\int_{R^{+} \times R^{n}}|v|^{p} \zeta\right)^{\frac{p q-1}{p q}}
$$

This implies that $v=0$ and hence $u=0$.
If $s_{4}+\frac{s_{8}}{q}=0$, we get

$$
\int_{R^{+} \times R^{n}}|v|^{p} d x d t<\infty
$$

Using again Hölder's inequality we infer

$$
\int_{Q_{T}}|u|^{q} \zeta \leq\left(\int_{\left\{R^{2} \leq t^{2}+|x|^{4} \leq 2 R^{2}\right\}}|v|^{p} \zeta\right)^{\frac{1}{p}} A_{p} .
$$

Since

$$
\int_{R^{+} \times R^{n}}|v|^{p} d x d t<\infty
$$

we get

$$
\lim _{R \rightarrow+\infty} \int_{\left\{R^{2} \leq t^{2}+|x|^{4} \leq 2 R^{2}\right\}}|v|^{p} \zeta=0 .
$$

The later inequality implies

$$
\int_{R^{+} \times R^{n}}|u|^{q} d x d t=0
$$

which ends the proof.

References

[1] H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_{t}=$ $\Delta u+u^{1+\alpha}$, J. Fac. Sci. Univ. Tokyo, Sect. I13 (1966) 109-124.
[2] G. Karch, Self-semilar profiles in large time asymptotics of solutions to damped wave equations on \mathbb{R}^{n}, Studia Mathematica, 143 (2000), 175-197.
[3] M. Qafsaoui and M. Kirane, Fujita's exponent for a semilinear wave equation with linear damping, Advanced Nonlinear Studies, Volume 2, Number 1, February 2002, 41-51.
[4] H.A. Levine, The role of critical exponents in blow-up theorems, S.I.A.M. Rev, Vol.32, (1990), no.2, 262-288.
[5] H.A. Levine, S.R. Park and J. Serrin, Global existence and global nonexistence of solutions of the Cauchy problem for a nonlinearly damped wave equation, J. Math. Anal. Appl, Vol. 28 no.1, (1998), 181-205.
[6] H.A. Levine and J. Serrin, Global nonexistence theorems for quasilinear evolution equations with dissipation, Arch. Rational Mech. Anal, 137, (1997), 341361.
[7] E. Mitidieri and S.I. Pohozaev, Absence of global positive solutions of quasilinear elliptic inequalities, Dokl. Akad. Nauk, Vol.359, (1998), no.4, 456-460.
[8] S.I. Pohozaev and A. Tesei, Blow-up of nonnegative solutions to quasilinear parabolic inequalities, Atti Accad. Nas. Lincei CI. sci. Fis. Mat. Natur. Rend. Lincei (9) Mat.appl, Vol.11, no.2, (2000), 99-109.
[9] S.I. Pohozaev and L. Véron, Blow-up results for nonlinear hyperbolic inequalities, Ann. Scuola Norm. Sup. Pisa CI. Sci, Vol.4, no.2, (2000), 393-420.
[10] G. Todorova and B. Yordanov, Critical exponent for a nonlinear wave equation with damping, J. Differential Equations, 174, (2001), 464-489.
[11] Qi S. Zhang, A blow up result for a nonlinear wave equation with damping: the critical case, C. R. Acad. Sci. Paris, Volume 333, no.2, (2001), 109-114.

[^0]
[^0]: Engineer Faculty, Computer science department, Sidi-Bel-Abbes university, Algeria.
 e-mail: hakemali@yahoo.com

