An Existence Theorem of Solutions for Degenerate Semilinear Elliptic Equations

Albo Carlos Cavalheiro

Abstract

In this paper we study existence of solutions to a class of semilinear degenerate elliptic equations in Weighted Sobolev spaces.

1 Introduction

In this paper we prove the existence of a solution in $H_{0}(\Omega)$ (see definition in section 2) for the semilinear Dirichlet problem

$$
(P) \begin{cases}L u(x)-\mu u(x) g_{1}(x)+h(u(x)) g_{2}(x)=f(x), & \text { in } \Omega \\ u(x)=0, & \text { in } \partial \Omega\end{cases}
$$

where L is an elliptic operator in divergence form

$$
\begin{equation*}
L u(x)=-\sum_{i, j=1}^{n} D_{j}\left(a_{i j}(x) D_{i} u(x)\right), \text { with } \quad D_{j}=\frac{\partial}{\partial x_{j}} \tag{1.1}
\end{equation*}
$$

where the coefficients $a_{i j}$ are measurable, real-valued functions whose coefficient matrix $\mathcal{A}=\left(a_{i j}\right)$ is symmetric and satisfies the degenerate ellipticity condition

$$
\begin{equation*}
|\xi|^{2} \omega(x) \leq \sum_{i, j=1}^{n} a_{i j}(x) \xi_{i} \xi_{j} \leq|\xi|^{2} v(x), \tag{1.2}
\end{equation*}
$$

[^0]for all $\xi \in \mathbb{R}^{n}$ and almost everywhere $x \in \Omega, \Omega \subset \mathbb{R}^{n}$ is bounded and open, ω and v are weight functions (locally integrable, nonnegative functions on \mathbb{R}^{n}) and $\mu \in \mathbb{R}$.

The following will be proved in section 3 .
THEOREM 1. Suppose that: (H1) The function $h: \mathbb{R} \longrightarrow \mathbb{R}$ is continuous and bounded $\left(|h(t)| \leq M\right.$, for all $t \in \mathbb{R}$); (H2) $(v, \omega) \in A_{2}$; (H3) $g_{1} / v \in L^{\infty}(\Omega), g_{2} / \omega \in L^{2}(\Omega, \omega)$ and $f / \omega \in L^{2}(\Omega, \omega)$; (H4) $\mu>0$ is not an eigenvalue of the linearized problem

$$
(L P) \begin{cases}L u(x)-\mu u(x) g_{1}(x)=0, & \text { in } \Omega \\ u(x)=0, & \text { in } \partial \Omega\end{cases}
$$

Then the problem (P) has a solution $u \in H_{0}(\Omega)$.
Simple example. Let $\Omega=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<1\right\}$. By theorem 1 , with $h(t)=t \mathrm{e}^{-t^{2}}, f(x, y)=\mathrm{e}^{-\left(x^{2}+y^{2}\right)}, g_{1}(x, y)=\left(x^{2}+y^{2}\right)^{-1 / 3} \cos (x y), g_{2}(x, y)=\left(x^{2}+\right.$ $\left.y^{2}\right)^{-1 / 2} \operatorname{sen}(x y), \omega(x, y)=\left(x^{2}+y^{2}\right)^{-1 / 2}$ and $v(x, y)=\left(x^{2}+y^{2}\right)^{-1 / 3}$ the problem

$$
\begin{cases}L u(x, y)-\mu u(x, y) g_{1}(x, y)+h(u(x, y)) g_{2}(x, y)=f(x, y), & \text { in } \Omega \\ u(x, y)=0, & \text { in } \partial \Omega\end{cases}
$$

where

$$
L u(x, y)=-\frac{\partial}{\partial x}\left(\left(x^{2}+y^{2}\right)^{-1 / 2} \frac{\partial u}{\partial x}\right)-\frac{\partial}{\partial y}\left(\left(x^{2}+y^{2}\right)^{-1 / 3} \frac{\partial u}{\partial y}\right)
$$

has solution $u \in H_{0}(\Omega)$ if $\mu>0$ is not an eigenvalue of the linearized problem (LP).

2 Definitions and basic results

Let ω be a locally integrable nonnegative function in \mathbb{R}^{n} and assume that $0<\omega<\infty$ almost everywhere. We say that ω belongs to a Muckenhoupt class $A_{p}, 1<p<\infty$, or that ω is an A_{p}-weight, if there is a constant $C_{1}=C_{p, \omega}$ such that

$$
\left(\frac{1}{|B|} \int_{B} \omega(x) d x\right)\left(\frac{1}{|B|} \int_{B} \omega^{1 /(1-p)}(x) d x\right)^{p-1} \leq C_{1}
$$

for all balls B in \mathbb{R}^{n}, where $|$.$| denotes the n-dimensional Lebesgue measure in \mathbb{R}^{n}$. If $1<q \leq p$ then $A_{q} \subset A_{p}$ (see [HKM] or [GR] for more information about A_{p}-weights). As an example of A_{p}-weights, if $x \in \mathbb{R}^{n}$, the function $\omega(x)=|x|^{\alpha}$ is A_{p} if and only if $-n<\alpha<n(p-1)$. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open set. We shall denote by $L^{p}(\Omega, \omega)$ $(1 \leq p<\infty)$ the Banach space of all measurable functions, f, defined in Ω for which

$$
\|f\|_{L^{p}(\Omega, \omega)}=\left(\int_{\Omega}|f(x)|^{p} \omega(x) d x\right)^{1 / p}<\infty
$$

For $p \geq 1$ and k a nonnegative integer, the Weighted Sobolev spaces $W^{k, p}(\Omega, \omega)$ is defined by

$$
W^{k, p}(\Omega, \omega)=\left\{u \in L^{p}(\Omega, \omega): \quad D^{\alpha} u \in L^{p}(\Omega, \omega), \quad 1 \leq|\alpha| \leq k\right\}
$$

with norm

$$
\begin{equation*}
\|u\|_{W^{k, p}(\Omega, \omega)}=\left(\int_{\Omega}|u(x)|^{p} \omega(x) d x+\sum_{1 \leq|\alpha| \leq k} \int_{\Omega}\left|D^{\alpha} u(x)\right|^{p} \omega(x) d x\right)^{1 / p} \tag{2.1}
\end{equation*}
$$

If $\omega \in A_{p}$ then $W^{k, p}(\Omega, \omega)$ is a closure of $C^{\infty}(\bar{\Omega})$ with respect to the norm (2.1) (see proposition 3.5 in [CS]). The space $W_{0}^{k, p}(\Omega, \omega)$ is the closure of $C_{0}^{\infty}(\Omega)$ with respect to the norm

$$
\|u\|_{W_{0}^{k, p}(\Omega, \omega)}=\left(\sum_{1 \leq|\alpha| \leq k} \int_{\Omega}\left|D^{\alpha} u(x)\right|^{p} \omega(x) d x\right)^{1 / p} .
$$

When $k=1$ and $p=2$ the spaces $W^{1,2}(\Omega, \omega)$ and $W_{0}^{1,2}(\Omega, \omega)$ are Hilbert spaces. The space $H(\Omega)$ is defined to be the completion of $C^{\infty}(\bar{\Omega})$ with respect to the norm

$$
\|u\|_{H(\Omega)}=\left(\int_{\Omega} u^{2} v d x+\int_{\Omega}<\mathcal{A} \nabla u, \nabla u>d x\right)^{1 / 2}
$$

where $\mathcal{A}=\left(a_{i j}\right)$ is the coefficient matrix of operator L defined in (1.1) , < .,.> denotes the usual inner product in \mathbb{R}^{n} and the symbol ∇ indicates the gradient. The space $H_{0}(\Omega)$ is defined to be the completion of $C_{0}^{\infty}(\Omega)$ with respect to the norm

$$
\|u\|_{H_{0}(\Omega)}=\left(\int_{\Omega}<\mathcal{A} \nabla u, \nabla u>d x\right)^{1 / 2} .
$$

We say that the pair (v, ω) of nonnegative locally integrable functions v and ω satisfies the condition $A_{p}, 1<p<\infty$, and we write $(v, \omega) \in A_{p}$, if there is a constant $C_{2}=C_{p, v, \omega}$ such that

$$
\left(\frac{1}{|B|} \int_{B} v(x) d x\right)\left(\frac{1}{|B|} \int_{B} \omega^{1 /(1-p)}(x) d x\right)^{p-1} \leq C_{2}
$$

for all balls B in \mathbb{R}^{n}.
Remark 2. If $(v, \omega) \in A_{p}$ and $\omega \leq v$ then $v \in A_{p}$ and $\omega \in A_{p}$. In this cases, for $p=2$ and using condition (1.2) we obtain

$$
\int_{\Omega}|\nabla u|^{2} \omega d x \leq \int_{\Omega}<\mathcal{A} \nabla u, \nabla u>d x \leq \int_{\Omega}|\nabla u|^{2} v d x .
$$

Therefore $W_{0}^{1,2}(\Omega, v) \subset H_{0}(\Omega) \subset W_{0}^{1,2}(\Omega, \omega)$.
We make the following basic assumption on the weights ω and v.
The Weighted Sobolev Inequality (WSI). Let Ω be a bounded open set in \mathbb{R}^{n}. There is an index $q=2 \sigma, \sigma>1$, such that for every ball B and every $f \in \operatorname{Lip}_{0}(B)$ (i.e., $f \in \operatorname{Lip}(B)$ and whose support is contained in the interior of B),

$$
\left(\frac{1}{v(B)} \int_{B}|f|^{q} v d x\right)^{1 / q} \leq C R_{B}\left(\frac{1}{\omega(B)} \int_{B}|\nabla f|^{2} \omega d x\right)^{1 / 2}
$$

with the constant C independent of f and B, R_{B} is the radius of $B, v(B)=\int_{B} v(x) d x$ and $\omega(B)=\int_{B} \omega(x) d x$. Thus, we can write

$$
\|f\|_{L^{q}(B, v)} \leq C_{S}\|\mid \nabla f\|_{L^{2}(B, \omega)}
$$

where C_{S} is called the Sobolev constant and

$$
C_{S}=\frac{C[v(B)]^{1 / q} R_{B}}{[\omega(B)]^{1 / 2}} .
$$

For instance, the WSI holds if ω and v are as in Theorem 4.8, chapter X of $[\mathrm{T}]$ or if ω and v are as in Theorem 1.5 of [CW].

Lemma 3. If $\omega \in A_{2}$ then $W_{0}^{1,2}(\Omega, \omega) \hookrightarrow L_{2}(\Omega, \omega)$ is compact and

$$
\|u\|_{L_{2}(\Omega, \omega)} \leq C_{2}\|u\|_{W_{0}^{1,2}(\Omega, \omega)} .
$$

Proof. The proof of this lemma follows the lines of theorem 4.6 in [FS].
Remark 4. Let $q=2 \sigma, \sigma>1$ be as in (WSI). We have that: (i) If $u \in L^{q}(\Omega, v)$ then $u \in L^{2}(\Omega, v)$ and $\|u\|_{L^{2}(\Omega, v)} \leq[v(\Omega)]^{1 / 2 \sigma^{\prime}}\|u\|_{L^{q}(\Omega, v)}$. (ii) If $u \in H_{0}(\Omega)$ then

$$
\int_{\Omega}|\nabla u|^{2} \omega d x \leq \int_{\Omega}<\mathcal{A} \nabla u, \nabla u>d x<\infty
$$

Using (WSI) we obtain

$$
\|u\|_{L^{q}(\Omega, v)} \leq C_{S}\left(\int_{B}|\nabla u|^{2} \omega d x\right)^{1 / 2}
$$

that is, $u \in L^{q}(\Omega, v)$. Hence, using (i), we get $u \in L^{2}(\Omega, v)$. Therefore $H_{0}(\Omega) \subset L^{2}(\Omega, v)$ and

$$
\|u\|_{L^{2}(\Omega, v)} \leq C_{S}[v(\Omega)]^{1 / 2 \sigma^{\prime}}\|u\|_{H_{0}(\Omega)} .
$$

Definition 5. We say that an element $u \in H_{0}(\Omega)$ is a (weak) solution of problem (P) if

$$
\int_{\Omega}\left(a_{i j}(x) D_{i} u(x) D_{j} \varphi(x)-\mu u(x) g_{1}(x) \varphi(x)\right) d x+\int_{\Omega} h(u(x)) g_{2}(x) \varphi(x) d x=\int_{\Omega} f(x) \varphi(x) d x
$$ for every $\varphi \in H_{0}(\Omega)$.

3 Proof of theorem 1

The basic idea is to reduce (P) to an operator equation $B u+N u=T$ and apply the following theorem.
Theorem A. Let $B, N: X \longrightarrow X^{*}$ be forms on the real separable reflexive Banach space X. Assume:
(a) The operator $B: X \longrightarrow X^{*}$ is linear and continuous;
(b) The operator $N: X \longrightarrow X^{*}$ is demicontinuous and bounded;
(c) $B+N$ is asymptotically linear;
(d) For each $T \in X^{*}$ and each $t \in[0,1]$ the operator $A_{t}(u)=B u+t(N u-T)$ satisfies condition (S) in X.
If $B u=0$ implies $u=0$, then for each $T \in X^{*}$ the operator equation $B u+N u=T$ has a solution in X.
Proof. See [H] or theorem 29.C in [EZ].
Remark 6. Let X be a real separable reflexive Banach space.
(i) The operator $N: X \longrightarrow X^{*}$ is said to be demicontinuous if

$$
u_{n} \longrightarrow u \text { implies } N u_{n} \rightharpoonup N u, \text { as } n \longrightarrow \infty .
$$

(ii) The operator N is strongly continuous if

$$
u_{n} \rightharpoonup u \text { implies } N u_{n} \longrightarrow N u, \text { as } n \rightarrow \infty .
$$

(iii) $B+N: X \longrightarrow X^{*}$ is asymptotically linear if B is linear and

$$
\frac{\|N u\|}{\|u\|} \longrightarrow 0 \text { as }\|u\| \longrightarrow \infty .
$$

(iv) The operator $B: X \longrightarrow X^{*}$ satisfies condition (S) if

$$
u_{n} \rightharpoonup u \text { and } \lim _{n \rightarrow \infty}\left(B u_{n}-B u \mid u_{n}-u\right)=0 \text { implies } u_{n} \longrightarrow u,
$$

where $(f \mid x)$ denotes the value of linear functional f at the point x.
Step 1. We define the operators $B_{1}, B_{2}: H_{0}(\Omega) \times H_{0}(\Omega) \longrightarrow \mathbb{R}$ through

$$
\begin{aligned}
& B_{1}(u, \varphi)=\int_{\Omega} a_{i j}(x) D_{i} u(x) D_{j} \varphi(x) d x-\mu \int_{\Omega} u(x) \varphi(x) g_{1}(x) d x \\
& B_{2}(u, \varphi)=\int_{\Omega} h(u(x)) g_{2}(x) \varphi(x) d x
\end{aligned}
$$

and $T: H_{0}(\Omega) \longrightarrow \mathbb{R}$ through

$$
T(\varphi)=\int_{\Omega} f(x) \varphi(x) d x
$$

We have that $u \in H_{0}(\Omega)$ solves problem (P) if

$$
B_{1}(u, \varphi)+B_{2}(u, \varphi)=T(\varphi), \text { for all } \varphi \in H_{0}(\Omega) .
$$

Using Hölder inequality, condition (H3) and remark 4(ii) we get

$$
\begin{aligned}
\left|B_{1}(u, \varphi)\right| & \leq \int_{\Omega}\left|<\mathcal{A} \nabla u, \nabla \varphi>\left|d x+|\mu| \int_{\Omega}\right| u \| \varphi\right|\left|g_{1}\right| d x \\
& \leq \int_{\Omega}<\mathcal{A} \nabla u, \nabla u>^{1 / 2}<\mathcal{A} \nabla \varphi, \nabla \varphi>^{1 / 2} d x+|\mu| \int_{\Omega}|u||\varphi|\left|\frac{g_{1}}{v}\right| v d x \\
& \leq\left(\int_{\Omega}<\mathcal{A} \nabla u, \nabla u>d x\right)^{1 / 2}\left(\int_{\Omega}<\mathcal{A} \nabla \varphi, \nabla \varphi>d x\right)^{1 / 2}+ \\
& +|\mu|\left\|g_{1} / v\right\|_{L^{\infty}(\Omega)} \int_{\Omega}|u \| \varphi| v d x \\
& \leq\|u\|_{H_{0}(\Omega)}\|\varphi\|_{H_{0}(\Omega)}+|\mu|\left\|g_{1} / v\right\|_{L^{\infty}(\Omega)}\|u\|_{L^{2}(\Omega, v)}\|\varphi\|_{L^{2}(\Omega, v)} \\
& \leq\left(1+C|\mu|\left\|g_{1} / v\right\|_{L^{\infty}(\Omega)}\right)\|u\|_{H_{0}(\Omega)}\|\varphi\|_{H_{0}(\Omega)} \\
& =\mathbf{C}\|u\|_{H_{0}(\Omega)}\|\varphi\|_{H_{0}(\Omega)} .
\end{aligned}
$$

By conditions (H1) and (H3), Lemma 3 and remark 2, we obtain

$$
\begin{align*}
\left|B_{2}(u, \varphi)\right| & \leq \int_{\Omega}\left|h(u)\|\varphi\| g_{2}\right| d x \\
& \leq M \int_{\Omega}\left|\frac{g_{2}}{\omega}\right||\varphi| \omega d x \\
& \leq M\left\|g_{2} / \omega\right\|_{L^{2}(\Omega, \omega)}\|\varphi\|_{L^{2}(\Omega, \omega)} \\
& \leq M\left\|g_{2} / \omega\right\|_{L^{2}(\Omega, \omega)} C_{2}\|\varphi\|_{W_{0}^{1,2}(\Omega, \omega)} \\
& \leq C_{2} M\left\|g_{2} / \omega\right\|_{L^{2}(\Omega, \omega)}\|\varphi\|_{H_{0}(\Omega)} . \tag{3.1}
\end{align*}
$$

Moreover, we also have

$$
\begin{aligned}
|T(\varphi)| & \leq \int_{\Omega}|f||\varphi| d x \\
& =\int_{\Omega}\left(\frac{|f|}{\omega}\right)|\varphi| \omega d x \\
& \leq\|f / \omega\|_{L^{2}(\Omega, \omega)}\|\varphi\|_{L^{2}(\Omega, \omega)} \\
& \leq C_{2}\|f / \omega\|_{L^{2}(\Omega, \omega)}\|\varphi\|_{W_{0}^{1,2}(\Omega, \omega)} \\
& \leq C_{2}\|f / \omega\|_{L^{2}(\Omega, \omega)}\|\varphi\|_{H_{0}(\Omega)} .
\end{aligned}
$$

Step 2. Since $H_{0}(\Omega)$ is a real Hilbert space with inner product

$$
a_{0}(u, \varphi)=\int_{\Omega}<\mathcal{A} \nabla u, \nabla \varphi>d x
$$

using the Identification Principle (theorem 21.18 in [EZ]) we set $H_{0}(\Omega)=\left[H_{0}(\Omega)\right]^{*}$ and $a_{0}(u, \varphi)=(u \mid \varphi)$ (if $f \in X^{*}$ and $u \in X$, then $\left.(f \mid u)=f(u)\right)$.

We define the operators $B, N: H_{0}(\Omega) \longrightarrow H_{0}(\Omega)$ through

$$
\begin{aligned}
& (B u \mid \varphi)=B_{1}(u, \varphi) ; \\
& (N u \mid \varphi)=B_{2}(u, \varphi), \forall u, \varphi \in H_{0}(\Omega) .
\end{aligned}
$$

Since $T \in\left[H_{0}(\Omega)\right]^{*}$, the problem (P) is equivalent to the operator equation

$$
B u+N u=T, \quad u \in H_{0}(\Omega) .
$$

Step 3: Using that $H_{0}(\Omega) \hookrightarrow L_{2}(\Omega, v)$ is compact (see Lemma 3 and remark 4(ii)), we have that $B_{1}(.,$.$) is a regular Gårding form. In fact: since \mu>0$ and by condition (1.2) we obtain

$$
\begin{aligned}
B_{1}(u, u) & =\int_{\Omega} a_{i j} D_{i} u D_{j} u d x-\mu \int_{\Omega} u^{2} g_{1} d x \\
& =\int_{\Omega}<\mathcal{A} \nabla u, \nabla u>d x-\mu \int_{\Omega} u^{2}\left(\frac{g_{1}}{v}\right) v d x \\
& \geq \int_{\Omega}<\mathcal{A} \nabla u, \nabla u>d x-\mu\left\|g_{1} / v\right\|_{L^{\infty}(\Omega)} \int_{\Omega} u^{2} v d x \\
& =\|u\|_{H_{0}(\Omega)}^{2}-\mu\left\|g_{1} / v\right\|_{L^{\infty}(\Omega)}\|u\|_{L_{2}(\Omega, v)}^{2} .
\end{aligned}
$$

Hence, there exist a decomposition of the form $B=T_{1}+T_{2}$, where T_{1} and T_{2} are bilinear and bounded, $T_{1}(.,$.$) is strongly positive and T_{2}(.,$.$) is compact (see lemma$ 22.38 in [EZ]). Thus, B is Fredholm of index zero (see definition 8.13 and theorem 21.F in [EZ]) and B satisfies condition (S) (see proposition 27.12, [EZ]).

Step 4: By (3.1) we get

$$
\begin{aligned}
|(N u, \varphi)| & =\left|B_{2}(u, \varphi)\right| \\
& \leq C_{2} M\left\|g_{2} / \omega\right\|_{L^{\infty}(\Omega)}\|\varphi\|_{H_{0}(\Omega)} .
\end{aligned}
$$

Hence, $\|N u\| \leq C$, for all $u \in H_{0}(\Omega)$. Therefore,

$$
\frac{\|N u\|}{\|u\|} \longrightarrow 0, \quad \text { as } \quad\|u\|_{H_{0}(\Omega)} \longrightarrow \infty
$$

that is, $B+N$ is asymptotically linear and the operator N is strongly continuous (see corollary 26.14 in [EZ]).

Step 5. For each $t \in[0,1]$, the operator $A_{t}(u)=B u+t(N u-T)$ is a strongly continuous perturbation of the operator B. Thus, the operator A_{t} also satisfies condition (S) (see proposition 27.12, [EZ]).

If μ is not an eigenvalue of the linearized problem (LP), $B u=0$ implies $u=0$. Therefore, by theorem A, the operator equation $B u+N u=T$ has a solution $u \in H_{0}(\Omega)$ and u is solution for the problem (P).

References

[CW] S. Chanillo and R.L. Wheeden, Weighted Poincaré and Sobolev Inequalities and Estimates for the Peano Maximal Function. Amer. J.Math. 107 (1985), 1191-1226.
[CS] V. Chiadò Piat and F. Serra Cassano, Relaxation of Degenerate Variational Integrals, Nonlinear Anal. 22, (1994), 409-429.
[EZ] E. Zeidler, Nonlinear Functional Analysis and its Applications, Part I and Part II/A - B, Springer-Verlag, 1990.
[FS] B. Franchi and R. Serapioni, Pointwise Estimates for a Class of Strongly Degenerate Elliptic Operators: a Geometrical Approach, Ann. Scuola Norm. Sup. Pisa, 14 (1987), 527-568.
[GR] J. Garcia-Cuerva and J.L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Mathematics Studies 116, 1985.
[H] P. Hess, On the Fredholm Alternative for Nonlinear Functional Equations in Banach Spaces, Proc. Amer. Math. Soc. 33, 55-61 (1972).
[HKM] J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Math. Monographs, Clarendon Press, 1993.
[T] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, 1986.

Departamento de Matemática
Universidade Estadual de Londrina
Campus Universitrio
86051-990 - Londrina - PR
Brasil
E-mail: albo@uel.br

[^0]: Received by the editors December 2002.
 Communicated by P. Godin.
 1991 Mathematics Subject Classification : 35J50, 35D05.
 Key words and phrases : Degenerate elliptic equations, Weighted Sobolev space.

