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Abstract

The motivation of this paper is to find formulations of the local rigid-
ity theorems for centro-affine curves and hypersurfaces that are amenable to
direct application to problems in control theory. Élie Cartan’s method of mov-
ing frames develops the solutions in a natural way. The case of centro-affine
curves has previously appeared only for certain low dimensions. This is the
first time a theory for curves in arbitrary dimensions has appeared.

Preliminaries

The method of moving frames is a technique that is well suited to the study of
submanifolds of a homogeneous space. In [Ca], Cartan shows that when a Lie group
acts transitively and effectively on a manifold, one can construct a bundle of frames
over the manifold. Cartan develops this theory to study two submanifold problems:
the problem of contact and the problem of equivalence. The first problem involves
determining the order of contact two submanifolds have at a point. The second
problem involves determining when there exists an element of the given Lie group
that translates one submanifold onto another. Cartan devotes most of his book to
specific geometric examples of these problems. Another source for examples is a
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book by Favard [Fa]. A more recent description of the method of moving frames can
be found in [Gn] and [Gs]. Green’s paper [Gn] carefully points out subtle features
in the theory and includes many examples.

Cartan proves two lemmas in [Ca] that are central to many applications of moving
frames. We will state them in a form adapted to our applications.

Lemma 1. Let N be a smooth connected manifold, let G be a Lie group and let
π be the right-invariant Maurer-Cartan form on G. Suppose that we are given two
smooth mappings X and X ′ from N to G, then there exists a fixed element g ∈ G
such that X ′(p) = X(p) · g for every p ∈ N if and only if X ′∗(π) = X∗(π).

Definition. Let G be a Lie group, N a smooth manifold and $ a 1-form on N
taking values in the Lie algebra of G. For each p ∈ N , we define the rank of $ at p
to be the rank of the linear transformation $ : TpN → TeG.

Lemma 2. Let G be a Lie group and let π be the right-invariant Maurer-Cartan
form on G. Let N be a smooth manifold and let $ be a 1-form on N taking values in
the Lie algebra of G. If the exterior derivative of $ satisfies the structure equation

d$ = $ ∧$

then at every point p ∈ N there exists a neighborhood U ⊂ N about p and a unique
smooth mapping X : U → G such that X(p) is the identity element in G and
$ = X∗(π). Moreover, X is an immersion if and only if $|U has constant rank
equal to the dimension of N .

Speaking informally, lemma 1 says that two maps into a Lie group differ by a
right multiplication if and only if their respective pullbacks of the right-invariant
Maurer-Cartan form agree. Lemma 2 says that a Lie algebra valued 1-form on
Nsatisfying the necessary structure equation is always (locally) the pullback of
the right-invariant Maurer-Cartan form. For our applications, G will be the gen-
eral linear group GL(n + 1,R) and the right-invariant Maurer-Cartan form will be
dSS−1 = (ωi

j). The proofs of the lemmas are straightforward. The if part of lemma
1 follows from the fact that a function is constant when its derivative is identically
zero. One can prove lemma 2 using the technique of the graph, which is described
in Warner [Wa].

We will also need the following standard result:

Lemma 3 (Cartan’s lemma). Let {ω1, . . . , ωn} be a set of pointwise linearly in-
dependent 1-forms. The 1-forms {θ1, . . . , θn} satisfy the relation

ω1 ∧ θ1 + · · ·+ ωn ∧ θn = 0

if and only if

θα = hα1 ω1 + · · ·+ hαn ωn, 1 ≤ α ≤ n,

where the n2 functions hαβ satisfy the symmetry relation hβα = hαβ.



Centro-affine Curves and Hypersurfaces 381

The notion of semi-basic differential forms will be important in the following
sections. Let ρ : B → M be a surjective submersion. The kernel of ρ∗ : TB → TM
determines the subbundle V ⊂ TB of vertical tangent vectors. Its annihilator
V ⊥ ⊂ T ∗B generates a family of subbundles

∧p (V ⊥) ⊂ ∧p (T ∗B).
Definition. Let θ be a differential p-form on B. We say that θ is semi-basic for
ρ : B →M if θ is a section of

∧p (V ⊥).
To get a feel for semi-basic forms, pick a system of local coordinates (x1, . . . , xm)

on M . Lift these functions to B and complete them to a system of local coordinates
(x1, . . . , xm; y1, . . . , yν) on B. In this system of coordinates, a semi-basic 1-form
is represented by θ =

∑
i ai(x, y) dxi and, using multi-index notation where I =

{i1, . . . , ip}, a semi-basic p-form is represented by θ =
∑
I aI(x, y) dxI. Notice that

the pull-back ρ∗θ of any p-form θ on M is semi-basic, but not every semi-basic p-form
is the pull-back of a p-form on M . This will be true exactly when the coefficient
functions aI(x, y) are functions of x alone. It is easy to show that a differential form
θ on B is a pullback if and only if both θ and dθ are semi-basic.

1 The centro-affine frame bundle on punctured Rn+1

We define punctured (n + 1)-space to be the set of nonzero row vectors in Rn+1,
and we will denote it by Rn+1

0 . Since the group GL(n + 1,R) acts transitively
and effectively on Rn+1

0 , we can use the method of moving frames to study the
GL(n + 1,R)-invariants of curves and hypersurfaces in punctured space. A centro-
affine frame on Rn+1

0 will consist of n + 1 linearly independent vectors in Rn+1
0 ,

(e0, e1, . . . , en). We define the centro-affine frame bundle, F , to be the set of all
frames on Rn+1

0 . We may also think of the frame (e0, e1, . . . , en) as the GL(n + 1,R)
matrix (ei

j), 0 ≤ i, j ≤ n, where ei is the row vector ei = (ei
0, ei

1, . . . , ei
n). Now

GL(n + 1,R) is an open subset of the (n + 1)2-dimensional vector space L(n + 1,R)
of all (n + 1) × (n + 1) matrices. The projections ei : L(n + 1,R) → Rn+1 onto
the ith row of the matrices are linear maps, and therefore their restrictions to any
open subset are differentiable. In particular, we have n + 1 differentiable mappings
ei : F → Rn+1

0 . Expressing the derivatives of these mappings relative to themselves
gives the structure equations on F :

dei =
n∑
j=0

ωi
j ej 0 ≤ i ≤ n (1.1)

dωi
j =

n∑
k=0

ωi
k ∧ ωk

j 0 ≤ i, j ≤ n. (1.2)

In these equations we view ei as a function from F to Rn+1
0 . The structure equations

merely express the derivatives of these maps in terms of the given frame. The set of
(n + 1)2 1-forms {ωij | 0 ≤ i, j ≤ n } forms a basis for the 1-forms on F .
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2 Centro-affine hypersurfaces in Rn+1

We begin by illustrating the method of moving frames for the case of hypersurfaces
in Rn+1

0 . The centro-affine theory of hypersurfaces in Rn+1
0 is similar to the equi-

affine theory of hypersurfaces in Rn. This was worked out in our setting in [Ga],
and makes a useful comparison to this section. Let X : Nn → Rn+1

0 be a smooth

immersion of the n-dimensional manifold N , and form the pullback bundle, F (0)
X , of

the centro-affine frame bundle

F (0)
X −−−→ Fy ye0

N −−−→
X

Rn+1
0 .

By construction, F (0)
X = { (u, e0, . . . , en) ∈ N × F | X(u) = e0 }, and we think of

F (0)
X as the set of frames (e0, . . . , en) whose zeroth leg is the position vector of N .

From equation (1.1) we see that

dX = de0 = ω0
0 e0 + ω0

1 e1 + · · · + ω0
n en, (2.1)

and thus ω0
0, . . . , ω0

n are semi-basic 1-forms for F (0)
X → N . The natural restriction

to frames with e1, . . . , en tangent to the image of the surface X(N) utilizes the first
order information. However, there can be an obstruction to this adaptation. Since
the vectors e0, e1, . . . , en must be linearly independent, it must be the case that the
position vector, X = e0, does not lie in its tangent space, or equivalently, that the
tangent space does not pass through the origin. From equation (2.1) we see that
this is equivalent to the condition ω0

1∧· · ·∧ω0
n 6= 0. We will assume that we are in

this case. Let F (1)
X denote the set of frames in F (0)

X such that e1, . . . , en are tangent

to X(N). Restricting to F (1)
X , equation (2.1) implies that ω0

0 = 0, and since

de0 =
n∑
α=1

ω0
αeα,

{ω0
1, . . . , ω0

n} is a basis for the semi-basic 1-forms. (In this section we use the
following naming convention for index ranges: greek letters span the tangential
range 1 ≤ α, β, . . . ≤ n and latin letters span the full range 0 ≤ i, j, . . . ≤ n.)

Differentiation of ω0
0 yields

0 = dω0
0 =

n∑
α=1

ω0
α ∧ ωα

0, (2.2)

so using Cartan’s lemma we have by (2.2),

ωα
0 =

n∑
β=1

hαβ ω0
β with hαβ = hβα, 1 ≤ α ≤ n.

Differentiation of this last formula together with equations (1.2) yields

n∑
β,γ=1

(dhαγ − ωα
βhβγ − hαβωγ

β) ∧ ω0
γ = 0, 1 ≤ α ≤ n. (2.3)
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Letting H = (hαβ), Ω = (ωα
β) we may write this last equation in matrix form as

dH −ΩH −HtΩ ≡ 0 mod (ω0
1, . . . , ω0

n), (2.4)

which is the infinitesimal action induced by conjugation. (See pages 40–43 of [Ga1]
for a discussion of group actions and how to identify them from their infinitesimal
actions.) Equations (2.3) imply that H is the matrix of the quadratic form

IICA =
n∑

α,β=1

hαβ ω0
α ω0

β ,

which by construction is well defined independent of frame and hence drops to the
hypersurface N . This form is called the centro-affine metric, and is the centro-affine
analog to the Blaschke metric in equi-affine geometry [Bl].

If we assume the hypersurface is convex, then H is negative definite and we can
use the conjugation to normalize H = −I . Then (2.4) becomes

∆ =
1

2
(Ω + tΩ) ≡ 0 mod (ω0

1, . . . , ω0
n)

and utilizing (2.3) and Cartan’s lemma we see that

∆α
β =

∑
Sα

β
γ ω0

γ

is a tensor symmetric in all three indices. The cubic form

PCA =
n∑

α,β,γ=1

Sαβγ ω0
α ω0

β ω0
γ,

where Sαβγ =
∑
σ Sα

σ
γ hσβ , is called the centro-affine Pick form.

Let Φ = 1
2
(Ω− tΩ) so that tΦ = −Φ, then

Ω = Φ + ∆.

If we differentiate the structure equations

d

(
e0

e

)
=

(
0 ω
−tω Ω

)(
e0

e

)
(2.5)

we get

d

(
0 ω
−tω Ω

)
=

(
0 ω
−tω Ω

)
∧
(

0 ω
−tω Ω

)
(2.6)

and in particular the upper right blocks of (2.6) give

dω = ω ∧ Ω = ω ∧ Φ + ω ∧∆ = ω ∧ Φ, (2.7)

since ω ∧∆ = 0 by the symmetry of the indices in Sα
β
γ .

If Φ̄ were any other matrix of 1-forms satisfying

dω = ω ∧ Φ̄ and tΦ̄ = −Φ̄, (2.8)
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then subtraction of (2.8) from (2.7) gives

ω ∧ (Φ− Φ̄) = 0,

and Cartan’s lemma with the skew symmetry of Φ − Φ̄ implies that Φ − Φ̄ is a
three-index tensor symmetric in one pair of indices and skew symmetric in the other
pair and hence is identically zero. Thus Φ = Φ̄, and (2.7) defines Φ uniquely.
The forms in Φ depend not only on coordinates on the hypersurface, but also on
group coordinates in SO(n,R) resulting from the frames satisfying the normalization
H = −I . In fact, this normalization simply means that ω0

1, . . . , ω0
n diagonalizes

the centro-affine metric, and therefore equation (2.7) shows that Φ is the metric
connection determined by IICA.

In addition to the metric connection of the centro-affine metric, we also have
the connection induced by the centro-affine normal, e0. Equation (2.5) shows this
connection is represented by Ω. Equation (2.6) implies that

dΩ− Ω ∧ Ω = −tω ∧ ω,

which means that Ω is projectively flat. Since Ω = Φ+∆, we see that ∆ is the differ-
ence tensor of the two connections. Thus, the centro-affine Pick form is determined
by the difference tensor of the connections and the centro-affine metric.

It is worth pointing out that the analysis is essentially the same even if the
hypersurface is not convex. The only condition we really need is that IICA is non-
degenerate, i.e. detH 6= 0. If H is indefinite then Φ will take its values in the Lie
algebra of some SO(p, q) determined by the signature of IICA.

We may now state the fundamental theorems for centro-affine hypersurfaces.

Theorem 1. Let N be a smooth connected n-dimensional manifold and let X and
X ′ be two smooth immersions of N into Rn+1

0 with respective non-degenerate centro-
affine metrics IICA, II ′CA and respective centro-affine Pick forms PCA, P ′CA. Then
X(N) and X ′(N) are related by a centro-affine motion if and only if IICA = II ′CA
and PCA = P ′CA.

Theorem 2. Let N be a smooth connected n-dimensional manifold. Let IICA be a
smooth non-degenerate quadratic form on N and let ∇• be its metric connection. Let
PCA be a smooth cubic form on N and let ∆ be the tensor of type (1, 2) characterized
by

IICA(∆(v1, v2), v3) = PCA(v1, v2, v3), for all tangent vector fields v1, v2 and v3 on N .

If the connection ∇ = ∇•+∆ is projectively flat then for each point in N there is an
open neighborhood U containing that point and a smooth immersion X : U → Rn+1

0

such that the restriction of IICA to U is the centro-affine metric of X and the
restriction of PCA to U is the centro-affine Pick form of X.

The proofs of these theorems are direct applications of lemmas 1 and 2. We will
sketch the proofs assuming that IICA and II ′CA are negative definite. The general
non-singular case is nearly identical.

For theorem 1, the GL(n + 1,R) invariance of the structure equations clearly
implies that the respective centro-affine metrics and Pick forms must agree if the
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surfaces are congruent by a centro-affine motion. It is sufficient to prove the if
part on connected neighborhoods of N which are small enough to have a basis of
orthonormal vector fields v1, . . . , vn. We may associate a centro-affine frame to each
immersion. The frames associated to X and X ′ are respectively given by

e0 = X, e1 = X∗(v1), . . . , en = X∗(vn)

e′0 = X ′, e′1 = X ′∗(v1), . . . , e
′
n = X ′∗(vn).

From this construction we see immediately that ω′0
α = ω0

α, 1 ≤ α ≤ n, where the
1-forms are defined by the equations

de0 =
n∑
α=1

ω0
α eα

de′0 =
n∑
α=1

ω′0
α e′α.

Since the basis v1, . . . , vn is orthonormal for both centro-affine metrics, the dual
1-forms ω0

1 . . . , ω0
n diagonalize both metrics. This implies that the structure equa-

tions for the two frame fields are

d

(
e0

e

)
=

(
0 ω
−tω Ω

)(
e0

e

)
and d

(
e′0
e′

)
=

(
0 ω
−tω Ω′

)(
e′0
e′

)
, (2.9)

with Ω = Φ + ∆ and Ω′ = Φ′ + ∆′. Since Φ and Φ′ are the respective centro-affine
metric connections relative to the same basis, they must be equal. Further, since
∆ and ∆′ are determined by the respective Pick forms, they must be equal and we
have that Ω′ = Ω. With Ω′ = Ω, equations (2.9) and lemma 1 imply that there is a
fixed GL(n + 1,R) matrix A transforming one frame to the other. In particular, we
have e′0 = e0 · A which is equivalent to X ′ = X · A. �

To prove theorem 2 we begin as in theorem 1 by picking an orthonormal frame
field v1, . . . , vn with dual coframe ω = (ω0

1, . . . ω0
n). Let Φ be the matrix of 1-forms

representing the connection ∇•, then Φ is determined by the equations

dω = ω ∧ Φ, tΦ = −Φ. (2.10)

In this coframe the tensor ∆, which is determined by the cubic Pick form, can be
represented by a symmetric matrix of 1-forms ∆α

β =
∑

Sα
β
γ ω0

γ. The matrix of
1-forms representing the connection ∇ = ∇• + ∆ is given by Ω = Φ + ∆. The
symmetries of the cubic form imply that ω ∧∆ = 0, and from (2.10) this gives

dω = ω ∧ (Φ + ∆) = ω ∧ Ω. (2.11)

The condition that ∇ is projectively flat yields the equation

dΩ = Ω ∧ Ω− tω ∧ ω. (2.12)
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Equations (2.11) and (2.12) show that the (n + 1)× (n + 1) matrix of 1-forms(
0 ω
−tω Ω

)
(2.13)

satisfies the structure equations

d

(
0 ω
−tω Ω

)
=

(
0 ω
−tω Ω

)
∧
(

0 ω
−tω Ω

)

Lemma 2 then implies the local existence of a map from N into GL(n + 1,R) for
which the pullback of the Maurer-Cartan form on GL(n + 1,R) equals (2.13). If we
let X be the first row of this matrix valued function, then standard arguments show
that the matrix valued function gives an adapted centro-affine frame and therefore
X induces the desired centro-affine metric and centro-affine Pick forms. �

A proof in the context of relative differential geometry and vector fields can be
found in [SS-SV, §4.12.3]. The current formulation is better suited for applications
to control theory. One such application can be found in [GW].

Notice that the vanishing of the Pick form is equivalent to the vanishing of the
difference tensor ∆. In this case, we have that Ω = Φ and the matrix of 1-forms
(2.13) is skew symmetric, so its values lie in the Lie algebra of O(n + 1). Lemma 2
then implies that the frame field itself is O(n+1) valued. This O(n+1) valued frame
allows us to define an inner product on Rn, and relative to this inner product the
first row of the frame lies on the unit sphere. Therefore the image of the immersion
lies on a convex quadric centered at the origin. The converse is also clear. This
argument easily generalizes to the non-convex case as well, which gives the following
corollary.

Corollary 1. Let N and X be as in theorem 1. Then the image of X lies on a
central non-degenerate quadric if and only if PCA vanishes.

3 Centro-affine curves in Rn+1

Our goal in this section is to develop for curves in Rn+1
0 the centro-affine analog of

the Frenet apparatus. The method of moving frames provides an iterative procedure
to use. This section gives a detailed discussion of the procedure, leading finally to a
centro-affine invariant framing of the curve. As one might expect, we will uncover an
invariant arc-length parameter and n invariant curvature functions. The surprising
result will be the order of these curvatures.

Let I ⊂ R be an open interval in R and let x : I → Rn+1
0 be a smooth im-

mersed curve. As in section 2, we form the zeroth order frame bundle, F (0)
x =

{ (u, e0, e1, . . . , en) ∈ I ×F | e0 = x(u) }:

F (0)
x −−−→ Fy ye0

I −−−→
x

Rn+1
0 .
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Using equation (1.1) we have

x′(u) du = dx = de0 = ω0
0 e0 + ω0

1 e1 + · · · + ω0
nen,

which implies that the 1-forms ω0
0, ω0

1, . . . , ω0
n are semi-basic and thus are multiples

of du. The natural restriction to frames with e1 pointing in the same direction as
x′(u) utilizes the first order information, but this is not always possible. Since e0

and e1 must be linearly independent, and since e0 = x(u), it will only be possible
to choose e1 to be parallel to x′(u) if x(u) and x′(u) are linearly independent. Since

x(u) ∧ x′(u) du = e0 ∧ de0 = ω0
1 e0 ∧ e1 + · · ·+ ω0

n e0 ∧ en,

we see that x(u) and x′(u) are linearly dependent if and only if 0 = ω0
1 = · · · = ω0

n.
In geometric terms linear dependence means that the tangent line to x(u) pass
through the origin. Suppose now that e0 ∧ de0 = 0 for every u ∈ I . Then the ray
through e0 is constant and therefore the curve x(u) lies on a fixed ray.

We will now assume that e0 ∧ de0 6= 0 for all u ∈ I . We define the first order
frames to be

F (1)
x = { (u, e0, e1, . . . , en) ∈ F (0)

x | e1 points in the same direction as x′(u) }.

For the first order frames we have that x′(u) du = de0 = ω0
1 e1, which implies that

ω0
1 is a nonzero multiple of du and

ω0
0 = 0 = ω0

2 = · · · = ω0
n.

Differentiating these relations gives

0 = dω0
0 = ω0

1 ∧ ω1
0 and 0 = dω0

j = ω0
1 ∧ ω1

j (2 ≤ j ≤ n).

Thus we have n functions, h1, H1
2, . . . , H1

n, defined by

ω1
0 = h1 ω0

1 and ω1
j = H1

j ω0
1 (2 ≤ j ≤ n). (3.0)

In matrix form, equations (1.1) take the form

d



e0

e1

e2
...

en

 =



0 ω0
1 0 . . . 0

h1 ω0
1 ω1

1 H1
2 ω0

1 . . . H1
n ω0

1

ω2
0 ω2

1 ω2
2 . . . ω2

n

...
...

...
...

ωn
0 ωn

1 ωn
2 . . . ωn

n





e0

e1

e2
...

en

 . (3.1)

From this point on we will use successively higher order derivatives of x(u) to
refine the centro-affine frame. The details of this process are given in the proof of the
following lemma. Before stating the lemma, we will need an additional definition.

Definition. Let I be an open interval and let x : I → Rn+1
0 be a smooth curve.

We say that x is substantial if for every u ∈ I

(S1) x(u), x′(u), . . . , x(n)(u) are linearly independent, and
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(S2) x′(u), x′′(u), . . . , x(n+1)(u) are linearly independent.

Lemma 4. Let x : I → Rn+1
0 be a substantial curve. Then there is a reduction of

the centro-affine frames F (1)
x for which the Maurer-Cartan matrix in equation (3.1)

has the form

0 ω0
1 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 ω1
1 ω0

1 0 . . . . . . . . . . . . . . . . . . . . . . . . .
0 ω2

1 2ω1
1 ω0

1 0 . . . . . . . . . . . . . . . . . .
0 ω3

1 3ω2
1 3ω1

1 ω0
1 0 . . . . . . . . . . . . .

0 ω4
1 4ω3

1 6ω2
1 4ω1

1 ω0
1 0 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 ωn−1

1 (n− 1)ωn−2
1 . . . . . . . . . . . . . (n− 1)ω1

1 ω0
1

hn ω0
1 ωn

1 ωn
2 . . . . . . . . . . . . . . . . . . . . . . . . . ωn

n


and the last row determines n functions hn, `n

2, . . . , `n
n where `n

j+1 is defined by the
relation

ωn
j+1 =

(
n

j

)
ωn−j

1 + `n
j+1 ω0

1 (1 ≤ j ≤ n− 1).

Using the Maurer–Cartan equations (1.2) and equations (3.0) we can compute
the infinitesimal action on the functions in (3.1). We calculate the action on h1 in
the following way. From (1.2) we have that

dω1
0 = ω1

0 ∧ ω0
0 + ω1

1 ∧ ω1
0 + ω1

2 ∧ ω2
0 + · · · + ω1

n ∧ ωn
0,

thus using equations (3.0) and the fact that ω0
0 = 0 this equation becomes

dω1
0 = h1 ω1

1 ∧ ω0
1 + H1

2 ω0
1 ∧ ω2

0 + · · ·+ H1
n ω0

1 ∧ ωn
0. (3.2)

Since ω1
0 = h1 ω0

1 we also have

dω1
0 = d(h1 ω0

1)

= dh1 ∧ ω0
1 + h1 dω0

1.

Once again, we use (1.2) to expand dω0
1, use our relations, and find that dω0

1 =
ω0

1 ∧ ω1
1. Thus we see

dω1
0 = dh1 ∧ ω0

1 + h1 ω0
1 ∧ ω1

1. (3.3)

For the H1
js, we have the similar (and abbreviated) calculations

dω1
j = H1

j ω1
1 ∧ ω0

1 + H1
2 ω0

1 ∧ ω2
0 + · · · + H1

n ω0
1 ∧ ωn

0 (3.4)

and

dω1
j = d(H1

j ω0
1) = dH1

j ∧ ω0
1 + H1

j ω0
1 ∧ ω1

1, (2 ≤ j ≤ n). (3.5)



Centro-affine Curves and Hypersurfaces 389

Subtracting (3.2) from (3.3) and (3.4) from (3.5) we get

0 = (dh1 − 2h1 ω1
1 + H1

2 ω2
0 + · · ·+ H1

nωn
0) ∧ ω0

1 (3.6)

0 = (dH1
j − 2H1

j ω1
1 + H1

2 ω2
j + · · · + H1

nωn
j) ∧ ω0

1, (2 ≤ j ≤ n), (3.7)

In matrix notation, the second equation has the form

0 ≡ d(H1
2, . . . , H1

n)− 2(H1
2, . . . , H1

n)ω1
1

+ (H1
2, . . . , H1

n)


ω2

2 . . . ω2
n

...
...

ωn
2 . . . ωn

n

 (mod ω0
1)

which shows that the vector (H1
2, . . . , H1

n) transforms by an arbitrary general linear
action and by a multiplication by a square. Suppose that this vector is zero for all
u ∈ I , then from equation (3.1) we see that d(e0∧e1) = ω1

1 e0∧e1 ≡ 0 (mod e0∧e1),
which implies that the 2-plane spanned by e0 and e1 is constant. Therefore the curve
x(u) lies in a fixed 2-plane.

Since x is substantial the vector (H1
2, . . . , H1

n) 6= 0 for all u ∈ I , so we may im-
pose the condition that (H1

2, H1
3, . . . , H1

n) = (1, 0, . . . , 0). Equation (3.6) becomes
0 = (dh1−2h1 ω1

1+ω2
0)∧ω0

1, and we see that we may impose the condition h1 = 0.
Equations (3.6) and (3.7) reduce to

0 = ω2
0 ∧ ω0

1

0 = (ω2
2 − 2ω1

1) ∧ ω0
1

0 = ω2
j ∧ ω0

1 (3 ≤ j ≤ n).

This introduces n functions, h2, `2
2, H2

3, . . . , H2
n, defined by

ω2
0 = h2 ω0

1, ω2
2 − 2ω1

1 = `2
2 ω0

1, and ω2
j = H2

j ω0
1 (3 ≤ j ≤ n).

Equation (3.1) now has the form

d



e0

e1

e2

e3
...

en


=



0 ω0
1 0 0 . . . 0

0 ω1
1 ω0

1 0 . . . 0
h2 ω0

1 ω2
1 ω2

2 H2
3 ω0

1 . . . H2
n ω0

1

ω3
0 ω3

1 ω3
2 ω3

3 . . . ω3
n

...
...

...
...

...
ωn

0 ωn
1 ωn

2 ωn
3 . . . ωn

n





e0

e1

e2

e3
...

en


, (3.8)

where ω2
2 = 2ω1

1 + `2
2ω0

1. The functions h2, `2
2, and H2

3, . . . , H2
n are all in row

two, and every column other than column 1 has one function. The infinitesimal
actions on h2 and H2

j are computed in the same way and result in equations similar



390 R. B. Gardner – G. R. Wilkens

to (3.6) and (3.7),

0 = (dh2 − 3h2 ω1
1 +

n∑
j=3

H2
j ωj

0) ∧ ω0
1

0 = (dH2
j − 3H2

j ω1
1 +

n∑
k=3

H2
k ωk

j) ∧ ω0
1 (3 ≤ j ≤ n).

We compute the infinitesimal action on `2
2 by differentiating the relation `2

2ω0
1 =

ω2
2 − 2ω1

1. First
d(`2

2 ω0
1) = d`2

2 ∧ ω0
1 + `2

2 ω0
1 ∧ ω1

1

and next

d(ω2
2 − 2ω1

1) = dω2
2 − 2dω1

1

= ω2
1 ∧ ω0

1 +
n∑
j=3

H2
j ω0

1 ∧ ωj
2 − 2ω0

1 ∧ ω2
1

= 3ω2
1 ∧ ω0

1 +
n∑
j=3

H2
j ω0

1 ∧ ωj
2.

Subtracting the first and last equation gives

0 = (d`2
2 − `2

2ω1
1 − 3ω2

1 +
n∑
j=3

H2
jωj

2) ∧ ω0
1.

Once again the vector (H2
3, . . . , H2

n) plays the key role. If this vector vanishes
for all u, then d(e0 ∧ e1 ∧ e2) ≡ 0 (mod e0 ∧ e1 ∧ e2) and the curve x(u) lies in a
3 dimensional subspace. Since x is substantial this vector never vanishes. Thus we
may use the general linear action to restrict (H2

3, . . . , H2
n) = (1, 0, . . . , 0). We may

also restrict h2 to 0 and `2
2 to 0.

These restrictions induce n new functions, all in row three, h3, `3
2, `3

3, H3
4, . . . ,

H3
n. The Maurer-Cartan matrix from (3.8) takes the form

0 ω0
1 0 0 0 . . . 0

0 ω1
1 ω0

1 0 0 . . . 0
0 ω2

1 2ω1
1 ω0

1 0 . . . 0
h3 ω0

1 ω3
1 ω3

2 ω3
3 H3

4 ω0
1 . . . H3

n ω0
1

ω4
0 ω4

1 ω4
2 ω4

3 ω4
4 . . . ω4

n

...
...

...
...

...
...

ωn
0 ωn

1 ωn
2 ωn

3 ωn
4 . . . ωn

n


,

where ω3
2 − 3ω2

1 = `3
2ω0

1 and ω3
3 − 3ω1

1 = `3
3ω0

1.
Rather than compute the action on these terms, we will now go to the inductive

step of the calculation. The Maurer-Cartan matrix will have a certain structure.
There will be n functions all in the same row, say row p (e.g., p = 3 in the above
matrix). One function will be in column 0, and there will be one function in each
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of columns 2 through n. Below row p, all the 1-forms will be independent group
forms. The 1-forms in column 1, starting with the form in row 1 and continuing to
the last row, are group forms. Above row p, each band above the superdiagonal is
zero. The remaining bands that are parallel to the diagonal form a “left justified”
Pascal’s triangle, with the relations linking a 1-form up the band to the 1-form in
column one.

For the inductive step, we assume that we have restricted the curve’s frames
so that for a fixed p ≤ n − 1 the Maurer-Cartan matrix satisfies the conditions in
the following list. Our goal will be to show that we can further restrict the choice
of frames so that the Maurer-Cartan matrix satisfies the listed conditions with p
replaced by p + 1.

A. For each row m, with 0 ≤ m < p

A.1 ωm
0 = 0 = ωm

m+2 = · · · = ωm
n (column 0 is 0 and bands 2 or more above

the diagonal are zero).

A.2 ωm
m+1 = ω0

1 (the superdiagonal equals ω0
1).

A.3 ωm
j+1 =

(
m
j

)
ωm−j

1 for 1 ≤ j ≤ m− 1 (the binomial coefficients from the

left justified Pascal’s triangle.)

B. For row p, there are n functions hp, `p
2, . . . , `p

p, Hp
p+1, . . . , Hp

n such that

B.1 ωp
0 = hp ω0

1 (small h in column 0).

B.2 ωp
j+1 −

(
p
j

)
ωp−j

1 = `p
j+1 ω0

1 for 1 ≤ j ≤ p− 1 (Pascal from column 2 to

the diagonal.)

B.3 ωp
j = Hp

j ω0
1 for p + 1 ≤ j ≤ n (the H vector, running from the super-

diagonal to the right edge).

To achieve our goal, we need to show that we can restrict our choice of frames so that
the function Hp

p+1 = 1 and all the other functions, hp, `p
2, . . . , `p

p, Hp
p+2, . . . , Hp

n,
equal 0.

We will compute the infinitesimal action on the functions Hp
j. Fix j with p+1 ≤

j ≤ n, so that ωp
j = Hp

j ω0
1. We have

dωp
j =

n∑
k=0

ωp
k ∧ ωk

j

=

(
p−1∑
m=0

ωp
m ∧ ωm

j

)
+ ωp

p ∧ ωp
j +

(
n∑

k=p+1

ωp
k ∧ ωk

j

)
. (3.9)

In the first term of (3.9), we have that m ≤ p−1 and p+1 ≤ j, so by (A.1) ωm
j = 0

for each m and the first term vanishes. In the second term, ωp
j = Hp

j ω0
1 and by

(B.2) ωp
p ∧ ω0

1 = pω1
1 ∧ ω0

1 (pick j = p − 1 and wedge the equation in (B.2) by
ω0

1). We see that ωp
p ∧ ωp

j = pHp
j ω1

1 ∧ ω0
1. In the last term, we use (B.3) to

replace ωp
k with Hp

k ω0
1. This gives the equation

dωp
j = pHp

j ω1
1 ∧ ω0

1 +
n∑

k=p+1

Hp
k ω0

1 ∧ ωk
j.
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We also have that dωp
j = d(Hp

j ω0
1) = dHp

j∧ω0
1 +Hp

jω0
1∧ω1

1. Subtracting these
two equations we find that

0 =

(
dHp

j − (p + 1)Hp
jω1

1 +
n∑

k=p+1

Hp
k ωk

j

)
∧ ω0

1, (p + 1 ≤ j ≤ n)

which in matrix form is

0 ≡d(Hp
p+1, . . . , Hp

n)− (p + 1)(Hp
p+1, . . . , Hp

n)ω1
1

+ (Hp
p+1, . . . , Hp

n)


ωp+1

p+1 . . . ωp+1
n

...
...

ωn
p+1 . . . ωn

n

 (mod ω0
1).

We see that the H vector transforms by an arbitrary general linear action and by
a multiplication by a p + 1 power. If the vector (Hp

p+1, . . . , Hp
n) equals 0 for all

u ∈ I , then

d(e0 ∧ · · · ∧ ep) =

(
p∑
i=1

ωi
i

)
e0 ∧ · · · ∧ ep ≡ 0 (mod e0 ∧ · · · ∧ ep),

thus the (p + 1)-plane spanned by {e0, . . . , ep} is constant and the curve x(u) lies
in this plane.

Since x is substantial the vector (Hp
p+1, . . . , Hp

n) never equals zero. Hence we
may restrict our frames so that (Hp

p+1, . . . , Hp
n) = (1, 0, . . . , 0), which implies the

relations

ωp
p+1 = ω0

1 which is (A.2) for m = p,

0 = ωp
p+2 = · · · = ωp

n which is all but 1 equation in (A.1) for m = p,

0 = (ωp+1
p+1 − (p + 1)ω1

1) ∧ ω0
1

0 = ωp+1
j ∧ ω0

1 (p + 2 ≤ j ≤ n).

Therefore, we must have functions `p+1
p+1 and Hp+1

p+2, . . . , Hp+1
n defined by

ωp+1
p+1 − (p + 1)ω1

1 = `p+1
p+1 ω0

1

and ωp+1
j = Hp+1

j ω0
1 (p + 2 ≤ j ≤ n).

This shows that (B.3) is true for p + 1 and that (B.2) is true for j = (p + 1)− 1.
By an almost identical calculation, we arrive at the equation

0 =

(
dhp − (p + 1)hp ω1

1 +
n∑

k=p+1

Hp
k ωk

0

)
∧ ω0

1 (3.10)

=

(
dhp − (p + 1)hp ω1

1 + ωp+1
0

)
∧ ω0

1.

The function hp transforms by a multiplication by a p+1 power and by a translation.
We may therefore further restrict the frames so that hp = 0, which implies the



Centro-affine Curves and Hypersurfaces 393

relations ωp
0 = 0 and ωp+1

0 ∧ ω0
1 = 0. Thus there is a function hp+1 such that

ωp+1
0 = hp+1 ω0

1 and we see that (A.1), (A.2), (B.1) and (B.3) all hold for row p+1,
as well as (B.2) for the case j = p. All that remains is to verify (A.3) for 1 ≤ j ≤ p
and (B.2) for 1 ≤ j ≤ p− 1.

To do this, we need to compute the infinitesimal action on the functions `p
j+1,

(1 ≤ j ≤ p− 1). Thus, we must differentiate the relation

`p
j+1 ω0

1 = ωp
j+1 −

(
p

j

)
ωp−j

1 (1 ≤ j ≤ p− 1) (3.11)

to find the infinitesimal action. There is one important observation we can make.
Since dω0

1 = ω0
1 ∧ ω1

1, the exterior derivative

d(`p
j+1 ω0

1) = d`p
j+1 ∧ ω0

1 + `p
j+1 ω0

1 ∧ ω1
1 (3.12)

must be linear in ω0
1. Therefore, when we differentiate the right hand side of

(3.11) and reduce our equations as much as possible using (A.1), (A.2), (A.3), (B.1),
(B.2)=(3.11) and (B.3) we know that all of the terms that are independent of ω0

1

must cancel out one another. Thus we only need to keep track of the terms that
introduce a factor of ω0

1.
We will begin by differentiating the first term on the right hand side.

dωp
j+1 =

n∑
k=0

ωp
k ∧ ωk

j+1

=

(j−1∑
k=0

ωp
k ∧ ωk

j+1

)
+ ωp

j ∧ ωj
j+1 + ωp

j+1 ∧ ωj+1
j+1 +

( p−1∑
k=j+2

ωp
k ∧ ωk

j+1

)

+ ωp
p ∧ ωp

j+1 +

(
n∑

k=p+1

ωp
k ∧ ωk

j+1

)

In the first term, all the ωk
j+1 = 0. In the second term,

ωj
j+1 = ω0

1 and ωp
j =

(
p

j − 1

)
ωp−j+1

1 + `p
j ω0

1.

The third and fifth terms have a common factor of ωp
j+1 and can be combined into

a a single term (ωp
p − ωj+1

j+1) ∧ ωp
j+1. We can express this combined term as[

(p− j − 1)ω1
1 + `p

pω0
1

]
∧
[(

p

j

)
ωp−j

1 + `p
j+1 ω0

1

]
.

In the fourth term we have ωp
k =

(
p
k−1

)
ωp−k+1

1 + `p
k ω0

1 and ωk
j+1 =

(
k
j

)
ωk−j

1. In

the sixth term we have ωp
k = Hp

k ω0
1. Recall that with the current choice of frames

Hp
k equals 1 for k = p+1 and equals 0 otherwise. Combining these relations we get

dωp
j+1 =

(
p

j − 1

)
ωp−j+1

1 ∧ ω0
1 + (p− j − 1)`p

j+1 ω1
1 ∧ ω0

1 +

(
p

j

)
`p
p ω0

1 ∧ ωp−j
1

+
p−1∑
k=j+2

(
k

j

)
`p
k ω0

1 ∧ ωk−j
1 + ω0

1 ∧ ωp+1
j+1 + terms independent of ω0

1.

(3.13)
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For the second term on the right hand side, we compute

dωp−j
1 =

n∑
k=0

ωp−j
k ∧ ωk

1

= ωp−j
0 ∧ ω0

1 +

(p−j∑
k=1

ωp−j
k ∧ ωk

1

)
+ ωp−j

p−j+1 ∧ ωp−j+1
1

+

(
n∑

k=p−j+2

ωp−j
k ∧ ωk

1

)
.

In the first term, ωp−j
0 = 0. In the second term ωp−j

k =
(
p−j
k−1

)
ωp−j−k+1

1. In the

third term ωp−j
p−j+1 = ω0

1 and in the fourth term each ωp−j
k = 0. Combining these

relations gives

dωp−j
1 =

p−j∑
k=1

(
p− j

k − 1

)
ωp−j−k+1

1 ∧ ωk
1 + ω0

1 ∧ ωp−j+1
1

= ω0
1 ∧ ωp−j+1

1 + terms independent of ω0
1.

(3.14)

We see from (3.11) that 0 = d(`p
j+1 ω0

1)− dωp
j+1 +

(
p
j

)
dωp−j

1. If we substitute

(3.12), (3.13) and (3.14) into this equation and collect some terms we have for each
1 ≤ j ≤ p− 1

0 =

(
d`p

j+1 − (p− j)`p
j+1 ω1

1 +
p∑

k=j+2

(
k

j

)
`p
k ωk−j

1

+ ωp+1
j+1 −

(
p + 1

j

)
ωp+1−j

1

)
∧ ω0

1. (3.15)

From this equation we observe that each `p
j+1 is translated by the 1-form positioned

in the same column and in the row directly below it, ωp+1
j+1. We also observe that

`p
j+1 depends only on `p

j+1, . . . , `p
p. Working from equation p−1 down to equation

1 we see that each `p
j+1 can be set to 0. After restricting the frames so that all the

`p
j+1 = 0, the equations from (B.2) reduce to

ωp
j+1 =

(
p

j

)
ωp−j

1, (1 ≤ j ≤ p− 1),

and equations (3.15) simplify to

0 =

(
ωp+1

j+1 −
(
p + 1

j

)
ωp+1−j

1

)
∧ ω0

1, (1 ≤ j ≤ p− 1).

This shows that there are p− 1 functions, `p+1
2, . . . , `p+1

p, defined by

ωp+1
j+1 −

(
p + 1

j

)
ωp+1−j

1 = `p+1
j+1 ω0

1, (1 ≤ j ≤ p− 1).

Together, these equations verify (A.3) and the rest of (B.2).
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Having completed the induction, we see that when p takes on its maximum value
n, the Maurer-Cartan matrix will have the following form:

0 ω0
1 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 ω1
1 ω0

1 0 . . . . . . . . . . . . . . . . . . . . . . . . .
0 ω2

1 2ω1
1 ω0

1 0 . . . . . . . . . . . . . . . . . .
0 ω3

1 3ω2
1 3ω1

1 ω0
1 0 . . . . . . . . . . . . .

0 ω4
1 4ω3

1 6ω2
1 4ω1

1 ω0
1 0 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 ωn−1

1 (n− 1)ωn−2
1 . . . . . . . . . . . . . (n− 1)ω1

1 ω0
1

hn ω0
1 ωn

1 ωn
2 . . . . . . . . . . . . . . . . . . . . . . . . . ωn

n


In this matrix, the 1-forms ω1

1, . . . , ωn
1 are independent group forms, and the last

row determines the n functions hn, `n
2, . . . , `n

n where `n
j+1 is defined by the relation

ωn
j+1 =

(
n

j

)
ωn−j

1 + `n
j+1 ω0

1 (1 ≤ j ≤ n− 1).

This completes the proof of lemma 3. �

The Maurer-Cartan matrix satisfies all of conditions (A) and (B), with the ex-
ception of (B.3) since there are no functions Hn

j. We easily see that the previous
calculations of infinitesimal actions are still valid, and thus we can use these calcu-
lations simply by setting all of the H’s equal to zero. For instance, from equation
(3.10) we see that

dhn − (n + 1)hn ω1
1 ≡ 0 (mod ω0

1)

which shows that hn is multiplied by an n + 1st power. Suppose first of all that hn
is identically zero. Then from the above matrix we compute that

d(e1 ∧ e2 ∧ · · · ∧ en) =
( n∑
i=1

ωi
i
)
e1 ∧ e2 ∧ · · · ∧ en ≡ 0 (mod e1 ∧ e2 ∧ · · · ∧ en)

This shows that the hyperplane spanned by e1, e2, . . . , en is constant. Since this
hyperplane is the osculating n-plane of the curve x(u) = e0, a simple calculation
shows that the curve must lie in a fixed affine hyperplane parallel to the span of
e1, e2, . . . , en. The problem reduces to an n-dimensional one in general affine geom-
etry.

For a substantial curve x, hn never vanishes. In this case, we can restrict our
frames so that hn = ±1, and if n + 1 is odd then we can always choose positive 1.
This reduction implies that there is a function κ1 defined by

ω1
1 = κ1 ω0

1,

and this new relation further implies that dω0
1 = ω0

1∧ω1
1 = 0. This means that ω0

1

must be the differential of some function s(u) on the curve. Any two such functions
differ by a constant, and we will call any one of them a centro-affine arclength for
x. We will say a little more about this arclength function below. For now, we will
continue with the infinitesimal actions.
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A quick review of the derivation of equation (3.15) shows that only the ωp+1
j+1

term involved the H functions, so that term will not appear in d`n
j+1. Since we also

now have ω1
1 ≡ 0 (mod ω0

1), equation (3.15) reduces to

d`n
j+1 +

n∑
k=j+2

(
k

j

)
`n
k ωk−j

1−
(
n + 1

j

)
ωn+1−j

1 ≡ 0 (mod ω0
1) (1 ≤ j ≤ n−1).

Working as before from equation n− 1 down to equation 1, we see that each `n
j+1

may be translated to 0 by an independent group form. For example, `n
n is translated

by ω2
1, `n

n−1 by ω3
1, etc., and finally `n

2 by ωn
1.

Making these final restrictions on the adapted frames uses all of the remaining
freedom in the group. Every entry in the Maurer-Cartan matrix is a multiple of
the centro-affine arclength ω0

1 = ds, which shows that the centro-affine frames are
uniquely determined. The matrix has the form

0 1 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 κ1 1 0 . . . . . . . . . . . . . . . . . . .
0 κ2 2κ1 1 0 . . . . . . . . . . . . . .
0 κ3 3κ2 3κ1 1 0 . . . . . . . . . . .
0 κ4 4κ3 6κ2 4κ1 1 0 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

±1 κn nκn−1

(
n
2

)
κn−2 . . . .

(
n
n−2

)
κ2 nκ1


ds.

The binomial coefficients of the “left justified” Pascal’s triangle appear clearly in
the above matrix when we imagine all of the κi’s are set equal to 1. The last row is a
little different. The final binomial coefficient

(
n
n

)
appears in column 0 and may have

a minus sign. The above matrix also defines the centro-affine “Frenet equations” of
the curve,

d

ds



e0

e1

e2

e3

e4

. . .
en


=



0 1 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 κ1 1 0 . . . . . . . . . . . . . . . . . . .
0 κ2 2κ1 1 0 . . . . . . . . . . . . . .
0 κ3 3κ2 3κ1 1 0 . . . . . . . . . . .
0 κ4 4κ3 6κ2 4κ1 1 0 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

±1 κn nκn−1

(
n
2

)
κn−2 . . . .

(
n
n−2

)
κ2 nκ1





e0

e1

e2

e3

e4

. . .
en


. (3.16)

We can use the centro-affine Frenet equations to get a formula for the element of
arclength, ds. As a notational convenience, we will let ν = ds/du. Then we clearly
have that ds = ν du and e1 = ν−1 x′(u). From the Frenet equations we get that
de1/ds ≡ e2 (mod e1), but we can also calculate that

de1

ds
≡ ν−1 dx′(u)

ds
≡ ν−2 x′′(u) (mod e1),

which shows that e2 ≡ ν−2 x′′(u) (mod e1). A direct generalization of this calcula-
tion shows that in addition to the equations

e0 = x(u)

e1 = ν−1 x′(u)
(3.17)
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we also have for each 2 ≤ p ≤ n

ep ≡ ν−p x(p)(u) (mod e1, . . . , ep−1). (3.18)

From this equation with p = n and the Frenet equations we compute that

den
ds
≡ ν−(n+1) x(n+1)(u) (mod e1, . . . , en)

≡ ±e0 (mod e1, . . . , en) by the Frenet equations.
(3.19)

From (3.19) we get

ν−(n+1) det(x(n+1)(u), e1, . . . , en) = det(
den
ds

, e1, . . . , en) = ± det(e0, e1, . . . , en)

which together with (3.17) and (3.18) implies(
ds

du

)n+1

= νn+1 = ±det(x(n+1)(u), e1, . . . , en)

det(e0, e1, . . . , en)
= ±det(x(n+1)(u), x′(u), . . . , x(n)(u))

det(x(u), x′(u), . . . , x(n)(u))
.

(3.20)
We now have an explicit formula for computing a centro-affine arclength in terms
of an arbitrary parameter. An orientation preserving arclength is given by

s =
∫ ∣∣∣∣∣det(x(n+1)(u), x′(u), . . . , x(n)(u))

det(x(u), x′(u), . . . , x(n)(u))

∣∣∣∣∣
1/(n+1)

du. (3.21)

Notice that the 1-form under the integral is GL(n + 1,R)-invariant and invariant
under orientation preserving reparametrization. These two observations confirm
that the centro-affine arclength s has the desired invariance. We also see that the
plus or minus sign in (3.20) is determined by the equation

x(n+1)(s) ≡ ±x(s) (mod x′(s), . . . , x(n)(s)). (3.22)

The Frenet equations also give an interesting interpretation of the first curvature,
κ1. If we differentiate the volume element e0 ∧ · · · ∧ en with respect to arclength,
we see

d

ds
(e0 ∧ · · · ∧ en) = (1 + 2 + · · ·+ n)κ1 e0 ∧ · · · ∧ en =

(
n + 1

2

)
κ1 e0 ∧ · · · ∧ en,

and if we observe that e0 ∧ e1 ∧ · · · ∧ en = x(s) ∧ x′(s) ∧ · · · ∧ x(n)(s) we see that(
n + 1

2

)
κ1 =

d

ds
ln | det(x(s), x′(s), . . . , x(n)(s))|.

Formula (3.21) shows that s is well defined for substantial curves. We can now
state the fundamental theorem for centro-affine curves.

Theorem 3. Let I ⊂ R be an open interval, ε = ±1, and let κ1(s), . . . , κn(s) be
smooth functions on I. Then there is a smooth substantial immersion s 7→ x(s)
from I to Rn+1

0 such that s is a centro-affine arclength, κ1(s), . . . , κn(s) are the
centro-affine curvatures, and

x(n+1)(s) ≡ ε x(s) (mod x′(s), . . . , x(n)(s)).

Moreover, x is uniquely determined up to a centro-affine motion of Rn+1
0 .
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The proof of this theorem is standard. Use κ1(s), . . . , κn(s) and ε = ±1 to find a
solution of the Frenet equations (3.16) in GL(n + 1,R), then let x(s) = e0(s). The
remainder of the proof is a standard verification using the Frenet equations.

Equation (3.20) provides a reasonable way to compute ds/du, which therefore
allows one to compute derivatives with respect to arclength. We will use this fact,
along with the structure equations, to provide a method for constructing the centro-
affine frame and the centro-affine curvatures.

Assume that x is a substantial curve and s is an arclength parameter for x. By
condition (S1) and equation (3.22) there must exist unique functions c1(s), . . . , cn(s)
satisfying

x(n+1)(s) = ±x(s) + cn(s) x′(s) + · · ·+ c1(s) x(n)(s). (3.23)

Using this equation, we can write

d

ds


x
x′

. . .
x(n−1)

x(n)

 =


0 1 0 0 . . . 0
0 0 1 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . 1
±1 cn cn−1 cn−2 . . . c1




x
x′

. . .
x(n−1)

x(n)


If we let W (s) be the matrix with rows

(
x(s), x′(s), . . . , x(n)(s)

)
, then we can write

the above equation as

W ′(s) = C(s)W (s)

where C(s) is defined by the above equation. Since we are differentiating with
respect to arclength, ν = 1 in equations (3.17) and (3.18), which shows that we can
write the frame in terms of x, x′, . . . , x(n) as

e0

e1

e2

e3

. . .
en


=



1 0 0 0 . . . 0
0 1 0 0 . . . 0
0 m21 1 0 . . . 0
0 m31 m32 1 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . .
0 mn1 mn2 mn3 . . . 1





x
x′

x′′

x′′′

. . .
x(n)


,

or as

E(s) = M(s)W (s),

where E(s) is the matrix representing the frames and M(s) is the lower triangular
matrix in the above equation. Differentiating this last equation and comparing with
the Frenet equations (3.16) we have

E ′(s) =
(
M ′M−1 + M C M−1

)
E(s),

and we see that M ′M−1 + M C M−1 must be the matrix of centro-affine curvatures
in (3.16). We can use the relations among the entries of the curvature matrix to
uniquely solve for the mij’s in terms of the c1, . . . , cn. This will determine the matrix
M(s) and therefore E(s) in terms of c1, . . . , cn. The centro-affine curvatures will be
expressed in terms of c1, . . . , cn and their derivatives with respect to arclength.
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Suppose that we are working with a substantial curve in R4 with x(4)(s) =
x(s) + c3(s)x

′(s) + c2(s) x′′(s) + c1(s)x
′′′(s). Then we can write

M =


1 0 0 0
0 1 0 0
0 m1 1 0
0 m3 m2 1

 and C =


0 1 0 0
0 0 1 0
0 0 0 1
1 c3 c2 c1

 and K =


0 1 0 0
0 κ1 1 0
0 κ2 2κ1 1
1 κ3 3κ2 3κ1

 ,

where K is the matrix of centro-affine curvatures. We know that

K = M ′M−1 + M C M−1. (3.24)

The diagonal entries of this equation are

κ1 = −m1

2κ1 = m1 −m2

3κ1 = m2 + c1,

which allows one to eliminate κ1 from the equations and solve for m1 and m2 in
terms of c1, giving

m1 = −c1

6
and m2 = −c1

2
.

If we substitute these equations into (3.24) and consider the equations on the sub-
diagonal, we have

κ2 = −m3 −
c′1
6

+
c2

1

18

3κ2 = m3 −
c′1
2

+
c2

1

4
+ c2,

and we can eliminate κ2 from these equations and solve for

m3 = − c2
1

48
− c2

4
.

Thus we have solved for the entries of M in terms of c1, c2 and c3. We get the centro-
affine curvatures in terms of the ci’s and their first derivatives by substituting the
values of m1, m2 and m3 into (3.24).

Notice that when we solved for m3, the terms involving c′1 cancel. This will
happen in general, as long as one solves the equations along the diagonal first, and
then sequentially along each subdiagonal. From equation (3.21) we see that centro-
affine arclength depends on derivatives of order n + 1, thus the functions c1, . . . , cn
also depend on derivatives of order n + 1. Since we can solve for the matrix M
in terms of the functions c1, . . . , cn, we see that the centro-affine frame depends on
derivatives of order n + 1. Since the curvatures depend on the functions c1, . . . , cn
and their first derivatives, we see that the curvatures are of order n + 2.



400 R. B. Gardner – G. R. Wilkens

4 Closing Remarks

The plane version of theorem 3 goes back to at least 1933 [MM]. A discussion of
centro-affine plane curves, as well as a very brief discussion of centro-affine space
curves, can be found in [SS, §12 and §16]. Their invariants for curves in R3 (see page
89) are exactly the coefficients in equation (3.23) for n = 2. A very detailed discus-
sion of the centro-affine plane theory of curves (n = 1) can be found in Laugwitz
[La]. An application of centro-affine curve theory in the plane to differential equa-

tions appears in Bor
◦
uvka’s book [Bo]. We are able to apply a similar sort of analysis

to the lowest dimensional problem in control theory, and intend to generalize to
higher dimensional problems.

Various authors have studied other affine invariants of curves and surfaces. We
note Paukowitsch [Pa] developed an equi-affine invariant moving frame for curves
in arbitrary dimension. Pabel [Pl] relates the equi-affine curve theory to a structure
from classical analysis.

Laugwitz also discusses the case of centro-affine hypersurfaces. He derives the
same invariants, but without using moving frames. His application to Finsler geom-
etry is very much in the spirit of our applications to control theory.
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Sohn, Braunschweig, 1965.
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