Discrete Vekua equations with constant
coefficients in the complex and quaternionic
case

K. Giirlebeck A. Hommel

Abstract

A discrete version of complex Vekua type equations is considered. We
construct a representation formula for the solution of the homogeneous com-
plex equation and investigate the inhomogeneous equation. Similar to the
continuous case this representation formula is a product of two functions.
We also factorize the solution of a homogeneous Vekua type equation in the
quaternionic case. In the complex plane we analyse both factors in detail and
study the relation between the non-holomorphic factors in the discrete and
continuous case.

1 Introduction

Vekua equations play an important role because a lot of partial differential equations
can be transformed into this type of equations. The theory of generalized analytic
functions by Vekua (see [22]) is used in areas like analysis, geometry and mechanics.
We mention only quasiconformal mappings and the theory of gas dynamics.

In this paper we study a discrete version of Vekua type equations. The ideas are
inspired by many results from discrete potential theory ([17], [3] and [16]) and dis-
crete function theory ([5], [23], [15], [7], [14], [13] and [9]). The analogy to function
theoretic methods becomes obviously if we split the solution of our homogeneous
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equation into two factors such that one factor is discrete holomorphic. This factor-
ization is demonstrated in [11] in the complex case. In the following we analyse the
structure of both factors and describe the relation to the exponential function in the
continuous case. Furthermore we investigate the inhomogeneous discrete equation.
The solution of this problem is constructed by the help of an right inverse operator
to the difference operator.

Generalizations of discrete Cauchy-Riemann operators are already studied in [12]
and [13]. By the help of these difference operators a discrete version of Vekua equa-
tions can be studied also in the quaternionic case. We look at the homogeneous
equation and show that also in the quaternionic case a factorization of the solution
is possible.

2 The solution of the homogeneous Vekua equation in the com-
plex case

2.1 A summary of classical and discrete results

Let w(z) be a complex valued function with 2z = x +iy and G C R? be a bounded
domain. Furthermore let G* C G be a set of isolated points with respect to G. A
differential equation of the form

1,0 0
is called homogeneous Vekua equation. We denote w(z) as generalized solution if
w(z) fulfils the differential equation at each point G\G*. Let E be the unit disc and
L,2(R?) be the set of functions with f(z) € L,(E) and |z|72f(1) € L,(E), p > 1.

If A,B € L,»2(R?) for p > 2 then each generalized solution of the homogeneous
Vekua equation can be written in the form

w(z) = P(2) e, (2)

g(¢Q) d

where @ is holomorphic in G, the function v(z) =1 [ szG belongs to 0172;2 and

o) = { A(2) + B(2)%2  for w(z) £0, zeG

A(z) + B(2) o forw(z) =0, ze€G.

By the help of formula (2) a lot of function theoretic properties can be carried
over to the theory of generalized analytic functions. Basic ideas to obtain such a
formula as main tool in a discrete theory are presented in [11]. We give an overview
of these results and extend the theory in view of some interesting properties of both
factors in the discrete product.

An equidistant lattice with the mesh width h > 0 is defined by R? = {mh =
(myh,mah) : my,mg € Z}. We denote by G, = GNR? the discrete domain and look
at complex valued functions w(mh) = (wo(mh),w(mh)) = (Re w(mh), Im w(mh)).
For j € {1,2} and k € {0,1} we introduce forward differences Diwy(mh) =
h=Y(wg(mh + he;) — wi(mh)) with e; = (1,0) and e; = (0,1) and backward
differences D, wy(mh) = h= (wg(mh) — wy(mh — he;)). In order to simplify the
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problem we write A = a;+ias and B = b;+iby; and require that the real coefficients
ai,as,b; and by are constant for all mh € Gj and zero for all mh € R3 \ G},
Using the group homomorphism between complex numbers and matrices we can
approximate equation (1) by

o (e (e () () (m)=(0) @

D;' —D? D,  Dj
1h _ h h 2h _ h h
We remark that the operators D" = < D> D! ) and D" = ( ~D;? D;! >

factorize the discrete Laplacian and —D?" is the adjoint operator to D'. A function
w(mh) with DY D*w(mh) = 0 is called discrete harmonic. If DMw(mh) = 0
then w(mh) is said to be discrete holomorphic. More details about these operators
are contained in [16], [7] and [9].

In the following we restrict us to the case by = by = 0 and consider the system

l D;l —D}QL Wy —Wq . —aq (05} Wy —wWq (4)
2 D}:2 D}L w1 Wo o —Q2 —aip w1 Wo
instead of (3). For each fixed mesh width A this system consists of four difference
equations. But if h tends to zero it approximates only the two equations

12w—gw = —awp + asw; and 12w +£w = —aWy — A W
2\ gz gytt) T TGatto t axtn 2\ gyt T W) T Tt — mun.

In order to get more compact formulas we write in the following (mq, my) instead
of (myh,mah). The following theorem we take from the main result in [11]:

Theorem 2.1. Let w(mh) be an arbitrary solution of (4) and u(mh) be a solution
of the problem

1( Dyt -Dj up(my +1,me + 1) —ui(mi +Lma+1) | _
2\ D;* D uy(my, ma) up(my, ms)

aq Uo(ml, mo + 1) — a9 ul(ml, mo + 1) —Qa2 uo(ml,mg + ].) — ay ul(ml,mg + ].)
as ug(my + 1,mse) + ay uy(my + 1, ms) ar up(my +1,mg) — agui(my + 1, my)

then we obtain for all mh € Gj,

I(Dgl —D%) [(uo(m1+1,m2+1) —ul(m1+1,m2+1)><wo(m1,m2) —fwl(ml,mg)>]_<g 8)

2 DEQ Dill u1(ma,ma) ug(ma, ma) wy(mi,mg) wo(mi,ma)/|

For the proof we refer to [11]. A nontrivial solution w(mh) of the problem in
Theorem 2.1 we obtain for arbitrary (mj, my) by using the ansatz

ol ma) = (o= iB)™ (3 )™ 4 Lok i)™ (3 — i)™
wi(mi,ma) = a-(a— 8™ (3 + i)™ — = (a+iB)™ (7 — i0)™

21 21
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with the unknowns «, 3,7 and d§, where o® + 3% # 0 and ~* + 6% # 0. We
remark that these unknowns depend on h. If we substitute s; = 1+ 2a1h, s =
1+2ash, s3=1—2ash and sy = 1—2ah then we calculate a+i8, a—if3, y+id
and v — 0 as square root with the smallest argument of the equations

. 1 s1 tis3 2 B si — s% s% — s% 218984 215183
(Oé + ’Lﬂ) - . — 2 2\2 + 2 2\2
Sq sy 2 (s34 s3) 4 (s§+ s3) 4
. 2 . .
4 1 So t 8y s2—s? s2—s2 215153 205954
+30) — = + .
((7 i9) [33 +is T D (83 + s7)2 LR (83 + s%)? 4

From these equations we conclude }lLir% o= lllir% v =1 and }llirr(l) 8= }Lir% 0 = 0. Based
on Theorem 2.1 the following theorem can be proved:

Theorem 2.2. If the mesh width h is sufficiently small such that 1+ 4a,ash® # 0
then each solution of the problem (4) can be written in the form

w1 (mh mz) U)O(mla mz)

( wo(mi,ms)  —wi(my, ms) ) (5)

_ 1 ug(my, ma)  ui(mi+1,me+1) Q1 (my,me)  Po(ma, ma)
det u(my, my) \ —u1(mi,mg) uo(mi+1,my+1) P3(my,ma)  Py(my, my)
)

with det u(my, ma) = ug(my, ma)ug(my + 1, ma + 1) +ug (mq, ma)ug (mq + 1, ma +1).
The matriz ®(mh) has the property

1( Dyt —D} Oy (ma,ma) Pa(ma,ma) \ _ (0 0
2<D;:2 D; ®3(mi,me) Pa(mi,me) ) \ 0 0 fh & e (0

We have already mentioned in [11] that there is a relation between &y, @y, @3
and ®4 because there are two equations for the real part wy and two equations for
the imaginary part w;. On the other hand we know that the matrix ®(mh) is a
solution of (6). Is this equation automatically fulfilled if we use the relation between
the ®;,7 = 1,2,3,4?7 In order to find an answer to this question it is necessary to
look at the elements in more detail. In the following section we use a new possibility
to show how the elements of ®(mh) depend from each other.

2.2 The elements of the matrix =~ ®(mh)

From (6) it follows that (&, ®5) as well as (®y, ) are discrete holomorphic func-
tions. We express ®, and ®4 by the help of &; and ®3 and ask if the pair of both
expressions is automatically discrete holomorphic or if we have to fulfil an additional
condition.

If we eliminate wy and w; in (5) we obtain

ur(mq +1,mg + 1)
U1(m17m2)

up(mq +1,mg + 1)
Ul(mhmz)

D, = _Uo(mhmz) o, —
U1(m17m2)

uf(my, ma) + ug(m, ms)
det u(my, msy)
+U0<m1, mg)Uq(ml + 1,m2 + 1) — uo(m1 + 1,m2 -+ 1)U1(m1,m2)

det u(my, mo)

D; + Dy

@4 q)l

Ds.
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We use now the ansatz for wg(mi, mg) and wuj(my,ms) with «,3,7 and §. It
follows

uo(ml,mg)ul(ml + 1, mo + 1) — uo(m1 + 1,m2 + 1)u1(m1, mg)
1

= (3ta= e+ 0+ Lo iy - i)

’(ym—wmmﬁ%v+wwwﬂ—

. (i o))

2i

~(gla—imm s S i - i)

.<21i(a —iB)™ (v + i6)™ — 212'(0‘ +18)™ (v - ié)””)

_ ml+ﬁr%f+w%M(—;ga+wxw—ww+;m—Uﬁw+wQ
= (a®+ B)™(y* + 6™ (ab — By).

By the same way we prove that detu(my,ms) = (a? + %)™ (72 4+ §2)™2(ay + 59)
and u?(my, mg) + ud(my, my) = (a? 4+ %)™ (y* + §2)™ and obtain

4 _i_OéfS—ﬁW
T av+B5 ay+pB5 %

We remark that &, converges to ®; if h tends to zero. We consider now the
expression

! uo(my +1,my + 1)
p, = — | —
2 u1<m1,m2>< uolm, ma) + == 5
3 o — By
— = (- 1 1 1 1
+u1(m1,m2)< uy(my + 1, mg + 1) + ug(my + 1, mg + )(WH&

and write

—ug(my, ma)(ay + B6) + up(my + 1,ma + 1)

= ( - ;(a — i)™ (y +16)™ — ;(a +i8)™ (v = i5>m2>

.@(a —if)(y +16) + ;(a +i0)(y - i5)>

+;(oz — i)™ (y 4 i8)m T ;(@ + i)™ (y —id)m T
_ (;(a — i)™ (y + i)™ — ;(a +i0)™ (v - i5)m2>

.@(a —iB)(y + id) — ;(a +iB)(y — i5))

= —ul(ml, m2) (CY(S - ﬁ’y)
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In analogy we can show

—uy(my + 1,me + 1)(ay + B0) + ug(my + 1,me + 1)(ad — ()
= —ur(my, mo)(a? + 52)(7* + 6%).

These calculations lead to the expression

ad — By (0? +B%)(v* + %)
— P, — Dy
ay + (o ay + (o
and it is easy to see that ®5 converges to —®3 if h tends to zero. If ay+ (65 # 0

it follows from (6)
DM (e + B2)(v* + 8°) @3] + D;®y + (b — By)[D;, @1 + Di®s]) =0 and
Dy ?[=(a® + B%)(7* + 0%) @3] + D@1 + (ad — 37)[=D;* @1 + Dy ®3] = 0.
We remark that for h — 0 these difference equations approximate the equations
0 0 0 0
— P53+ —P; =0 d ——P34+—P,=0
ox 3+8y ! o dy 3+8x !

such that in the continuous case (P, P3) is automatically holomorphic. Different
from the continuous case we understand the above difference equations as additional
compatibility conditions for the discrete holomorphic functions (®1(mh), ®3(mh)).

2:

2.3 The approximation of the exponential function

It was already proved in [11] that for A — 0 the solution of (4) tends to

cos (r1 L2 — x5 L3)Dy(z1,x2)  sin(xy L2 — xo L3)D3(x1, x2)
er1 (L3+2a1) g2 (L2+2az) - er1 (L3+2a1) g2 (L2+2az)

}llii%wo(mlamz) =

and

sin (zq L2 — w9 L3) Py (21, 29)  cos(xy L2 — x9 L3)P3(xq, x2)
er1 (L3+2a1)612 (L2+2a2) + er1 (L3+2a1)612 (L2+2a2) ’

}lligtl) wi(my, ma) =

where L2 = llling)(h_l arctan 2) = v/2a; —a; — ay and L3 = }llin%(h_larctan%) =
V2as — as — a;. We compare these expressions with the classical product

e (@t (@i (G 4 jPy) = o0 o202 @172 (P 4 Dy

= g T gT0T2 <COS<G1ZE2 — agzy) Py — sin(a;xs — aszy)Ps

+i[sin(a 29 — asx1) Py + cos(ayry — agl’l)q)g]).

In detail we have to study the expression e *1(E3+201) p—w2(L242a2) pi(z1L2-22L3) e
substitute L3 = L4 — 2a; and L2 = L5 — 2a, and write the above expression in
the following form

—x1(L3+2a1) ,—x2(L2+2a2) ,i(x1L2—x2L3)

€ (& 6(

_ e%(fL3+iL2)(x1+izg) e%(7L4+2a1+i(L572a2))(zl+ix2) —2x1a1 ,—2x202

e e
_ 6%(—L3+iL2)(x1+ia:2) e%(—L4+iL5)(x1+ia:2) elar—ias)(z1+ize) ,—2r101 ,—2w2a2

e%(—L3—L4+z‘(L2+L5))(m1+ix2) o~ (a1+iaz)(1—izs)
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It is easy to check that the first factor is holomorphic. Because in the continuous

case the product of two holomorphic functions is also holomorphic we can substitute
<I>’1‘ + i<I>§ _ e%(—L3—L4+i(L2+L5))(acl—‘,—i:cg) ((1)1 + ,@3)‘

Consequently we approximate the classical exponential function up to a holomorphic
factor. From this point of view we hope that in future it is possible to eliminate a
part of the solution w.

2.4 Another representation formula for the solution w(mh)

If the mesh width h is small enough we can use Theorem 2.2 and write the solution
of the problem (4) in the form

Uo(ml, mz)(bl(ml, mg) + ul(ml + 1, mo + 1)(1)3(’]’)11, m2)
det u(mq,ms)

w0<m17m2) =

w (m m ) _ _u1<m1)m2)®1<m17 m2) + uo(ml + 1,m2 + 1)@3(m17m2)
1 1, 1762 det u(ml’m2) .

We show that it is possible to write this solution also in another form in which no
mesh points from the neighbourhood are included:

Based on the ansatz for ug(ms, mg) and u;(mq, mg) with the coefficients «a, 3, v
and § we obtain

det u(my, my) = (a® + B%)™ (v + 6%)™ (ay + 9).

Furthermore we have

ug(my, ms) _1fa—ip ) m:_} a+iB\" v—i6 \"
(a2 + B2)mi(y2 4 §2)m2 2\ a2+ 2 72 + 52 2\ a2+ 32 72 4 52

= L@ iB) Ty —i6) ™ 4 (o — i) (y 4 i)™

= wuo(—mq, —my).

Using the same idea we can show that

ui(my +1,mg + 1)
(042 +ﬁ2)m1 (72 +52)m2
—U1(m17m2)

(OCQ + 62)1721 (,-YQ _|_ 52)m2
up(mq +1,mqg + 1)
(Oé2 + 62)7%1 (72 + 62)777,2

= —(ay+ B6)ui(=my, —ma) + (ad — By)ug(—m1, —my)

= wuj(—my,—my) and

= (ay+ Bd)ug(—my, —ms) + (ad — By)us(—mq, —my).

Consequently we proved that

UO(_mb _m2>q)1(m1> m2)
ay + 3o
ad — By
"‘7&7 +55U0

wo(mh mz) = - ul(_mh —m2)¢’3(m1, mz)

(—ml, —m2)®3(m1,m2)
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and
ur(—mq, —msg)P1(mqy, m
w(mymg) = 1mj>ﬁ(;< L12) |y, —ma) B, ma)
ad — [y
— d )
(w—Fﬁ(S ( my, m2) 3(m1,m2)

We remark that we obtain from formula (5) a second equation for wg(my, ms) as
well as for wy(my,mg). In these cases we end up with the same representation
formulas if we use the relations between ®;, 5, &3 and &, from Section 2.2.

3 The inhomogeneous Vekua equation

Starting from (4) we look now at the system

1<Di:1 _Di% )(wo —w1>+<a1 —Q2 )(wo —wy ) :<fo —f:1> (7)
2\ D> Dj wy W az wy W f fo)

We require that f, converges to fo and f; converges to fi if the mesh width A
tends to zero. Consequently we approximate with the system (7) the two differential
equations

12w—gw +ajwg—aswy; = fo  and 12w%—gw +awo+aiw; = f
2\ 020 5y ™ 1Wo—awi = Jo G 2Wotaiwy = Ji.

In the following we describe the solution of the inhomogeneous equation (7) by

: : e D' -D
using a difference operator which is right inverse to the operator % h h )

D;?> D}
In order to define this right inverse operator we look for an representation formula
of the fundamental solution Ej(mh) which solves the system

1( D' —D} E(mh) E,}?(mh) _({ dn(mh) 0
2\ Dy* Dy )\ Eit(mh) E(mh) ) =\ 0 o(mh)

. [ 1/h* mh=(0,0)
with 6p(mh) = 0 mh+(0.0).
the help of the discrete Fourier transform (see [20] and [7] for the details of the
calculation). This discrete Fourier transform Fj, is a transform from the lattice into
the square Qp, = {(&1,&%) € R?: —n/h < & < 7w/h, i = 1,2}. The inverse trans-
form is defined by Fj~ V' — R,F where F is the classical Fourier transform and Rju
denotes the restriction of the function u(z) to the lattice R?. As representation
formulas we obtain
Ell R F é‘h E12 *R F fh E21 *R F 52 E22 *R Fl— 5?

ho= 2 h 2 h h d?
with ", = h™1(1 —e ™), & = h7'(1 — e™%) and d® = 4h~?(sin® B+ sin® 142)
for j € {1,2} and —7/h < & < w/h. Based on the discrete fundamental solution
we construct the right inverse operator Tj, = (T}, T?) by

Ef(mh —1h) \" [ vo(lh)
k 2( L 0
(Tifeo, ) (mh) = 3, (E,{“2 mh—1h) ) \ vi(ih) )

lheGy,

We calculate this fundamental solution by
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Theorem 3.1. The operator T, has the property

1/ D' —D? THovg, v1])(mh vo(mh . 1 mheG
(252 2R (T D). -] :

o\ D, D} (T?{vo, v1])(mh) v1(mh) 0 else.

Proof: From the definition of the right inverse operator it follows

(

5 D3 (T o, 1] ) — 5 DR(TR{wo, 1) (mh)

h) -
- sl - e )

lheGp,
- s )T(Eﬁig ) Ebom ) ()|
- TR (i) R )
- lth:v'h}ﬂ(&h o )T<Z(1) ) {UO(gnh) ZZZ%LEG}L

In analogy we get

DT oo, va) ) + 5 DT oo, v (mh)
) 0 " (vo(1h) vi(mh) Ymh € Gy,
B m;; h <6h(mh lh)) <v1(m)> :{ 0 else

A straightforward calculation shows that we obtain a solution of the inhomoge-
neous problem (7) inside the domain Gj by

( wo  —w > _ < wg"m wiom > n ( Tifo, 1] Til=fr, fol )
om om f ]

(] Wo wy Wy T;? [fo; f1] Ti%[_

hom hom
Wo —W

hom hom
1 Wo

that we have two equations for wy and two equations for w;. In order to get the
same expressions we require

Thl[_flafo] = _T}?[fmfl] and Ti?[_flufo] = T;Hfo;fl]
for all mh € Gj,. These equations are fulfilled if we define
( f1> 1<Dh1 —Di)(Tﬁ[—f@]) _ 1<Dh1 —Digz><—T13[f0,f1] m)
fo Dy* Dy J\Ti=fi.fol) 2\ Dy* Dj Tilfo. Sl xen )

For the proof we use the discrete Borel-Pompeiu formula

where ) is a solution of the homogeneous problem (4). We remark

1 1 1 1
Ty lZD,;lul - §D,2Lu2, §D,:2u1 + QD}LUQ] + FFluy, us] = up xay» k=1,2



698 K. Gliirlebeck — A. Hommel

and the property that the operator [}, = (F}!, F?) acts only from the boundary into
the domain G,. With the above definition we have the possibility to calculate f,
and f; for all arbitrary chosen functions f, and f;. Indeed we can use this formula
in order to determine fo and fl because we can show that fg converges to fo and
f1 converges to fi if h tends to zero: From

1 Zfl 1 262
E}31_>E11:F<2>’ Eth_)E12:7 <2>7
T \[¢] T \Ll
1 [ —i& L [i&
E21—>E21:F< >’ E22_)E22:7 ()
h 7r ISK " T \ ¢

and the properties

() (o= [ (Y (e

and
L(EeGm0) (hoo= 1 (=) ()

we follow that T3 [~ f1, fo] = =TZ[fo, fi] = Thl=f1, fo] and TZ[—f1, fo] = Tit[fo, 1] —
T?—f1, fo]. We apply now the difference operator D" and use Theorem 3.1.

4 Generalization of Theorem 2.1 to the quaternionic case

Let R* be the 4-dimensional Euclidean vector space. We choose the orthogonal
basis eg = (1,0,0,0), e; = (0,1,0,0), es = (0,0,1,0) and e3 = (0,0,0,1). Because
of the multiplication rules

eg = ey, ef =—ey, ©1=1,2,3

ei6j+ej6i :0, Z?é], Z,j = 1,2,3

epe; = €eg=¢;, 1=0,1,2,3

e1ea = €3, egez3=e; and eze; = ey

the algebra of the quaternions a = ageg + a1e1 + ases + azes is noncommutative.
Quaternions can be identified with a special kind of real 4 x 4 matrices which have
the form

apg —ai;y —ag —as

aq ag —das a9

(05} as apg —ap

as —dag ay ag

a =

For more details we refer to [13]. We prove now a similar result to the assertion in
Theorem 2.1 in the quaternionic case. In the following it is very important at which
mesh point of the space R® we consider our functions. In order to simplify the
notation we use no symbol for the mesh points (mjh, moh, msh). All other symbols
are explained in Tabular 1:
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symbol mesh point
2] ((myq —|— 1)h, mgh (mg +1)h)
3] ((my 4+ 1)h, (mg + 1)h, msh)
[4] | ((ma + 1)h, (ma + 1)h, (m3 + 1)h)
5] ((my + 1)h, moh, msh)
6] (mah, (mg + 1)h, msh)
7] (m1h, moh, (ms + 1)h)

Tabular 1

Theorem 4.1. Let (wg,wy,wy, w3) be an arbitrary solution of the problem

0 —D}ll —D}QL —D]?; Wog —W; —W2 —Ws3

D}L 0 —D,:3 D}:2 w1 Wy —Ws Wa

D}QL D;g 0 —Dgl Wa Ws Wy —wWq

D?L —D}ZQ Dgl 0 w3 —Wa w1 Wo
—Aag ay a9 as Wog —W; —W2 —W3
. —a1 —Qo a3z —az wq Wy —Ws wWa
B —Gz —a3 —aop ax W2 ws W —wWi
—as o —a1 —Qo W3z —Wa2 w1 Wo

and (ug,uy,us,us) be a solution of

0 -D! -D? -D3 up up o uy g
p. 0 -p;* D ||-d  w! W
D? D,;32 0 Dt || =P WP WP —u[f]
D} —-D,* D, 0 S N SR

Al 1 A12 AlS A14
A21 A22 A23 A24
A31 A32 A33 A34
A41 A42 A43 A44

with
A = a u([)] + alu[14] + agu[g] + agu:[f]
A = —a ug] + aou[l] + G3U[24] azugl]
Az = —angq — CL3U[1] + aougq + aluw
Ay = —a3u([)} + agu[fl] alugﬂ + aou[4]
Ay = a u([f] a u[15] +a u[25] agu:[f]
Ay = a u([)] + alu[f’] a u[25} agug’]
Aoz = —agup + agu[l] + alu[;’} aoug]
Ayy = agué] + agu[s] + aou[ . a1u§’1
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We obtain

Az = agu([?] agu[l] a ugﬂ + alu[G]
Azy = &3U([)] + agu[G] + alu[ ] + aou[G]
Asgs = aougﬂ a u[l] + aQuM agugﬂ
Agy = —alu[[)ﬁ] — aou[l] + agu[ﬁ} + agu[G]
Ay =  «a ug] + agum alu[zﬂ aoug]
Ap = —a ug} + agum aou[gﬂ + &1?&%]
Ay = a u([)] + aoum + agu[ s agug]
Ay = aoug] - alu[l] agu[2ﬂ + agugﬂ.

0O -D -D? -Dj Ug Uy U us
DI 0 -D;* D;? Yy
D? D}:3 0 _D;1 _u[22] U:[z,2] u[oz} _u[12]

-2 -1
D} -D;* Dy 0 Y R R B
Wy —W; —Wy —Ws3 0 0 0O
wy Wy —wz W ~1000O0
wy w3 wy —wi 10000
W3 —W2 W1 Wo 0 00O

Proof: The next steps are quite similar to the proof of the analogous theorem in
the complex case (see [11]). We consider here only the first matrix element on the
left-hand side. For all other matrix elements we have to repeat the calculations. In
order to determine this element we have to add the summands

S1

S3

— D} [—ulwy + uflwy — ulws + ul ]

1
h[ u[l ]w + u[ ] mw + U[l]wg + u[4]w([)5} — u[A‘]wgS] + ugl]w[f} — u[4}w§’]
mwo—l—u[ ]wl Hw2+u[ ]wg—iru[quo Hw +u§qw —u[g] 3

WM (Dhwg) + ub! (= Dhwi) + u (DEws) + b (— D}pws)
Fwo(Dhul!) 4wy (= Dhug) + wo(Dhull) 4 wy(—Dhub?),

D2~ ulwp + Py + Py — uPly)

[4](th0) + u[4]( th1) + u ( thg) + u1 (thg)
Fwo(Diuy)) + wi (= D3uf) + wa(—D3uf)) + ws(Diut”)  and

—Dh[ ugﬂwo ul ]wl + uB]wg + U[S]wg]
W (D3wo) + ub(DRuwn) + ul (= Ddws) + ul (= D3 ws)

Fwo(Dul)) + wi (Djul!) + ws(— Djul?) 4 ws(— Djull).
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From our assertion we obtain

51 —i— Sy + S3

= b (=D}wy — D>wy — D}ws) + u}"(D}wo + Diws — Diw,)
+u[4]( Djws + Diwg + Diwy) + ug](thg Diwy + Diwg)
Fwo(Dha + D2u? 1 D3u) 4wy (— Dl — D22 4 D)
—|—w2(Dhu[1] Diug 2 D?Lu[lg}) +w3(—Dhum —i—Dhum Dhu([)])

= u([;q( apwy + ajwy + aswy + azws) + u[f”(—aowl — ajwy — asws + azws)

4
+U[ ]( AoWs2 + A1Ws — AWy — CLg’wl) + Ug}(—aowg — A1Wq + AW — agwo)

—Huo(aoug] + alu[4] S agug}) + wy(— alug} + aou[ Iy G3U[4] agug‘})

—i—wg(—agugl] a u[14] + aou[4] + alu[ ]) + ws3(— &3?,6([)] + a2u[4} alu[Q} + aou:[f])

= 0

+ aguy
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