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Abstract

Let X be the blowing - up of the smooth projective variety V . Here we
study when a line bundle M on X is very ample and, if very ample, the k-very
ampleness of the induced embedding of X .

Introduction.

In the last few years several mathematicians studied (from many points of view and
with quite different aims and techniques) the following situation. Let π : X 7→ V
be the blowing - up of the variety V at finitely many points P1,...,Ps; study the
geometric and cohomological properties of X. Many authors (see e.g. [1, 4, 6, 7, 8,
9] and the references quoted there) were interested in the projective embeddings of
X, e.g. to determine the very ample line bundles on X. Every M ∈ Pic(X) is of
the form M ' π∗(F )−∑1≤i≤s aiEi with F ∈ Pic(V ), Ei = π−1(Pi) the exceptional
divisors and ai integers. The very ampleness of M is studied in terms of F and the
integers ai. The conditions on F and on the integers ai are usually both numerical
(often obvious necessary conditions) and “positivity properties” of F . Often we are
interested in the very ampleness of a line bundle M whose associated F ∈ Pic(V ) is
of the form F ' L ⊗ R with L, R ∈ Pic(V ). It seems both natural and technically
very useful to split the conditions on F ' L⊗R into conditions on L and conditions
on R. Our main result on this topic is the following one. In all this paper we will
use the notations (without the assumptions) introduced in its statement (as the
following one). If P is a smooth point of a variety T , aP (with a > 0, a integer) will
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denote the (a− 1)th- infinitesimal neighborhood of P in T , i.e. IaP/T := (IP/T )a; aP
is often called a fat point;

∑
j njPj denotes the scheme which is the disjoint union

of the fat points njPj.
Theorem 0.1. Let V be a smooth n-dimensional complete variety, Y =

{P1, ..., Ps} ⊆ V a set of s distinct points and π : X 7→ V the blowing - up of V
at Y ; let Ei := π−1(Pi), 1 ≤ i ≤ s, be the exceptional divisors. E will denote both
E1 + . . . + Es and its support. Fix integers mi ≥ 1, 1 ≤ i ≤ s, and line bundles
R and L on V . Set M := π∗(R ⊗ L) ⊗OX(−m1E1 − . . . −msEs) ∈ Pic(X). Set
m := m1P1 + . . . msPs. Assume R spanned, L very ample and H1(V, Im ⊗ R) = 0.
Assume the following condition :

Property (C1): If Y ′ ⊆ Y imposes at most 2 conditions on L and Z is a 0-
dimensional subscheme containing every miPi with Pi ∈ Y ′ and with length l(Z) ≤
l(
∑
j∈y′ mjPj) + 2 (where y′ := {j ∈ {1, ..., s} : Pj ∈ Y ′}) then Z imposes l(Z)

conditions on L⊗ R.
Then M is very ample.
In case V = Pn, property (C1) becomes: If Y ′ ⊆ Y is a subset of a line in

Pn and L ⊗ R = O(a), then l(
∑
j∈y′ mjPj) ≤ a − 1. This condition is clearly

necessary otherwise the proper transform of that line on X will be contracted to a
point. Property (C1) is the natural generalization to our general situation of this
condition.

We think it is interesting to study the higher order geometric properties of the
embeddings of X. We recall two very natural definitions introduced in [3]. Let Y be
a complete integral variety and L ∈ Pic(Y ); fix an integer k ≥ 0; L is called k-very
ample if for every subscheme Z of Y with length l(Z) ≤ k + 1, the restriction map
H0(Y, L) 7→ H0(Z, L|Z) is surjective, i.e. Z imposes independent conditions on L.
If Y is smooth and L ∈ Pic(Y ), L was called k-jet ample in [3] if for all sets of
integers {bj} with bj > 0 and Σjbj ≤ k + 1, and for all choices of different Pj ∈ Y ,
the restriction map H0(Y, L) 7→ H0(Z, L|Z) is surjective, where Z := ∪jbjPj. For
instance L is 0-very ample if and only if it is spanned, while very ampleness, 1-very
ampleness and 1-jet ampleness are equivalent. On this topic our main results are
Theorem 0.2 and its variation Proposition 4.1.

Theorem 0.2. Let V be a smooth n-dimensional complete variety, Y = {P1, . . . ,
Ps} a finite subset of V . Let π : X 7→ V be the blowing-up of V at Y . Let Ei =
π−1(Pi), 1 ≤ i ≤ s, be the exceptional divisors. Fix positive integers k, m1, . . . , ms.
Set Y (m) :=

∑
1≤i≤s miPi and Y (j, k) = (

∑
i6=j miPi)+ (mj + k)Pj . Fix line bundles

L and R on V and set M := π∗(L ⊗ R) ⊗ OX(−m1E1 − . . . − msEs) ∈ Pic(X).
Assume L k-very ample, R spanned, H1(V, L ⊗ R) = 0, mi ≥ k for every i, the
following condition ($) and the following Property (C2) :

For every integer j with 1 ≤ j ≤ s, Y (j, k) imposes independent conditions to R,
i.e. we have H1(V, IY (j,k) ⊗ R) = 0. ($)

Property (C2) : for every integer j with 1 ≤ j ≤ s, for every scheme Z with
l(Z) = k+1 and Z∩Ej = ∅, set |L(−Z)| := {x ∈ H0(V, L), x 6= 0 with 0-locus Dx ⊃
Z}, F (−Z) = ∩x∈|L(−Z)|Dx, Y ′ := Y ′Z := Y ∩ F (−Z). Set nij := mi if i 6= j and
i ∈ Y ′Z , njj := mj + k if j ∈ Y ′Z , nij = 0 if Pi /∈ Y ′Z . Then for every such Z and every
j, 1 ≤ j ≤ k, Z + (

∑
1≤i≤s nijPi} imposes independent conditions on L⊗ R.

Then M is k-very ample.
In section 2 we give another criterion for k-very ampleness (see Theorem 2.1).
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We prove in that section only the particular (but very important) case V = Pn (see
Proposition 2.2) because the statement of 2.2 shows the geometric significance of
the assumptions Property (C1), (C2), (C3), (C3’), (C4) and the proof of the general
case needs only notational changes. Furthermore, in the case V = Pn the geometric
assumptions are necessary ones and most of the cohomological ones are true for all
line bundles.

The starting point of this paper was [5], Th. 2, whose statement is generalized
by Theorem 0.1. Theorem 0.1 will be proved in section 1 with a long case by case
checking. On this proof we stress the Local Computations (see Section 1) which are
very useful (at least as inspiration) for the proofs of Theorem 2.1, Proposition 2.2
and in a key subcase of part (a) of the proof of 0.2.

We work always over an algebraically closed base field. A key difference between
the statements of 0.1, 0.2, 2.1, 2.2, 4.1 and previous work in this area is given by
the use of the very natural conditions called “Property (C1), (C2), (C3), (C3’) and
(C4)”.

The first named author was partially supported by MURST and GNSAGA of
CNR (Italy). The second named author want to thank the Department of Mathe-
matics of the Università di Trento for hospitality and CNR (Italy) for its support;
he is affiliated to the University of Leuven (Belgium) as a research fellow. Both au-
thors are members of Europroj and this research was made inside the group “Zero
dimensional schemes“ of Europroj.

1 Proof of Theorem 0.1.

In this paper we work always over an algebraically closed field K with arbitrary
characteristic. If Z is a 0-dimensional scheme, l(Z) will denote its length. If x
is a section of a line bundle, x 6= 0, Dx or Dx will denote the associated effective
Cartier divisor; sometimes, if the line bundle is on a blown - up variety to avoid
misunderstanding we will often write D′x instead of Dx. In the setting of 0.1 often
we will start with x ∈ H0(V, Im⊗L⊗R), x 6= 0, and it as a section, x′, of M on X;
in this case D′x will denote the divisor Dx′ on X.

For the proof of Theorems 0.1, 0.2 and of many of the results in this paper we
need the following lemma.

Lemma 1.1. Let Z ⊂ V be a 0-dimensional scheme. Assume L very ample,
R spanned and H1(V, IZ ⊗ R) = 0. Then for every x ∈ H0(V, L), x 6= 0, the map
H0(V, IZ ⊗ L⊗ R) 7→ H0(Dx, I(Z∩Dx)/Dx ⊗ L ⊗ R) is surjective.

Proof of 1.1. Let Z ′ be the residual of Z with respect to Dx. Since H1(V, IZ ⊗
R) = 0, we have H1(V, IZ′ ⊗ R) = 0. Consider the residual exact sequence

0 7→ IZ′ ⊗ L−1 7→ IZ 7→ I(Z∩Dx)/Dx 7→ 0 (1)

We obtain the lemma from the cohomology exact sequence of (1) tensored by
L⊗ R.

For the proof of 0.1 and (at least as language and inspiration) of 2.1, 2.2 and the
key subcase “l(Z ′) = 1” in part (a) of the proof of 0.2, we will need the following
local computations.
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LOCAL COMPUTATIONS: Fix a very ample J ∈ Pic(V ), integers ni ≥ 0, 1 ≤
i ≤ s and u ∈ H0(V, J), u 6= 0, vanishing at least of order ni at each Pi. Hence
u induces a global section u′ of π∗(J) − ∑

1≤i≤s niEi; call Du ⊂ V and D′u ⊂ X
the corresponding effective Cartier divisors. Set P := P1, m := n1 and E ′ := E1.
Fix c′ ∈ E ′ ∩ D′u and let c be the corresponding line in TPV . Choose formal
coordinates z1, ..., zn for V at P such that c corresponds to z2 = . . . = zn = 0. The
Taylor expansion of u at P is u = un + un+1 + . . .. Then z1, w2, . . . , wn are local
coordinates for X at c’ with π−1(zi) = z1wi for every i > 1. The local equation
for D′u at c′ is given by um(1, w2, . . . , wn) + um+1(1, w2, . . . , wn)z1 + . . .. Hence
c′ ∈ D′u if and only if um(1, 0, . . . , 0) = 0. This motivates the introduction of
the following 0-dimensional scheme supported by P and denoted (with an abuse
of notations) by mP + c′. The scheme mP + c′ is defined by the ideal sheaf of all
f ∈ K[[z1, . . . , zn]], with Taylor exspansion f = f0+f1+f2+. . . with fj = 0 if j < m
and fm(1, 0, ..., 0) = 0. Now take v′ ∈ Tc′(E) and let v be the corresponding plane of
TPV . We assume that the coordinates are chosen so that v = {z3 = . . . = zn = 0}.
Assume um(1, 0, . . . , 0) = 0. Then v′ ∈ Tc′(D

′
u) if and only if um(1, z2, . . . , zn) has

not order 1 with respect to z2. This motivates the introduction of the following
0-dimensional scheme supported by P and denoted (with an abuse of notations) by
mP +v′. The scheme mP +v′ is defined by the ideal sheaf of all f ∈ K[[z1, . . . , zn]],
with Taylor expansion f = f0 + f1 + f2 + . . . with fj = 0 if j < m, fm(1, 0, ..., 0) = 0
and fm(1, z2, . . . , zn) has not order 1 with respect to z2.

Proof of Theorem 0.1. The proof is a case by case long analysis to show first
that M is spanned, then that |M | separates distinct points and at the end that |M |
separates tangent directions.

(a) Proof that M is spanned.

(a1) Fix a ∈ X \ E and see it as a point of V , too. Since L is very ample there
is x ∈ H0(V, L) with a ∈ Dx and Dx ∩ Y = 0. Since (L⊗R)|Dx is spanned, we can
find u ∈ H0(Dx, (L⊗R)|Dx) with a /∈ Du. By Lemma 1.1 we obtain a section of M
not vanishing at a.

(a2) Now take a ∈ E, say a ∈ E1 and set P := P1, m := m1, E
′ := E1. Set

|L(−a)| := {x ∈ H0(V, L) : P + a ⊂ Dx}, F (−a) := ∩{Dx : x ∈ |L(−a)|} and
Y ′ := Y ∩F (−a). Hence Y ′ is as in the Property (C1). Take a general x ∈ |L(−a)|.
By Property (C1), the scheme ((m1P1 + a) + m2P2 + . . . + msPs) ∩ Dx imposes
independent conditions to (L ⊗ R)|Dx. Hence it imposes one more condition than
(m1P1 +m2P2 + . . .+msPs)∩Dx. From Lemma 1.1 we obtain u ∈ H0(V, Im⊗L⊗R)
with Du not containing m1P1 + a. Hence a /∈ D′u, proving that M is spanned at a.

(b) Proof that |M | separates points.Take two different points a, b of X.

(b1) First assume {a, b} ∩ E = ∅ and see a and b as points on V , too. Set
|L(−a− b)| := {x ∈ H0(V, L) : {a, b} ⊂ Ds}, F (−a− b) := ∩{Dx : x ∈ |L(−a− b)|}
and Y ′ := Y ∩ F (−a− b). Hence Y ’ is as in the Property (C1). By Property (C1)
we find u′ ∈ H0(Dx, Im∩Dx/Dx ⊗ L ⊗ R) with a ∈ Du′ and b /∈ Du′ . By Lemma 1.1
we find u ∈ H0(V, Im ⊗ L ⊗R) with a ∈ Du and b /∈ Du.

(b2) Now assume b /∈ E and a ∈ E, say a ∈ E ′ := E1. Set again P := P1.
Write also c′ := a and use the corresponding notations c, and so on, as in the Local
Computations. Set |L(−P − b)| := {x ∈ H0(V, L) : {P, b} ⊂ Ds}, F (−P − b) :=
∩{Dx : x ∈ |L(−P − b|} and Y ′ := Y ∩ F (−P − b). Hence Y ′ is as in the Property



Very ample line bundles on blown - up projective varieties 441

(C1). First assume c ⊂ TP (F (−P − b)). Take a general x ∈ |L(−P − b)|. By
Property (C1) we obtain u′ ∈ H0(Dx, Im∩Dx/Dx ⊗ L ⊗ R) with b ∈ Du′ and c not
contained in TP (Du′). By Lemma 1.1 there is u ∈ H0(V, Im ⊗ L ⊗ R) with b ∈ Du,
c not contained in TP (Du). Hence b ∈ Du and a /∈ Du, as wanted.

(b3) Now assume c not contained in TP (F (−P − b)). Since m imposes indepen-
dent conditions to R, there is s′ ∈ H0(V, R) vanishing on (m1− 1)P1 +m2P2 + . . .+
msPs but not on (m1 − 1)P1 + c′. Take x ∈ |L(−P − b)| with c not contained in
TP (Dx) and set u := s′x ∈ H0(V, Im ⊗ L ⊗ R). We have b ∈ Du but m1P1 + c not
contained in Du. Hence b ∈ D′u and a /∈ D′u.

(b4) Now assume a, b ∈ E with π(a) 6= π(b) (say π(a) = P1 and π(b) = P2).
Set |L(−P1 − P2)| := {x ∈ H0(V, L) : {P1, P2} ⊂ Dx}, F (−P1 − P2) := ∩{Dx :
x ∈ |L(−P1 − P2)|} and Y ′ := Y ∩ F (−P1 − P2). Then Y ′ is as in the Property
(C1). Use again the notations P, c′ = a, c, E ′. First assume c not contained in
TP (F (−P1−P2)). Take y ∈ H0(V, R) vanishing on (m1− 1)P1 + m2P2 + . . .+ msPs
but not on (m1− 1)P1 + c. Take x ∈ |L(−P1−P2)| with c not contained in TP (Dx)
and set u := yx ∈ H0(V, Im⊗L⊗R). Then Du contains (m2+1)P2, hence m2P2 +b,
but not m1P1 + c′, i.e. D′u separates a and b. A similar argument works if the line
of TP2(V ) corresponding to b is not contained in TP2(F (−P1 − P2)).

(b5) Now we assume that the lines c and c” are contained respectively in
TP (F (−P1 − P2)) and in TP2(F (−P1 − P2)). Set Y ′ := F (−P1 − P2) ∩ Y ; it is
as in Property (C1). Take a general x ∈ |L(−P1 − P2)|. By Property (C1) we can
find y ∈ H0(Dx, Im∩Dx/Dx ⊗ R ⊗ L) with Dy containing (m1P1 ∩ Dx) + a but not
(m2P2 ∩Dx) + b. By Property (C1) there exists u ∈ H0(V, Im ⊗ L⊗ R) containing
(m1P1 ∩Dx) + a but not (m2P2 ∩Dx) + b. Hence a ∈ D′u and b /∈ D′u.

(b6) Finally assume {a, b} ⊂ E with π(a) = π(b), say π(a) = P := P1. Take
y ∈ H0(V, R) vanishing on m 2P2 + . . . + msPs and on (m1 − 1)P1 + a but not on
(m1 − 1)P1 + b. Take x ∈ H0(V, L ⊗ IP ) such that, if c” is the line corresponding
to b, then c” ∩ TP (Dx) = 0. Set u := yx ∈ H0(V, Im ⊗ L ⊗R). Then u vanishes on
m1P1 + a but not on m1P1 + b. Hence D′u separates a and b.

(c) Proof that |M | separates tangent directions. Fix b ∈ X and v ∈ Tb(X),
v 6= 0.

(c1) First assume b /∈ E and consider b and v as ab ∈ V, v ∈ Tb(V ). Set |L(−v)| :=
{x ∈ H0(V, L) : b ∈ Dx and v ∈ Tb(Dx)} and F (−v) := ∩{Dx : x ∈ |L(−v)|}. Then
Y ′ := Y ∩ F (−v) is as in Property (C1); set y′ := {j ∈ {1, . . . , s} : Pj ∈ Y ′}. We
apply Property (C1) to (

∑
i∈y′ miPi) + v seeing v as a length 2 subscheme of V . By

(C1) for a general x ∈ |L(−v)| we obtain y ∈ H0(Dx, Im∩Dx/Dx⊗L⊗R) with b ∈ Dy

and v /∈ Tb(Dy). By Lemma 1.1 we find u ∈ H0(V, Im ⊗ L ⊗ R) with b ∈ D
′
u′ and

v /∈ Tb(D
′
u′).

(c2) From now on we assume b ∈ E, say b ∈ E1 = E ′. First we assume v ∈ Tb(E
′).

However, the local computations we will make for this case will settle also a part of
the case v /∈ Tb(E

′). Take y ∈ H0(V, R) with y vanishing on (m − 1)P1 + m2P2 +
. . . + msPs but not on (m − 1)P1 + b. Take x ∈ H0(V, L) with P1 ∈ Dx, the line
λ ⊂TP (V ) corresponding to b contained in TP (Dx) but the plane Vv corresponding to
v not contained in TP (Dx). Set u := xy ∈ H0(V, Im⊗L⊗R). We want to study u in
terms of the Local Computation; since L is very ample, we may use global sections
of L to obtain local coordinates aroundP . We have y = ym−1 + ym + . . . with c :=
ym−1(1, 0, . . . , 0) 6= 0 and x = x1 with x1(1, 0, . . . , 0) = 0 but x1(0, v2, . . . , vn) 6= 0.
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Thus u = um + um+1 + . . . with um = ym−1x1 satisfying um(1, 0, . . . , 0) = 0 and
um ≡ zm−1

1 x1 mod (z2, . . . , zn)
2. Hence the linear term of um(1, z2, . . . , zn) does not

vanishes at (v2, . . . , vn). This gives u and u′ with b ∈ Du′ but v /∈ Tb(Du′). On
the other hand, consider λ′ := (1, 0, . . . , 0) ∈ Tb(X). For u′ ∈ H0(X, M) we have
u′(z1, w2, . . . , wn) ≡ cx1(1, w2, . . . , wn) mod (z1, w2, . . . , wn)

2 and so λ′ ∈ Tb(D
′u′).

We conclude that for each v ∈ Tb(E) we find u ∈ H0(X, M) with b ∈ Du′ , λ
′ ∈

Tb(Du′ ), v /∈ Tb(Du′ ).
Now, take |L(−b)|, F (−b) and Y ′ := Y ∩ F (−b) as before in step (a2). Y ′ is

as in the Property (C1). First, we make a further local computation concerning
λ′ = (1, 0, . . . , 0) ∈ Tb(X). Take u vanishing on mP ; in K[[z1, . . . , zn]] write u =
um+um+1 +. . . ; hence π∗(u) = zmum(1, w2, . . . , wn)+zm+1um+1(1, w2, . . . , wn)+. . ..
One has b ∈ Du if and only if um(1, 0, . . . , 0) = 0. In that case λ′ ∈ Tb(Du) if and
only if um+1(1, 0, . . . , 0) = 0. This is the motivation for the introduction of the
subscheme mP +λ′ defined by the ideal {f ∈ K[[z1, . . . , zn]] : f = f0 + f1 + . . . with
fj = 0 for j < m, fm(1, 0, . . . , 0) = fm+1(1, 0, . . . , 0) = 0}. First suppose mP +λ′ not
contained in F (−b). Take s′ ∈ H0(V, R) vanishing on (m−1)P +m2P2 + . . .+msPs
but not on (m − 1)P + b and take x ∈ |L(−b)| non vanishing on mP + λ′. Set
y := s′x ∈ H0(V, Im ⊗ L ⊗R). Since we have

π∗(s′) = zm−1s′m−1(1, w2, . . . , wn) + zms′m(1, w2, . . . , wn) + . . .

with s′m−1(1, 0, . . . , 0) 6= 0

and

π∗(x) = zx1(1, w2, . . . , wn) + z2x2(1, w2, . . . , wn) + . . . with x1(1, 0, ..., 0) = 0

and
x2(1, 0, ..., 0) 6= 0,

it follows that

π∗(y) = zms′m−1(1, w2, . . . , wn)x1(1, w2, ..., wn)

+ zm+1(s′m−1(1, w2, ..., wn)x2(1, w2, . . . , wn)

+ s′m(1, w2, . . . , wn)x1(1, w2, . . . , wn)) + . . .

( i.e. ym(1, w2, . . . , wn) = s′m−1(1, w2, . . . , wn)x1(1, w2, . . . , wn)

and ym+1(1, w2, . . . , wn) = s′m−1(1, w2, . . . , wn)x2(1, w2, . . . , wn)

+ s′m(1, w2, . . . , wn)x1(1, w2, . . . , wn))

with
ym(1, 0, . . . , 0) = 0( i.e. b ∈ D′y),

ym+1(1, 0, . . . , 0) = s′m−1(1, 0, . . . , 0)x2(1, 0, . . . , 0) 6= 0

(hence λ′ not contained in T b(D
′y)). Thus in this case we can find q ∈ H0(X, M)

with b ∈ Dq and λ′ /∈ Tb(Dq).
Now we consider the case mP + λ′ ⊂ F (−b). We take a general x ∈ |L(−b)|.

The Property (C1) implies the existence of s′ ∈ H0(Dx, Im∩Dx/Dx⊗L⊗R) vanishing
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on mP + b but not on mP + λ′. By Lemma 1.1 we find y ∈ H0(V, Im ⊗ L ⊗ R)
vanishing on mP + b but not on mP + λ′. Again we find b ∈ D′y but λ′ /∈ Tb(D

′
y).

Now assume the existence of v ∈ Tb(X) such that v ∈ Tb(Dq) for every q ∈
H0(X, M) vanishing at b. It follows that v /∈ Tb(E

′) and v /∈ Kλ′. Let W be the
plane spanned by v and λ′ and v′ ∈ W ∩ TP (E ′), v′ 6= 0. We would find that for
each x ∈ H0(X, M) satisfying b ∈ Dx′ and λ′ ∈ Tb(Dx) we have W ⊂ Tb(Dx); in
particular v′ ∈ Tb(Dx). We proved that this is not the case.

Now the proof of Theorem 0.1 is over.

2 Other very ampleness results.

We can prove the following general result.
Theorem 2.1. Fix integers k ≥ 1, s ≥ 1, mi, 1 ≤ i ≤ s, with mi ≥ k for every i,

a smooth complete n- dimensional variety V , a set Y = {P1 . . . , Ps} on V and k +1
line bundlesR, L1, . . . , Lk on V . Let π : X → V be the blowing - up of V at Y . Set
m = m1P1 + . . . + msPs. Assume H1(V, R ⊗ Im) = 0 and Li very ample for every
i, 1 ≤ i ≤ s. Assume

H1(V, R) = H2(V, R) = H1(V, R⊗ L1 ⊗ . . .⊗ Lj) = H2(V, R ⊗ L1 ⊗ . . .⊗ Lj = 0

for every j, 1 ≤ j ≤ k. Assume the following Property (C3):
Property (C3): For every j with 1 ≤ j < k, for every W ⊆ m with supp(W )

imposing at most 2 conditions on Lk−j , every scheme Z ⊂ V with l(Z) − l(W ) ≤
k + 1− j imposes l(Z) conditions to R⊗ L1 ⊗ . . .⊗ Lk−j .

Let Ei := π−1(Pi), 1 ≤ i ≤ s, be the exceptional divisors; set M := π∗(R ⊗ L1 ⊗
. . .⊗ Lk)⊗OX(−m1E1 − . . .−msEs) ∈ Pic(X). Then M is k-very ample.

A key motivation for the proof of Theorem 2.1 was the introduction of schemes
aPj + Z as in the Local Calculations in the proof of Theorem 0.1 and the corre-
sponding analysis. The use of k very ample line bundles in the statement of 2.1
does not look optimal. It would be better if we could prove a similar statement
with a unique k-very ample line bundle L instead of a tensor product L1⊗ . . .⊗Lk.
This will be Theorem 0.2, but there we impose stronger condition on Y . In the
important special case V = Pn however a line bundle OV (m) is k-very ample if and
only if m ≥ k and then OV (m) = OV (1)⊗m is the tensor product of k very ample
line bundles. Furthermore, all the higher order cohomology groups of the relevant
line bundles vanish when V = Pn. Hence Theorem 2.1 gives a sharp result in this
case and we want to restate and prove it in this important case. The proof for the
general case is an immediate translation of this proof. Therefore we leave it to the
reader.

Proposition 2.2. Fix integers k ≥ 1, t ≥ 1, s ≥ 1, mi, 1 ≤ i ≤ s, with mi ≥ k
and a set Y = {P1, . . . , Ps} on Pn. Let π : X → Pn be the blowing - up of P := Pn

at Y . Set m := m1P1 + . . . + msPs. Assume H1(Pn, Im(t)) = 0 and assume the
following Property (C3’):

Property (C3’): No subscheme Z of m with l(Z) ≥ t + 1 has support contained
in a line of Pn.

Set Ei := π1(Pi), 1 ≤ i ≤ s. Then M := π∗(OP(k+t))⊗OX (−m1E1−. . .−msEs)
is k−very ample.
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Proof. The case k = 1 is Theorem 0.1 with V = Pn. We use induction on k.
So, suppose k = f > 1 and suppose the proposition holds for k ≤ f − 1. Let Z be a
0-dimensional subscheme of X of length f +1. If the set π(Z red) is not contained in
Y , then take a hyperplane H with H∩Y = ∅ and π(Z red)∩H 6= ∅. Set w = 0 in this
case. If π(Zred) ⊆ Y , then choose a ∈ Z red with, say, P := P1 = π(a). Let G be the
line in Pn through P defined by a. Say G ∩ Y = {P1, . . . , Pw}. Take a hyperplane
H in Pn with G ⊆ H and H ∩ Y = H ∩G. Let H ′ be the proper transform of H in
X. Then π′ := π|H ′:H ′ → H is the blowing - up of H ' Pn at P1, . . . , Pw. Let Z ′ be
the residual subscheme of Z with respect to H. From the exact residual sequence

0→ IZ′(−H ′)→ IZ → IZ∩H/H → 0

we obtain the exact sequence

H1(X, M ⊗ IZ′(−H ′))→ H1(X, M ⊗ IZ)→ H1(H ′, M ⊗OH ′ ⊗ IZ∩H ′/H ′) (2)

By Property (C3’) we have l(H ′∩Z)+
∑

1≤i≤w mi ≤ k+t+1. On the other hand
M ⊗OH ′ = π′∗(OH(k + t))⊗OH ′(−Σ1≤i≤wmi(Ei ∩H ′)). This implies that H ′ ∩Z
imposes independent conditions on M⊗OH , so we have an inclusion of H1(H ′, M ⊗
OH ′⊗ IZ∩H ′/H ′) into H1(H ′, M ⊗OH ′) ' H1(H, Im

′(k + t)) with m′ = Σ1≤i≤wmiPi.
Since

∑
1≤i≤w mi ≤ t, this implies H1(H ′, M ⊗OH ′) = 0, hence H1(H ′, M ⊗OH ′ ⊗

IZ∩H ′/H ′). On the other hand M(−H ′) = π∗(OP(k + t− 1))⊗OX(−∑1≤i≤w(mi −
1)Ei −

∑
j>w mjEj). We may apply the inductive assumption to this line bundle

and obtain that M(−H ′) is (f − 1)−very ample. Since l(Z ′) < l(Z) = f + 1 we
find that Z ′ imposes independent conditions on M(−H ′). Since H1(X, M(−H ′)) =
0, it follows that H1(X, M ⊗ IZ′(−H ′)) = 0. By the exact sequence (2) we find
H1(X, M ⊗ IZ) = 0. This implies that M is f− very ample.

3 Proof of Theorem 0.2.

Here we prove Theorem 0.2. The proof will give easily other results (see section 4).
Proof of Theorem 0.2. The proof is by induction on k. It is divided into two

parts, the first one being the initial case k = 1.
(a) First assume k = 1. Let Z be a length 2 subscheme of X. Fix j, 1 ≤ j ≤ s,

such that if E ∩ Z 6= ∅, then Z ∩ Ej 6= ∅. Let Z ′ be the residual subscheme of Z
with respect to Ej . We have the exact residual sequence

0→ IZ′(−Ej)→ IZ → IZ∩Ej/Ej → 0 (3)

and the corresponding exact cohomology sequence. Since mj ≥ 1, l(Z ∩ Ej) ≤ 2,
we find H1(Ej , M ⊗ IZ∩Ej/Ej) = 0. Note that H1(X, M(−Ej)) ' H1(V, IY (j,1) ⊗
L⊗R). Since Y (j, 1) imposes independent conditions to R, it imposes independent
conditions on L ⊗ R. Hence h1(V, IY (j,1) ⊗ L ⊗ R) ≤ h1(V, L ⊗ R) = 0. If we are
able to prove that Z ′ imposes independent conditions to M(−Ej), then we also find
H1(X, M ⊗ IZ) = 0 by (3). In case Z ′ = ∅, there is nothing to prove. Suppose
l(Z ′) = 1.

First assume Q := π(Z ′) /∈ Y . Take x ∈ H0(V, L) with Q ∈ Dx and Dx ∩ Y = ∅.
Since R and L are spanned there is s′ ∈ H0(Dx, L⊗R|Dx) with Q /∈ Ds′ . By Lemma



Very ample line bundles on blown - up projective varieties 445

1.1 this lifts to w ∈ H0(V, IY (j,1) ⊗ L⊗R) with Q /∈ Dw. It follows that Z ′ imposes
one condition to M(−Ej).

Now assume π(Z ′) ∩ Y 6= ∅. Since l(Z ′) = 1 by the choice of j the scheme Z
is unreduced, not in E j but with support on Ej. Hence π(Z ′) = Pj . With the
notations of the Local Computations of section 1 we consider yPj + t with y = mj

or 1 or mj + 1 and t the tangent vector to V at Pj corresponding to the point
Z ∩ Ej . Take s′ ∈ H0(V, R) vanishing with order at least mr at each Pr ∈ Y but
not on mjPj + t; take x ∈ H0(V, L) vanishing at Pj but not on Pj + t. Thus
s := s′x ∈ H0(V, IY (j,1)⊗L⊗R) vanishes at (mj + 1)Pj but not on (mj + 1)Pj + t.
This implies thatZ ′ imposes one condition to M(−Ej).

Finally assume l(Z ′) = 2 and π(Z) ∩ Y = ∅. We consider Z as subscheme of
V . Since L is very ample, Z imposes independent conditions to H0(V, L). Take
a general x ∈ H0(V, L ⊗ IZ). From the Property (C2) we know that ((m1P1 +...

+msPs) ∩Dx) + Z imposes independent conditions on L⊗R⊗ODx. Hence by the
lemma 1.1 m1P1+...+msPs+Z imposes independent conditions on L⊗R, concluding
the proof of the case k = 1.

(b) Now assume k = f ≥ 2 and the result true for k < f . Now Z is a subscheme
of X with length f + 1. Fix again j, 1 ≤ j ≤ s, such that if E ∩ Z 6= ∅, then
Z ∩ Ej 6= ∅. Let again Z ′ be the residual scheme of Z with respect to Ej. Since
mj ≥ f , the proof given in part (a) shows that H1(Ej, IZ∩Ej/Ej ⊗ M) = 0. As
in part (a) we have H1(X, M(−Ej)) = 0. Hence by Lemma 1.1 it is sufficient
to prove that Z ′ imposes independent conditions to M(−Ej). If l(Z ′) = f + 1
(i.e. Z ∩ E = ∅), this is done as in part (a). Assume l(Z ′) < f + 1; note that
deg(M(−Ej) ∩ Ej) + l(Z ′) = mj + 1 + l(Z ′) ≤ mj + k; we may use the inductive
assumption by the particular shape of condition ( $) and property (C2).

Now the proof of Theorem 0.2 is over.

4 Easy generalizations.

Here we list two results whose proof is exactly the same as the one of Theorem 0.2.

Proposition 4.1. Let V be a smooth n-dimensional complete variety, Y =
{P1, . . . , Ps} a finite subset of V . Let π : X → V be the blowing-up of V at Y .
Let Ei = π−1(Pi), 1 ≤ i ≤ s, be the exceptional divisors. Fix positive integers
k, m1, . . . , ms. Set Y (m) :=

∑
1≤i≤s miPi and Y (j, k) = (

∑
i6=j miPi) + (mj + k)Pj .

Fix line bundles L and R on V and set M := π∗(L⊗ R)⊗OX(−m1E1 − . . . −
msEs) ∈ Pic(X). Assume L k−jet ample, R spanned, H1(V, L ⊗ R) = 0, mi ≥ k
for every i, the following condition ($) and the following property (C4):

For every integer j with 1 ≤ j ≤ s, Y (j, k) imposes independent conditions to
R, i.e. we have H1(V, IY (j,k) ⊗ R) = 0. ($)

Property (C4) : for every integer j with 1 ≤ j ≤ s, for every choice of integers
br > 0 with

∑
r br ≤ k + 1 and of points Ar ∈ V , and for every scheme Zwith Z ⊆∑

r brAr and Z∩Ej = ∅, set |L(−Z)| := {x ∈ H0(V, L), x 6= 0 with 0-locusDx ⊃ Z},
F (−Z) = ∩x∈|L(−Z)|Dx, Y ′ := Y ′Z := Y ∩ F (−Z). Set nij := mi if i 6= j and i ∈ Y ′,
njj := mj + k if j ∈ Y ′Z , nij = 0 if Pi /∈ Y ′Z . Then for every such Z and every
j, 1 ≤ j ≤ k, Z + (

∑
1≤i≤s nijPi) imposes independent conditions on L⊗ R.

Then M is k− jet ample.
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Proof. This result is proven by the proof of Theorem 0.2 with no modification
because :

(i) if P ∈ Ej ⊂ X the residual scheme of aP (as fat point of X) is (a− 1)P and
its restriction to Ej is aP (as fat point on Ej ' Pn−1);

(ii) OEj(mj) is mj−jet ample (hence k−jet ample).
The main definitions related to k−spannedness (k−very ampleness, k−jet am-

pleness) using the surjectivity of maps work verbatim for vector bundles of arbitrary
rank (and were introduced and discussed previously (see e.g. [2])). Note that for
a higher rank bundle R the condition “R induces an embedding in a Grassman-
nian” is weaker than the condition “R is very ample”, which in turn is weaker than
the condition “R is 1-very ample” because traditionally the second concept means
“OP(E)(1) is very ample”. With these definitions we obtain trivially the following
result.

Proposition 4.2. Take all the assumption of Theorem 0.2 (resp. of Proposition
4.1), except that R and L are vector bundles of arbitrary rank and R is not assumed
very ample but 1−very ample (resp. 1−jet ample). Then M is k−very ample (resp.
k−jet ample).

Now we discuss some of the generalized definitions around the concept of k-
spannedness made in [2]. We will write “k∗ spanned” as a shorthand for k−very
ample (resp. k−jet ample, resp. k−spanned).

(4.3) “Generically k∗ spanned” means: there is a Zariski open dense subset U
of the base scheme, Y , such that the surjectivity of the restriction map holds for
0−dimensional schemes Z with Zred ⊆ U .

(4.4) If T is closed in Y , “k∗ spannedness outside T” means that the testing
0−dimensional schemes have support in Y \ T .

(4.5) Let D be an effective Cartier divisor of Y ; “k∗ spanned outside B and b∗

ample along D” means the surjectivity condition of the restriction map for every
cycle, say Z = Z ′ ∪ Z”, with Z ′red ∩Dred = ∅, Z”red ⊆ D red and Z” ⊂ bD”.

Remark 4. 6. If we drop the condition “mi ≥ k” in the statements of 0.2 or
4.1 or 4.2 we obtain the same result except that along each Ei the line bundle M is
shown to be only min(k, mi)

∗ spanned.
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