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Introduction

Several new multidimensional integration theories that generalize or are analogous
to the Denjoy-Perron-Henstock-Kurzweil integral were developed in recent years by
several authors (e.g. [H], [L] (Generalized Riemann integral), [CD] (Generalized
Denjoy integral), [M1] (GP-integral), [KMP] (BV-integral)). The purpose in the
development of these theories has been to examine more general versions of the
classical theorems in Lebesgue integration theory, such as the Divergence theorem,
Fubini’s theorem, or convergence theorems.

In this paper, we propose a simple elementary multidimensional integration
that has a number of advantages also. First, as remarked in [L], unlike the one-
dimensional case, a drawback of the known multidimensional integrals is that one
cannot develop in the same system both Divergence and Fubini type theorems. This
can be done with the integral presented here. Second, one main goal of the above
theories has been to weaken the smoothness condition on the vector fields in the Di-
vergence theorem. The continuous differentiability of the vector fields was replaced
by their continuity and their pointwise, or asymptotic, or a.e. differentiability (with
some other supplementary conditions). Here, we can remove all hypotheses about
differentiability and prove a Divergence theorem for the class of all continuous vec-
tor fields (in fact, for a larger class of distributions). The third point concerns
convergence theorems. In some of the previous integration theories, the convergence
theorems are rather complicated (see e.g. Ch. 5, [L]), and in some others, they seem
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to be incomplete (for example, in [M1] or [CD], where there were forms of monotone
convergence theorems, but dominated convergence type theorems were missing). In
the present paper, we prove some simple general convergence theorems that admit
both monotone and dominated convergence theorems as direct consequences. Mo-
tivated by the earlier study of a one-dimensional integration ([ALV]), we construct
our space of integrable distributions as the completion of the space of continuous
functions with respect to a certain norm. This permits us to use the methods of
Functional Analysis to investigate the structure of this space and the integral on it.

As an illustration we present the solution of a simple initial value problem for a
hyperbolic equation, where very little smoothness is required of the initial data.

To simplify the presentation, we consider here integration in the plane. The
general case can be carried out in much the same way.

The paper consists of four parts. In Part 1, we define the class of G-integrable
distributions and the integral on it. Some basic properties such as ordering and
relationships with the Lebesgue integral are also considered in this part. In Part
2, we prove some Fubini type theorems for G-integrable distributions. A Green’s
theorem is derived in Part 3 and Part 4 is devoted to convergence theorems.

1 Integration in the class G(Q)

1.1 Construction of G-integral

Let a, b, c, d ∈ R, a < b and c < d. In the sequel, we denote by Q the (open)
rectangle (a, b)× (c, d) in R2, and put, for simplicity, ∂ = ∂12 = ∂21 in D′(Q) (the
space of distributions on Q with D(Q) the space of test functions). The class of
mappings we shall work with is given by G(Q), where

G(Q) = {∂F ∈ D′(Q) : F ∈ C(Q)}.

To define an integral on G(Q), we need the following:

Lemma 1 Let F ∈ C(Q). Then ∂F = 0 (in D′(Q)) if and only if there exist
H ∈ C([a, b]), K ∈ C([c, d]) such that

F (x, y) = H(x) + K(y), (x, y) ∈ Q. (1)

Proof. It is clear that if F is of the form (1) then ∂F = 0. Conversely, suppose
0 = ∂F . From ∂1(∂2F ) = 0, we have ∂2F = 1(a,b) ⊗ g for some g ∈ D′(c, d)
(here ⊗ denotes the tensor product between D′(a, b) and D′(c, d) and 1(a,b) is the
constant function 1 on (a, b)). Letting K be a primitive of g, we have ∂2(F −1(a,b)⊗
K) = 0. Hence, there exists H ∈ D′(a, b) such that F − 1(a,b) ⊗ K = H ⊗ 1(c,d),
i.e., F = 1(a,b) ⊗ K + H ⊗ 1(c,d). We prove that H and K can be identified with

continuous functions. Indeed, choosing g0 ∈ D(c, d) such that
∫ d

c
g0 = 1, we have

〈F, f ⊗ g0〉 = 〈1(a,b), f〉〈K, g0〉 + 〈H ⊗ 1(c,d), f ⊗ g0〉 = 〈H, f〉 + 〈〈K, g0〉1(a,b), f〉,
f ∈ D(a, b). Putting

F1 =
∫ d

c
F (·, y)g0(y)dy ∈ C([a, b]),
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we have
〈H, f〉 = −〈〈K, g0〉1(a,b), f〉+ 〈F1, f〉, ∀f ∈ D(a, b),

i.e.,
H = 〈K, g0〉1(a,b) + F1 ∈ C([a, b]).

Similarly, K ∈ C([c, d]). For f ⊗ g ∈ D(a, b)⊗D(c, d), we have

〈H(x) + K(y), f ⊗ g〉
=
∫ b

a
H(x)f(x)dx

∫ d

c
g(y)dy +

∫ b

a
f(x)dx

∫ d

c
K(y)dy

= 〈H ⊗ 1(c,d), f ⊗ g〉 + 〈1(a,b) ⊗K, f ⊗ g〉
= 〈F, f ⊗ g〉.

Since D(a, b)⊗D(c, d) is dense in D(Q) (cf. [Ho], [K]), we have H(x)+K(y) = F (x, y)
in D′(Q). Since the functions in both sides are continuous on Q, we must have
H(x) + K(y) = F (x, y), ∀(x, y) ∈ Q. �

For f ∈ G(Q), we put

I(f) = {F ∈ C(Q) : ∂F = f in D′(Q)}.

From Lemma 1, we immediately deduce:

Lemma 2 If f ∈ G(Q), then

F1(x, y) + F1(a, c)− F1(a, y)− F1(x, c)
= F2(x, y) + F2(a, c)− F2(a, y)− F2(x, c)

for all F1, F2 ∈ I(f), (x, y) ∈ Q. Moreover, there exists a unique F (f) ∈ I(f) such
that

F (f)(a, y) = F (f)(x, c) = 0,

∀x ∈ [a, b], y ∈ [c, d].

This leads to the following definition.

Definition 1 Let f ∈ G(Q) (f is said to be G-integrable on Q) and let Q′ =
(a′, b′)× (c′, d′) ⊂ Q. We put∫

Q′
f = F (f)(b′, d′) + F (f)(a′, c′)− F (f)(a′, d′)− F (f)(b′, c′),

where F (f) is given by Lemma 2.

From Lemma 2, it is seen that Definition 1 is still valid if we replace F (f) by any

F ∈ I(f). In particular,
∫
Q

f = F (f)(b, d). For f ∈ G(Q), we define

‖f‖ = sup

{∣∣∣∣∣
∫

(a,x)×(c,y)
f

∣∣∣∣∣ : (x, y) ∈ Q

}
.

Now, let

Ĉ(Q) = {f ∈ C(Q) : f(a, y) = f(x, c) = 0, ∀x ∈ [a, b], y ∈ [c, d]}.
Ĉ(Q) is closed with respect to the usual sup-norm ‖·‖∞. Since the mapping G(Q)→
Ĉ(Q), f 7→ F (f) can be checked to be linear, bijective, and norm-preserving, we
have:
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Theorem 1 (G(Q), ‖ · ‖) is a separable Banach space, isomorphic to (Ĉ(Q), ‖ · ‖∞).

We next consider some basic properties of the integral just defined.
Since the mapping f 7→ F (f) is linear, we immediately deduce∫

Q
(sf + tg) = s

∫
Q

f + t
∫
Q

g, ∀f, g ∈ G(Q), s, t ∈ R.

More properties are given below.

1.2 On ordering G(Q)

The ordering in this case is much more complicated than that in the one-dimensional
case. As usual, for f, g ∈ G(Q), we say that f ≥ g if and only if f − g is a positive
measure on Q. For f ∈ D′(Q), we know, by the Riesz Representation Theorem,
that if f is a positive or bounded (Radon) measure on Q then it can be identified
with a Borel measure (in the set function sense) µ = µf , which is also positive or
bounded. We can define in these cases

F (x, y) = Ff (x, y) = µf ((a, x)× (c, y)), (x, y) ∈ Q.

We need the following lemma for our study of ordering on G(Q).

Lemma 3 (i) If f is a bounded measure on Q then Ff ∈ L∞(Q) is the distributional
primitive of f , i.e., ∂Ff = f in D′(Q).

(ii) If in (i), we assume furthermore that f ∈ G(Q), then

Ff(x, y) = F (f)(x, y), ∀(x, y) ∈ Q. (2)

(iii) If f ∈ G(Q) is a positive measure then (2) holds.

Proof. We sketch here only the main features, and leave the details to the reader.
(i) We first define

Z((x, y), (s, t)) = χ(a,x)×(c,y)(s, t), (x, y), (s, t) ∈ Q.

We have
F (x, y) =

∫
Q

Z((x, y), (s, t))dµ(s, t)

and F ∈ L∞(Q). For g ∈ D(Q),

〈F, ∂g〉 =
∫
Q

(∫
Q

Z((x, y), (s, t))∂g(x, y)dµ(s, t)
)

dxdy

=
∫
Q

(∫
Q

Z((x, y), (s, t))∂g(x, y)dxdy

)
dµ(s, t).

But ∫
Q

Z((x, y), (s, t))∂g(x, y)dxdy =
∫ b

s

∫ d

t
∂12g(x, y)dxdy

= −
∫ b

s
∂1g(x, t)dx = g(s, t),
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hence

〈F, ∂g〉 =
∫
Q

g(s, t)dµ(s, t)

= 〈f, g〉, ∀g ∈ D(Q).

(ii) Let f ∈ G(Q), and let J = F − F (f). Then J ∈ L∞(Q) and ∂J = 0 in
D′(Q). We first prove that

lim
x→a+

F (x, y0) = lim
y→c+

F (x0, y) = 0, ∀x0 ∈ [a, b], ∀y0 ∈ [c, d].

In fact, we have the Hahn decomposition µ = µ+−µ−, where µ± are positive bounded
measures on Q. Let {xn} be any sequence decreasing to a, since ∩n≥1[(a, xn) ×
(c, yn)] = ∅,

limµ±((a, xn)× (c, y0)) = 0.

Hence
F (xn, y0) = µ+((a, xn)× (c, y0))− µ−((a, xn)× (c, y0))→ 0.

On the other hand, we have, as in Lemma 1, H ∈ D′(a, b), K ∈ D′(c, d) such that
J = 1(a,b) ⊗K + H ⊗ 1(c,d). Since F, F (f) are bounded, we have H ∈ L∞(a, b), K ∈
L∞(c, d). As in the last part of the proof of Lemma 1, this implies that

J(x, y) = H(x) + K(y), a.e. (x, y) ∈ Q. (3)

By Fubini’s theorem, there exists B ⊂ [c, d], m1([c, d]\B) = 0 (m1 is the one-
dimensional Lebesgue measure) such that (3) holds for all y ∈ B, a.e. x ∈ [a, b].
Let (a′, b′) ⊂ (a, b). Since limy→c J(x, y) = 0, ∀x ∈ [a, b] and |J(x, y)| ≤ |µ|(G) +
‖F (f)‖∞, (x, y) ∈ Q, the dominated convergence theorem gives

lim
y→c

∫ b′

a′
J(x, y)dx = 0.

This implies that

(b′ − a′)−1
∫ b′

a′
H(x)dx = lim

y→c, y∈B
K(y)

for all subintervals (a′, b′) ⊂ (a, b). Applying Lebesgue’s theorem, one has

H(x) = lim
y→c,y∈B

K(y)

fora.e. x ∈ (a, b), i.e., H=const a.e. on (a, b). Similarly, K=const a.e. on (c, d).
Thus, J=const a.e. on Q. This constant must be 0 since limy→c J(x, y) = 0. Hence
F (x, y) = F (f)(x, y) a.e. on Q. Using the continuity of F (f) and the Hahn decom-
position of µ, we see that this equality actually holds for all (x, y) ∈ Q.

(iii) Let f ∈ G(Q) be a positive measure on Q. We choose sequences {an}, {bn},
{cn}, {dn} such that an < bn, cn < dn, [an, bn] × [cn, dn] ⊂ Q, ∀n and an ↘ a,
bn ↗ b, cn ↘ c, dn ↗ d as n → ∞. Put Qn = (an, bn) × (cn, dn) and fn = f |Qn,
µn = µ|Qn. µn is a positive measure on Qn and µn represents fn. Since Qn is
compact, µn is bounded. Applying (ii), we have

F (fn)(x, y) = µn((an, x)× (cn, y))
= µ((an, x)× (cn, y)),
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for all (x, y) ∈ Qn. Let (x, y) ∈ Q. Choosing m large enough such that for (x, y) ∈
Qm, we have

µ((an, x)× (cn, y)) = F (f)(x, y)−F (f)(an, y)−F (f)(x, cn)+F (f)(an, cn), ∀n ≥ m.

On the other hand, we have

limµ((an, x)× (cn, y)) = µ

 ⋃
n≥m

(an, x)× (cn, y)


= µ((a, x)× (c, y)).

Letting n→∞, we have

F (x, y) = µ((a, x)× (c, y))
= F (f)(x, y)− F (f)(a, y)− F (f)(x, c) + F (f)(a, c)
= F (f)(x, y).

This show that F = F (f) in Q. The extension of this equality to the boundary of
Q is straightforward. �

We immediately obtain from Lemma 3 the order preserving property of the G-
integral, i.e., ∫

Q
f ≥

∫
Q

g,

whenever f ≥ g, f, g ∈ G(Q). In fact, since f − g ∈ G(Q) is a positive measure,

Lemma 3 (iii) gives
∫
Q

f −
∫
Q

g = F (f − g)(b, d) = µ(f−g)(Q) ≥ 0. We also have

other usual relations between the G-integral and the ordering. For example, we have
the following result:

Corollary 1 If f, g, h ∈ D′(Q), f ≤ g ≤ h and if f and h are G-integrable, then g
is also G-integrable.

Proof. Without loss of generality, we can assume that f = 0, i.e., g, h are positive
measures on Q and g ≤ h. Letting µg, µh be the Borel measures corresponding
to g and h, we have 0 ≤ µg ≤ µh. Lemma 3 (iii) implies that µh is a bounded
measure on Q and F (h)(x, y) = µh((a, x) × (c, y)), (x, y) ∈ Q. Then µg is also
bounded. Putting F (x, y) = µg((a, x) × (c, y)), (x, y) ∈ Q, one has from Lemma
3 (ii) that ∂F = g. We check that F ∈ C(Q). Let (x, y) ∈ Q. If F is not
continuous at (x, y) then we can find a sequence {(xn, yn)} converging to (x, y) such
that infn |F (xn, yn)− F (x, y)| > 0. Divide Q into four subrectangles:{

Q1 = (a, x]× (c, y], Q2 = (x, b)× (c, y),
Q3 = [x, b)× [y, d), Q4 = (a, x)× (y, d).

Passing to a subsequence if necessary, we can assume that (xn, yn) ∈ Qi for some
i ∈ {1, 2, 3, 4}. Assume i = 1. Passing once more to a subsequence, we can assume
that xn ↗ x, yn ↗ y. Hence

µg((a, xn)× (c, yn))→ µg

⋃
n≥1

(a, xn)× (c, yn)

 = µg((a, x)× (c, y)),
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contradicting the choice of (xn, yn). Assume now i = 2. As above we can also
assume that xn ↘ x, yn ↗ y. Simple calculations show that

|F (x, y)− F (xn, yn)| ≤ µg((a, x)× [yn, y)) + µg([xn, x)× (c, yn))
≤ µh((a, x)× [yn, y)) + µh([xn, x)× (c, yn))
= F (h)(x, y)− F (h)(x, yn)− F (h)(xn, y) + F (h)(xn, yn).

By the continuity of F (h), the right hand side of this inequality tends to 0. We
obtain again a contradiction. The cases i = 3, 4 are treated in the same way. We
have proved that F is continuous at (x, y) ∈ Q. The continuity of F on ∂Q is
established similarly. �

1.3 Some further properties

The usual restriction and extension properties of the G-integral is given in the
following theorem.

Theorem 2 (i) Let f ∈ G(Q) and Q′ = (a′, b′) × (c′, d′) ⊂ Q. Then f |Q′ ∈ G(Q′)
and

F (f |Q′)(x, y) = F (f)(x, y)− F (f)(a′, y)− F (f)(x, c′) + F (f)(a′, c′), ∀(x, y) ∈ Q′.

(ii) For a ≤ m ≤ b and c ≤ n ≤ d, let

Q1 = (a, m)× (c, n), Q2 = (m, b)× (c, n), Q3 = (a, m)× (n, d), Q4 = (m, b)× (n, d).

Then for each (f1, f2, f3, f4) ∈
4∏
i=1

G(Qi), there exists a unique f ∈ G(Q) such that

f |Qi = fi, 1 ≤ i ≤ 4. Moreover, ∫
Q

f =
4∑
i=1

∫
Qi

fi.

(iii) Let a < m < m′ < b and f ∈ D′(Q). Then f ∈ G(Q) if and only if
f |(a,m′)×(c,d) ∈ G((a, m′)× (c, d)) and f |(m,b)×(c,d) ∈ G((m, b)× (c, d)).

If Q1 = (a, m1) × (c, n1), Q2 = (m2, b) × (c, n2), Q3 = (a, m3) × (n3, d), Q4 =

(m4, b) × (n4, d) are subrectangles of Q such that
4⋂
i=1

Qi 6= ∅, then for every f ∈

D′(Q), f ∈ G(Q) if and only if f |Qi for all i ∈ {1, 2, 3, 4}.
We conclude this part with the important fact that the G-integral represents an

extension of the Lebesgue integral.

Theorem 3 If we identify f ∈ L1(Q) with the distribution

f : g 7→ (L)
∫
Q

fg, g ∈ D(Q),

where (L)
∫

is the Lebesgue integral, then f ∈ G(Q) and
∫
Q

f = (L)
∫
Q

f . Moreover,

G(Q) is the completion of L1(Q) (or C(Q)) with respect to the norm

‖f‖ = sup
{∣∣∣∣(L)

∫ x

a

∫ y

c
f
∣∣∣∣ : (x, y) ∈ Q

}
.
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Proof. Let f ∈ L1(Q), and let

F (x, y) = (L)
∫ x

a

∫ y

c
f, (x, y) ∈ Q.

Then F ∈ Ĉ(Q). For g ∈ D(Q), by Fubini’s theorem and the integration by parts
formula, we have

(L)
∫
Q

fg = −
∫ b

a

[∫ d

c

(∫ y

c
f(x, t)dt

)
∂2g(x, y)dy

]
dx

= −
∫ b

a

[∫ d

c
∂1F (x, y)∂2g(x, y)dx

]
dy

=
∫ d

c

[∫ b

a
F (x, y)∂12g(x, y)dx

]
dy

= (L)
∫
Q

F∂g.

We therefore conclude that f = ∂F in D′(Q). Thus f ∈ G(Q) and F = F (f). In
particular,

(L)
∫
Q

f = F (b, d) = F (f)(b, d) =
∫
Q

f,

and L1(Q) ⊂ G(Q). Now, let f ∈ G(Q). Choose a sequence {Fn} ⊂ C2(Q) such
that Fn → F (f) uniformly on Q. Since Fn(a, ·)→ 0 uniformly on [c, d], Fn(·, c)→ 0
uniformly on [a, b], by replacing Fn(x, y) by Fn(x, y)−Fn(a, y)−Fn(x, c)+Fn(a, c),
we can assume that Fn(a, ·) = 0, Fn(·, c) = 0. Thus fn = ∂Fn ∈ C(Q) ⊂ G(Q) and
F (fn) = Fn, ∀n. We have

‖fn − f‖ = ‖F (f)− Fn‖∞ → 0,

proving the density of C(Q) (and thus of L1(Q)) in G(Q). �

2 Fubini theorems for G-integrable distributions

In this section, we consider some Fubini type theorems for the G-integral. We next
apply these results to some initial value problems for the two-dimensional wave
equation with nonsmooth initial data.

2.1 Fubini theorems

We first make some remarks on traces of integrals of G-integrable distributions. For
f ∈ C(Q) and x ∈ [a, b], the function∫ x

a
f(s, ·)ds : [c, d]→ R, y 7→

∫ x

a
f(s, y)ds

clearly satisfies ∫ x

a
f(s, ·)ds = [F (f)(x, ·)]′ on [c, d].
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Generalizing to the case f ∈ G(Q), we define, for f ∈ G(Q), x ∈ [a, b], y ∈ [c, d]:∫ x

a
f(s, ·)ds = [F (f)(x, ·)]′ in D′(c, d),

∫ y

c
f(·, t)dt = [F (f)(·, t)]′ in D′(a, b).

It is clear that ∫ x

a
f(s, ·)ds ∈ G(c, d),

∫ y

c
f(·, t)dt ∈ G(a, b),

where G(a, b) and G(c, d) are respectively the spaces of G-integrable distributions
on (a, b) and (c, d), i.e.

G(a, b) = {g′ ∈ D′(a, b) : g ∈ C [a, b]},

where g′ is the distributional derivative of g, etc.
The consistency of the above definition can also be seen by remarking that if

f ∈ G(Q), {fn} ⊂ C(Q), fn → f in G(Q), then
∫ x

a
fn(s, ·)ds →

∫ x

a
f(s, ·)ds in

G(c, d), and
∫ y

c
fn(·, t)dt→

∫ y

c
f(·, t)dt in G(a, b), x ∈ [a, b], y ∈ [c, d]. This means

that the mapping G(Q) → G(c, d), f 7→
∫ x

a
f(s, ·)ds is the unique extension of the

mapping

C(Q)→ G(c, d), f 7→
∫ x

a
f(s, ·)ds.

We are now in a position to prove a simple Fubini type theorem for G(Q).

Theorem 4 For f ∈ G(Q),

∫
Q

f =
∫ b

a

(∫ d

c
f(·, t)dt

)
=
∫ d

c

(∫ b

a
f(s, ·)ds

)
.

Proof. We first remark that the above repeated integrals exist in the sense of the
one-dimensional G-integral. Since F (f)(·, d)(a) = F (f)(a, d) = 0, one has

F (f)(·, d) = F

(∫ d

c
f(·, t)dt

)
and

∫ b

a

(∫ d

c
f(·, t)dt

)
= F (f)(b, d) =

∫
Q

f.

This proves the first equality. The second is proved in a similar way. �

We next derive another form of Fubini’s theorem for some subclasses of G(Q). A
fundamental property of those classes is that one can define traces of their elements
on segments parallel to the sides of Q. We put

Gi(Q) = {∂iF : F ∈ C(Q)}, i = 1, 2,

and
G∗1(Q) = {∂1F : F ∈ L1(Q), F (·, y) ∈ C([a, b]), a.e. y ∈ [c, d],
and ∃g = g(F ) ∈ L1(c, d) such that |F (x, ·)| ≤ g, ∀x ∈ [a, b]},

and
G∗2(Q) = {∂2F : F ∈ L1(Q), F (x, ·) ∈ C([c, d]), a.e. x ∈ [a, b]
and ∃g = g(F ) ∈ L1(a, b) such that |F (·, y)| ≤ g, ∀y ∈ [c, d]}.

Some elementary properties of these classes are given in the following proposition.
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Proposition 1 (i) Gi(Q) ⊂ G∗i (Q), i = 1, 2.
(ii) L1(Q) ⊂ G∗1(Q) ∩G∗2(Q), and G1(Q) ∪G2(Q) ⊂ G(Q).
(iii) If f ∈ Gi(Q) then ∂fj ∈ G(Q)(j ∈ {1, 2} and {i} = {1, 2} \ {j})

For the definition of traces, we need the following lemma.

Lemma 4 If F ∈ L1(Q) and if ∂1F = 0 in D′(Q), then there exists g ∈ L1(c, d)
such that F (x, y) = g(y) a.e. x ∈ (a, b), y ∈ (c, d).

The proof of the lemma relies on arguments similar to those used in the proof
of Lemma 1, and is thus omitted. Now suppose f ∈ G∗1(Q) and that F, F1 ∈ L1(Q)
are as in the definition of G∗1(Q), i.e. f = ∂1F = ∂1F1. It follows from Lemma 4
that [F (·, y)]′ = [F1(·, y)]′ in D′(a, b), which proves the consistency of the following
definition.

Definition 2 Let f ∈ G∗1(Q). We put, for almost all y ∈ [c, d], f(·, y) = [F (·, y)]′

in D′(a, b), where F ∈ L1(Q), ∂1F = f as in the definition of G∗1(Q).

We remark that this definition generalizes the one usually given for traces of
continuous functions. Indeed, suppose f ∈ C(Q). Consider

F (x, y) =
∫ x

a
f(s, y)ds, (x, y) ∈ Q.

Since f(x, y) =
dF (x, y)

dx
, (x, y) ∈ Q, one has ∂1F = f in D′(Q), and f(·, y) =

[F (·, y)]′ in D′(a, b). We have a similar definition for f(x, ·) if f ∈ G∗2(Q). We
see that if f ∈ G∗1(Q) then f(·, y) ∈ G(a, b) for a.e. y ∈ [c, d]. Hence the integral∫ b

a
f(·, y) exists as a one-dimensional G-integral. Summarizing we have the following

theorem.

Theorem 5 If f ∈ G(Q) ∩G∗1(Q), then the function

y 7→
∫ b

a
f(·, y), y ∈ [c, d]

is Lebesgue integrable on [c, d], and
∫
Q

f =
∫ b

a
(
∫ d

c
f(·, y))dy. Hence, for all f ∈

G(Q) ∩G∗1(Q) ∩G∗2(Q), we have∫
Q

f =
∫ d

c

(∫ b

a
f(·, y)

)
dy =

∫ b

a

(∫ d

c
f(x, ·)

)
dx

Proof. Let F ∈ L1(Q) be such that ∂1F = f and that F satisfies the conditions in
the definition of G∗1(Q). A direct proof shows that for a.e. y ∈ [a, b],∫ b

a
f(·, y) = F (b, y)− F (a, y).

Since |F (x, ·)| ≤ g, x ∈ [a, b] with g ∈ L1(c, d), the mapping G(x, y) =
∫ y

c
F (x, t)dt

is defined for every (x, y) ∈ Q. Let (xn, yn) → (x, y) in Q. We have χ(c,yn)(t) →
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χ(c,y)(t), t ∈ [c, d]\{y}, and by the continuity of F (·, t) on [a, b], F (xn, t)→ F (x, t),
a.e. t ∈ [c, d]. Hence

F (xn, t)χ(c,yn)(t)→ F (x, t)χ(c,y)(t)

for a.e. t ∈ [c, d]. Moreover, |F (xn, t)χ(c,yn)(t)| ≤ |F (xn, t)| ≤ g(t), ∀n ∈ N, a.e.
t∈ [c, d]. By the dominated convergence theorem

G(xn, yn) =
∫ d

c
F (xn, t)χ(c,yn)(t)dt→

∫ d

c
F (x, t)(c, y)(t)dt = G(x, y)

as (n → ∞). We have proved that G ∈ C(Q). On the other hand, since F (x, ·) ∈
L1(c, d), we have

∂G(x, y)

∂y
= F (x, y) for a.e. y ∈ [c, d]. Integrating by parts, we have

∂2G = F in D′(Q). Hence ∂G = ∂1F = f in D′(Q). Thus G ∈ I(f). By definition,∫
Q

f = G(b, d)−G(a, d). Moreover,

∫ d

c

∣∣∣∣∣
∫ b

a
f(·, y)

∣∣∣∣∣ =
∫ d

c
|F (b, y)− F (a, y)|dy ≤ 2

∫ d

c
g(y)dy <∞,

i.e. the function y →
∫ b

a
f(·, y) is in L1(c, d). Furthermore,

∫ d

c

(∫ b

a
f(·, y)

)
dy =

∫ d

c
F (b, y)dy−

∫ d

c
F (a, y)dy = G(b, d)−G(a, d).

We have thus proved the first equality of Theorem 5. The second inequality may be
proved similarly. �

Remark 1 From Proposition 1, we see that the first equality holds for all f ∈ G1(Q)
and the second holds for f ∈ G1(Q)∩G2(Q). In view of Theorem 2 and Proposition
4, we see that Theorem 5 is valid for all F ∈ L1(Q). It is thus a generalization of
the classical Fubini theorem for Lebesgue integrable functions on Q.

2.2 An application to differential equations

We now apply G-integration to an elementary “initial value” problem for the wave
equation. Using the G-integral we may consider initial value problems with initial
data which must not necesarily be smooth , and we seek solutions in the class G(Ω).

Consider the following simple problem in the unit square Ω = (0, 1)2:
uxy := ∂12u = f in Ω,

u(x, x) = h(x),
uy(x, x) := ∂2u(x, x) = g(x) for x ∈ (0, 1).

(4)

We assume that g and h are continuous on [0, 1], f ∈ G1(Ω), and we are to find
solutions u of (4) in the class

A = {u ∈ C(Ω) : ∂2u ∈ C(Ω)}.
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In view of Theorem 5 (Fubini’s Theorem for G-integrable distributions) and
Proposition 1, we have for all (x, y) ∈ Ω,

F (x, y) := F (f)(x, y) =
∫

[0,x]×[0,y]
f

=
∫ y

0

(∫ x

0
f(ξ, η)dξ

)
dη.

(5)

Moreover, as in Proposition 1, we have by the definition of G1(Ω) that

∂2F (x, y) =
∫ x

0
f(ξ, y)dξ, (6)

and ∂2F (x, y) is continuous on Ω. The integral in (6) is understood as a one dimen-
sional G-integral. Now, since

∂12u = ∂12F = f in D′(Ω),

it follows from Lemma 1 that

u(x, y) = F (x, y) + H(x) + K(y), ∀x, y ∈ [0, 1], (7)

where K and H are continuous on [0, 1]. Now, we have in the distributional sense
that

∂2u(x, y) = ∂2F (x, y) + K ′(y). (8)

Since ∂2F and ∂2u are continuous, we also have that K ′ is also continuous on [0, 1].
From (4), (7), and (8), one obtains

F (x, x) + H(x) + K(x) = h(x),

∂2F (x, x) + K ′(x) = g(x).

Without loss of generality, one can choose K such that K(0) = 0. The above
equation gives

K(x) =
∫ x

0
[g(ξ) − ∂2F (ξ, ξ)]dξ

=
∫ x

0
[g(ξ) −

∫ ξ

0
f(t, ξ)dt]dξ.

It follows that

H(x) = h(x)− F (x, x)−K(x)

= h(x)−
∫ x

0

(∫ x

0
f
)
−
∫ x

0

[
g(ξ) −

∫ ξ

0
f(t, ξ)dt

]
dξ.

Therefore, there exists a unique solution u ∈ A of (4); moreover, u is given by the
following integral

u(x, y) =
∫ x

0

∫ y

0
f + h(x)−

∫ x

0

∫ x

0
f −

∫ x

0

[
g(ξ) −

∫ ξ

0
f(t, ξ)dt

]
dξ

+
∫ x

0
g −

∫ x

0

∫ ξ

0
f(t, ξ)dtdξ.

(9)
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We note that (4) is now equivalent to the integral equation (9). This equivalence
permits us to investigate the existence of solutions of semilinear equations of the
form: 

uxy = f(u) in Ω,
u(x, x) = h(u)(x, x),

uy(x, x) = g(u)(x, x) for x ∈ (0, 1).
(10)

Here h, g are mappings from A to C(Ω), and f maps A into G1(Ω). Using (9), we
can convert (10) into a nonlinear integral equation that may be treated by usual
fixed point methods.

We also note that wave equations with nonsmooth (distributional) data have
been studied extensively since the appearance of distributions (cf. [Ho] and the
references therein, see also [W] for a nice and elementary presentation). In those
approaches, the initial conditions are usually included in the source distribution;
hence, it is not clear what one means by the initial conditions, related to the classical
solutions. Our approach here is, in some sense, in between of the classical and the
distributional ones. We relax some smoothness assumptions on the source functions
and the initial conditions, but still keep the usual meaning of traces and initial
conditions. Moreover, the differential equations can be now written as integral
equations.

3 Green’s theorem for G-integrable distributions

3.1 Green’s theorem on rectangles

In this section, the boundary Γ = ∂Q = {a, b} × [c, d] ∪ [a, b]× {c, d} is assumed
oriented in the usual (counter-clockwise) direction. Let pdx + qdy be a differential
form in Q, where (p, q) ∈ D′(Q) × D′(Q) is a (distributional) vector field. If the
traces of p and q on the sides of Q can be defined and if the integrals∫

[a,b]×{c}
p|[a,b]×{c} =

∫ b

a
p(·, c),

∫
[a,b]×{d}

p|[a,b]×{d} =
∫ b

a
p(·, c),

∫
{a}×[c,d]

q|a×[c,d] =
∫ d

c
q(a, ·),

∫
{b}×[c,d]

q|{b}×[c,d] =
∫ d

c
q(b, ·)

exist in some sense, then we can define the integral of the form pdx + qdy on in the
usual way, by∫

Γ
pdx + qdy =

∫ b

a
p(·, c)−

∫ b

a
p(·, d) +

∫ d

c
q(b, ·)−

∫ d

c
q(a, ·).

We have the following form of Green’s theorem for G(Q).

Theorem 6 Suppose the vector field (p, q) ∈ G1(Q)×G2(Q). Then: (i) The traces
p(·, c), p(·, d) (resp. q(a, ·), q(b, ·)) are (one-dimensional) G-integrable distributions
on [a, b] (resp. [c, d]).

(ii) ∂1q, ∂2p ∈ G(Q) and we have Green’s formula∫
Γ
pdx + qdy =

∫
Q
(∂1q − ∂2p). (11)



368 D. D. Ang – K. Schmitt – L. K. Vy

Proof. (i) and the first part of (ii) follow from Proposition 1. To prove the second
part of (ii), we remark that since p ∈ G1(Q), there exist F ∈ C(Q) such that
p = ∂1F in D′(Q). We have ∂2p = ∂F in D′(Q), i.e., F ∈ I(∂2p). By Lemma 2, one
has ∫

Q
∂2p = F (b, d)− F (b, c)− F (a, d) + F (a, c).

On the other hand, since p(·, y) = [F (·, y)]′ in D′(a, b)(y ∈ [c, d]), we have
∫ b

a
p(·, c) =

F (b, c)− F (a, c) and
∫ b

a
p(·, d) = F (b, d) − F (a, d). Thus

∫
Q

∂2p = p(·, d) − p(·, c).

Similarly,
∫
Q

∂1q = q(b, ·)− q(a, ·). Combining these equalities, we obtain (ii). �

As an immediate consequence of this theorem, we have the following Green’s
formula for continuous vector fields.

Corollary 2 Let (p, q) ∈ C(Q) × C(Q) be a continuous vector field on Q. Then
∂1q − ∂2p ∈ G(Q) and we have (11).

Proof. Let P ∈ C(Q). Since
d

dx

(∫ x

a
P (ξ, x)dξ

)
= P (x, y) in Q,

∂1

(∫ x

a
P (ξ, x)dξ

)
= P in D′(Q).

The continuity of P implies that of the function (x, y) 7→
(∫ x

a
P (ξ, x)dξ

)
on Q. Thus

P ∈ G1(Q). Similarly P ∈ G2(Q). A similar proof shows that Q ∈ G1(Q) ∩G2(Q).
We also note that in this case, the integral in the left hand side of (11) is an usual
Riemann integral. �

3.2 Integration on elementary sets

As usual, we mean by an elementary set in Q, a finite union of (closed) subrectangles
of Q. Using basic properties of G-integral, as presented in Section 1 and classical
processes, one can prove that G-integrals on elementary sets are in fact independent
of their partitions into subrectangles. Therefore, we can extend our integration on
rectangles to one on elementary sets. The results presented in Sections 1, 2, 3, 4
above and 5 below can thus be generalized in a natural way. For example, we have:

Theorem 7 Suppose (p, q) ∈ G1(Q) × G2(Q) and that E is an elementary set in
Q. Then ∫

∂E
pdx + qdy =

∫
E
(∂1q − ∂2p).

Remark 2 One of the principal aims of the integration theories presented in [M1],
[KMP], or [CD] has been to derive Green type theorems with weakened conditions
on the smoothness of the vector field (p, q). In these papers, the continuous dif-
ferentiability of (p, q) was replaced by its continuity and pointwise differentiability
or asymptotic differentiability. Here, as is shown by the corollary of Theorem 6,
differentiability assumptions on (p, q) may be removed if we deal with G-integrable
distributions.
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4 Convergence theorems

We examine conditions on sequences {fn} ⊂ G(Q) in order that the convergence

of fn to f (in some sense) with f ∈ G(Q), implies that
∫
Q

fn →
∫
Q

f . We recall

that a sequence {Fn} on Q is said to be locally uniformly bounded in Q if for
each x ∈ Q, there exists a neighborhood Ux ⊂ Q of x such that sup{|Fn(y)| : y ∈
Ux, n ∈ N} < ∞. It is clear that if {Fn} is locally uniformly bounded in Q, then
it is uniformly bounded on compact subsets of Q as well. We have the following
convergence theorem.

Theorem 8 Let {fn} be a sequence in G(Q) such that
(i) The sequence of primitives {F (fn)} is locally uniformly bounded in Q.
(ii) {F (fn)} converges pointwise on Q to a continuous function on Q.
Then {fn} converges distributionally to a G-integrable distribution f and more-

over,
∫
Q

fn →
∫
Q

f as n→∞.

This theorem admits the following variant.

Theorem 9 Let {fn} be a sequence in G(Q) such that (i) and (ii) above hold and

that fn → f in D′(Q). Then f ∈ G(Q) and
∫
Q

fn →
∫
Q

f as n→∞.

Proof of Theorem 8. Let F = limFn on Q. By (ii), F is continuous. Also, F ∈ Ĉ(Q)
since all Fn have this property. Let φ ∈ D(Q). Since F (fn)φ → Fφ everywhere on
Q and

sup
Q
|F (fn)φ| ≤ ‖φ‖∞ sup{|F (fn)(x)| : n ∈ N, x ∈ suppφ} <∞,

by the local uniform boundedness of {F (fn)}. Hence
∫
Q

F (fn)φ→
∫
Q

Fφ. We have

checked that F (fn)→ F in D′(Q). Consequently, fn → f := ∂F in D′(Q). We have

f ∈ G(Q) and F = F (f). It follows that
∫
Q

fn = F (fn)(b, d) → F (f)(b, d) =
∫
Q

f .

�

We now derive from these theorems some familiar consequences.

Corollary 3 Let {fn} be a sequence in G(Q) such that fn → f in D′(Q) and that

{F (fn)} is equicontinuous on Q. Then fn → f in G(Q) and
∫
Q

fn →
∫
Q

f as

n→∞.

Proof. The equicontinuity of {F (fn)} implies that {F (fn)} is uniformly bounded
on Q. According to Ascoli’s theorem, {F (fn)}n is relatively compact in C(Q); let
F to be one of its limit points. We have F ∈ Ĉ(Q) and for some subsequence
{fnk} ⊂ {fn},

F (fnk)→ F uniformly on Q,
fnk → ∂F in D′(Q).

Thus f = ∂F and F = F (f), i.e., F (f) is the unique limit point of {F (fn)}.
Consequently, F (fn)→ F (f) uniformly on Q and our proof is complete. �
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Corollary 4 (Monotone convergence theorem for G-integral)
Let {fn} be a sequences in G(Q) such that f1 ≤ f2 ≤ . . . ≤ fn ≤ . . ., and that∫

Q
fn → a as n→∞. Then fn → f ∈ G(Q) in G(Q) and

∫
Q

f = a.

Proof. Let m, n ∈ N, m ≤ n. For (x, y) ∈ Q, since fm − fn ≥ 0,

0 ≤
∫

(a,x)×(c,y)
(fn − fm) = [F (fn) − F (fm)](x, y) ≤

∫
Q

fn −
∫
Q

fm.

It follows that ‖F (fn)− F (fm)‖∞ ≤
∣∣∣∣∫
Q

fn −
∫
Q

fm

∣∣∣∣ for all m, n ∈ N. Since
{∫

q
fn

}
is a Cauchy sequence in R, {F (fn)} is a Cauchy sequence in C(Q), which completes
our proof. �

Corollary 5 (Dominated convergence theorem for G-integral)
Let {fn} be a sequence in G(Q) such that fn → f in D′(Q). Suppose there exist

g, h ∈ G(Q) satisfying g ≤ fn ≤ h, ∀n ∈ N. Then f ∈ G(Q) and limn→∞

∫
Q

fn =∫
Q

f .

Proof. We check that {F (fn)} is equicontinuous on Q. Let ε > 0 and choose δ > 0
such that {

|F (g)(x, y)− F (g)(x′, y′)| < ε/4
|F (h)(x, y)− F (h)(x′, y′)| < ε/4,

for all (x, y), (x′, y′) ∈ Q such that |(x, y) − (x′, y′)| < δ. For (x, y), (x′, y′) sat-
isfying this condition, put x1 = min(x, x′), x2 = max(x, x′), y1 = min(y, y′),
y2 = max(y, y′). Simple calculations show that

|F (fn)(x, y)− F (fn)(x
′, y′)|

≤ |F (fn)(x, y2)− F (fn)(x, y1)− F (fn)(a, y2) + F (fn)(a, y1)|
+|F (fn)(x2, y

′)− F (fn)(x1, y
′)− F (fn)(x2, c) + F (fn)(x1, c)|

=

∣∣∣∣∣
∫

(a,x)×(y1,y2)
fn

∣∣∣∣∣+
∣∣∣∣∣
∫

(x1,x2)×(c,y′)
fn

∣∣∣∣∣ .
On the other hand, since

∫
Q′

g ≤
∫
Q′

fn ≤
∫
Q′

h for all subrectangles Q′ ⊂ Q, we have∣∣∣∣∫
Q′

fn

∣∣∣∣ ≤ ∣∣∣∣∫
Q′

g
∣∣∣∣ + ∣∣∣∣∫

Q′
h
∣∣∣∣. The right hand side of the above inequality is therefore

bounded by∣∣∣∣∣
∫

(a,x)×(y1,y2)
g

∣∣∣∣∣+
∣∣∣∣∣
∫

(a,x)×(y1,y2)
h

∣∣∣∣∣+
∣∣∣∣∣
∫

(x1,x2)×(c,y′)
g

∣∣∣∣∣+
∣∣∣∣∣
∫

(x1,x2)×(c,y′)
h

∣∣∣∣∣
= |F (g)(x, y2)− F (g)(x, y1)|+ |F (h)(x, y2)− F (h)(x, y1)|

+|F (g)(x2, y
′)− F (g)(x1, y

′)|+ |F (h)(x2, y
′)− F (h)(x1, y

′)|
= |F (g)(x, y)− F (g)(x, y′)|+ |F (h)(x, y)− F (h)(x, y′)|

+|F (g)(x, y′)− F (g)(x′, y′)|+ |F (h)(x, y′)− F (h)(x′, y′)|
≤ ε.

We have proved the equicontinuity of {F (fn)} over Q, which together with Corol-
lary 3, completes the proof. �
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