
Elliptic spaces with the rational homotopy type

of spheres

Geoffrey M.L. Powell ∗

1 Introduction

This paper is directed towards an understanding of those p-elliptic spaces which
have the rational homotopy type of a sphere, by classifying the algebraic models
which occur when the space satisfies an additional ‘large prime’ hypothesis, relative
to the prime p. The main results of the paper are given at the end of this section.

Definition 1.1 [10] A topological space Z is p-elliptic if it has the p-local homotopy
type of a finite, 1-connected CW complex and the loop space homology H∗(ΩZ;Fp),
with coefficients in the prime field of characteristic p, is an elliptic Hopf algebra.
(That is: finitely-generated as an algebra and nilpotent as a Hopf algebra [9]). �

The Milnor-Moore theorem shows that the Q-elliptic spaces are precisely those
spaces which have the rational homotopy type of finite, 1-connected CW complexes
and have finite total rational homotopy rank. This class of spaces is important
because of the dichotomy theorem (the subject of the book [8]) which states that
a finite, 1-connected complex either has finite total rational homotopy rank or the
rational homotopy groups have exponential growth when regarded as a graded vector
space. Moreover, elliptic spaces are the subject of the Moore conjectures, asserting
that the homotopy groups of a finite, 1-connected CW complex have finite exponent
at all primes if and only if it is Q-elliptic.

The p-elliptic spaces form a sub-class of the class of Q-elliptic spaces. A p-elliptic
space Z is known to satisfy the following important properties [10, 11].

1. H∗(Z;Fp) is a Poincaré duality algebra.
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2. The rationalization ZQ is a Q-elliptic space; in particular π∗(Z) ⊗Q is finite
dimensional.

3. The formal dimension of Z over Fp, fd(Z;Fp), is determined by the Hilbert
series of H∗(ΩZ;Fp) and is equal to the formal dimension over the rationals,
fd(Z;Q). (The formal dimension of a space X over a field k is fd(X;k) =
sup{m|Hm(X;k) 6= 0}).

4. pr annihilates the torsion module of H∗(ΩZ;Z(p)) for some integer r ≥ 0.

Many examples of p-elliptic spaces are known; for example finite (1-connected) H-
spaces, spheres, the total space of a fibration in which both the base space and
the fibre are elliptic. However, little is known regarding a general description or
classification of these spaces, even under the ‘large prime hypothesis’ defined below
in Definition 1.2.

The spheres may be regarded as being the simplest possible Q-elliptic spaces, so
it is natural to address the question of identifying those p-elliptic spaces which have
the rational homotopy type of a sphere; such spaces lead to examples of p-elliptic
spaces which do not have the p-local homotopy type of a finite H-space.

Application of the algebraic arguments used in this paper require the following
restriction on the prime under consideration:

Definition 1.2 Suppose that Z is a CW complex with cells in degrees (r, n], where
r ≥ 1. A prime p is a large prime for Z if p ≥ n/r or p = 0, when we understand
that F0 = Q. �

We discuss the formality of these spaces, with coefficients in a field. This property
is studied in [7], where equivalent conditions are formulated.

Definition 1.3 Suppose that X is a 1-connected space with Fp-homology of finite
type as a vector space.

1. X is p-formal if a minimal Adams-Hilton model A = T (V ) for X over Fp has
a quadratic differential (that is d : V → V ⊗ V ⊂ T (V )).

2. X is weakly p-formal if the Eilenberg-Moore spectral sequence collapses
TorH

∗(X ;Fp)(Fp,Fp)⇒ H∗(ΩX;Fp).

�

The main result of this paper may be stated as follows; a more precise version
of the second statement is given in Section 3.1. Write X ∼Q Y to indicate that X
has the rational homotopy type of Y .

Theorem 1 Suppose that p is a large prime for the 1-connected space Z, which is
p-elliptic, and that Z ∼Q SN , for N ≥ 2.

1. If N = 2n, then Z has the p-local homotopy type of SN .

2. If N = 2n + 1, then Z is p-formal and has cohomology algebra H∗(Z;Fp) ∼=
Λa(2t− 1)⊗B(2t), where t ≥ 1 and B(2t) is an algebra with the same Hilbert
series as Fp[b(2t)]/(b

m) for some m ≥ 1 and N = 2mt− 1, where the numbers
in parentheses indicate the degrees of elements.
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The first part of this theorem is a special case of Theorem 3 of Section 2.1. The
results of Section 3.1 may be summarized in the following result:

Theorem 2 Suppose that p is a large prime for the 1-connected space Z, which is
p-elliptic, and that Z ∼Q S2n+1. The Adams-Hilton model for a p-minimal decom-
position of Z may be taken to be the cobar construction on the dual of a commutative
graded differential algebra A = B⊗Λx1 where B = Z(p)[y1, . . . , yK ]/(prj+1yj+1+y

αj
j =

0) with dyj = 0 and dx1 = pr1y1, where rj ≥ 1 and αj ≥ 2 for all relevant j; here
|x1| = 2t− 1 for some t ≥ 1, |y1| = |x1|+ 1 and 2n + 1 = 2t(

∏K
i=1 αi)− 1.

1.1 Examples

It is easy to show that there exist p-elliptic spaces with the rational homotopy type
of a sphere but which do not have the p-local homotopy type of a sphere. Since a
p-elliptic space is 1-connected and the cohomology algebra satisfies Poincaré duality,
the fewest number of cells for which this may occur is three.

Take p an odd prime and integers n ≥ 2, k ≥ 1; let P 2n(pk) denote the Moore

space which is the cofibre of the Brouwer degree pk map: S2n−1 pk→ S2n−1. Let ι
denote the identity map on P 2n(pk) and [ι, ι] be the Whitehead product of this
map with itself (for details of p-primary homotopy theory, see [15]). Now let
α : S4n−2 → P 2n(pk) be the restriction of [ι, ι] to the (4n− 2)-skeleton of P 4n−1(pk).
Define Z = P 2n(pk) ∪α e4n−1; it may be shown that the space Z is p-elliptic (for
example by calculating the Adams-Hilton model, using the knowledge of the attach-
ing maps) and Z visibly has the rational homotopy type of the sphere S4n−1, since
P 2n(pk) is rationally acyclic when k ≥ 1. Moreover, if p ≥ (n + 2), then it may be
shown that (up to homotopy) this is the unique three cell space having this property.

This is the first in a sequence of such p-elliptic spaces, examples which were first con-
sidered in [2]. As above, take p an odd prime and integers k ≥ 1, t ≥ 1; let S2t+1{pk}
be the fibre of the Brouwer map S2t+1 pk→ S2t+1. Then, for any integer m ≥ 2, define
Vm = Vm(pk, t) to be the (2mt − 1)-skeleton of the p-minimal CW decomposition
of ΩS2t+1{pk}. The cohomology algebra H∗(ΩS2t+1{pk};Fp) is well-known and the
inclusion Vm → ΩS2t+1{pk} induces a surjection H∗(ΩS2t+1{pk};Fp)→ H∗(Vm;Fp)
which is an isomorphism of vector spaces in degrees ≤ (2mt− 1).

For 2 ≤ m < p, one may conclude that H∗(Vm;Fp) ∼= Λ(a2t−1) ⊗ Fp[b2t]/(b
m),

the tensor product of an exterior algebra by a truncated polynomial algebra. The
Eilenberg-Moore spectral sequence converging to the mod-p loop space homology of
Vm collapses giving:

Proposition 1.4 The space Vm = Vm(pk, t), 2 ≤ m < p, is p-elliptic and has the
rational homotopy type of S2mt−1. The mod-p loop space homology is isomorphic (as
a Hopf algebra) to a universal enveloping algebra, H∗(ΩVm;Fp) ∼= ULm where, for
m > 2, Lm is the abelian Lie algebra Lm = 〈x2t−2, y2t−1, z2mt−1〉 and, for m = 2, the
graded Lie algebra L2 = 〈x2t−2, y2t−1, [y, y]〉.

These spaces are very well understood; for m < p− 1, decompositions for ΩVm
as a product of atomic factors may be given directly by using the methods of [6],
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thus generalizing the results of [2]. In addition, if Xm denotes the 2mt-skeleton of
ΩS2t+1{pk}, so that Vm = Xm−1 ∪ e2mt−1, then such decompositions may be given
for Xm.

These provide very useful explicit examples of the behaviour of elliptic spaces.�

There is no reason to believe that these are the only p-elliptic spaces which have
the rational homotopy type of odd spheres. Consider the following algebraic example
as evidence for this; it is intended to resemble an Adams-Hilton model for a space
[1]:

Example 1.5 Suppose that p is an odd prime; for fixed integers N ≥ 2, r ≥ 0, k ≥ 1,
define a differential graded algebra A = A(r) over Z(p), the integers localized at p,
as the tensor algebra with generators in the degrees indicated by the subscripts:

A = T (a2N−2, b2N−1, c4N−2, e4N−1, f6N−2, g6N−1, ω8N−2).

and with differential of degree −1 defined by db = pka, dc = [a, b], de = pr(pkc− b2),
df = [a, e] − pr[b, c], dg = pkf − [b, e], dω = [a, g] − [b, f ] − [c, e]. Thus A is the
universal enveloping algebra on a differential, free graded Lie algebra. (The reader
is invited to check that the above defines a differential, so that d2 = 0).

When r = 0, the algebra A may be taken as an Adams-Hilton model for the
space V4(p

k, N) considered in the previous example. For r ≥ 1, standard algebraic
arguments may be used to show that H∗(A ⊗ Fp, d) is an elliptic Hopf algebra:
the ‘cohomology’ corresponding to A may be calculated and the ‘Eilenberg-Moore
spectral sequence’ has initial term which is of polynomial growth, which suffices by
[9].

In fact, if the prime p is sufficiently large compared with N , so that the model
lies within the ‘tame range’, the constructions of tame homotopy theory [14] may
be used to show that A may be realized as the Adams-Hilton model of a p-elliptic
space X. This space has the rational homotopy type of an odd sphere but is not
homotopically equivalent to any of the Vm’s. �

The paper is organized as follows: the next section considers the algebraic model
which is used and proves the first part of Theorem 1. Section 3 then proves the part
concerning those spaces with the rational homotopy type of an odd sphere. Finally,
Section 3.1 shows how one can use this to completely determine the Z(p)-model and
indicates how this yields the Adams-Hilton model by a property of formality over
the ring Z(p).

Acknowledgement: The material in this paper appeared in the author’s Oxford
doctoral thesis and is motivated by recent work of Félix, Halperin and Thomas.
The author is grateful for the inspiration provided by this triumvirate and wishes,
in particular, to thank Jean-Claude Thomas for countless conversations concerning
this material.

2 Algebraic models at large primes

The large prime restriction is of importance for the work of Anick [3], which shows
that, if p is a large prime for a finite, 1-connected CW complex X, then an Adams-
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Hilton model for X over Z(p) may be taken to be a universal enveloping algebra on
a differential free graded Lie algebra. Halperin proves in [13] that this implies the
existence of a commutative, minimal model (ΛW, d) over Z(p) for the cochains on
the space X, satisfying:

• W = W≥1 is a free Z(p)-module and ΛW is the free graded commutative
algebra on W .

• d is a differential of degree +1; if d1 denotes the linear part of d then d1 ⊗Fp

is trivial. (The minimality condition).

• There exists a sequence of morphisms→,← between (ΛW, d) and C∗(X;Z(p)),
each of which induces a homology equivalence. ((ΛW, d) is a model).

• If (Y, ∂) denotes the chain complex [s(W, d1)]
∗ (the dual of the suspension of

the linear part of the complex, so that Yi ∼= (W i+1)∗) then there exists an
Fp-Lie algebra EFp and a Q-Lie algebra EQ such that EFp

∼= Y ⊗ Fp and
EQ
∼= H∗(Y ⊗ Q) as vector spaces and H∗(ΩX;Fp) ∼= UEFp , H∗(ΩX;Q) ∼=

UEQ as Hopf algebras.

Notation/ Convention: Here and throughout the rest of the paper, the abbrevi-
ation CGDA denotes a commutative graded differential algebra. All CGDAs will be
connected, so that the indecomposables are in degrees ≥ 1. �

It is straightforward to see that a 1-connected CW complex, Z, at a large prime
p is p-elliptic if and only if it has a minimal, commutative cochain model (ΛW, d) as
above with both W and H∗(ΛW, d) finitely-generated Z(p)-modules.

The equality between fd(Z;Fp) and fd(Z;Q) leads to the following result; more
precise restrictions may be given on the degrees of the generators of U .

Proposition 2.1 Suppose that p is a large prime for a space Z which is p-elliptic
and has minimal, commutative cochain model (ΛW, d) over Z(p). Then W ∼= W0⊕U
as Z(p)-modules, where H∗(W, d1) ⊗ Q ∼= W0 ⊗ Q ∼= π∗(Z) ⊗ Q and the linear
differential d1 ⊗Q : Uodd ⊗Q→ Ueven ⊗Q is an isomorphism of Q-vector spaces.
Moreover, W0 is concentrated in degrees ≤ 2nZ − 1 and U is concentrated in degrees
≤ nZ − 2, where nZ is the formal dimension of Z.

Sketch of proof: The loop space homology of Z is determined as a graded vector
space by W and, if W has generators in degrees (2bi − 1) for 1 ≤ i ≤ 1 and
(2aj) for 1 ≤ j ≤ r, then fd(Z;Fp) =

∑q
i=1(2bi − 1) − ∑r

j=1(2ai − 1). A similar
statement holds for fd(Z;Q) in terms of the generators of W0. Since these are equal
and W0 ⊗ Q = H∗(W, d1) ⊗ Q, the action of d1 may be deduced: a differential
d1 : b ∈ Uodd 7→ a ∈ Ueven ‘removes’ a pair (b, a) from W which has a contribution
of zero to the above sum. However, a differential d1 : α ∈ Ueven 7→ β ∈ Uodd would
remove a pair (α, β) with a contribution of two to the sum. This is impossible, so
that the linear part of the differential acts as claimed.

The statement regarding the degrees of the generators of W0 follows from stan-
dard results in rational homotopy theory; details may be found in [8, Chapter 5].
The condition on U may be derived from arguments similar to those given below. �
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Notation: Recall some of the details relating to the construction of the ‘odd
spectral sequence’ (see [8, Chapter 5] for the rational version), generalized to the
study of free CGDAs over Z(p).

Suppose that (A, d) = (ΛZ, d) is a free CGDA over Z(p), where Z is some choice
of the module of indecomposables of A, so that Z ∼= A+/(A+.A+) as a Z(p)-module.
Then Z has a direct sum decomposition as Z = Zodd ⊕ Zeven into odd and even
degree parts.

Let 〈Zodd〉 denote the two-sided ideal of A generated by Zodd; this ideal does not
depend on the choice of Z. Correspondingly, by an abuse of notation, let Λ(Zeven)
denote the quotient algebra A/〈Zodd〉. This quotient is independent of the choice of
Z but there is an isomorphism Λ(Zeven) ∼= A/〈Zodd〉 for any choice of Z, induced
from the inclusion of algebras Λ(Zeven) ↪→ A.

For a given choice of Z, let d̂ : Zodd → Λ(Zeven) denote the composite d : Zodd →
(ΛZ)even → Λ(Zeven). The ideal I := d̂(Zodd)Λ(Zeven) is independent of the choice
of Z and is generated by elements d̂(zi) as zi ranges through a basis of some Zodd. �

Given a free CGDA (A, d) over Z(p), one may consider A⊗ Fp as a free CGDA
over Fp; the following lemmas are then standard.

Lemma 2.2 Suppose that (ΛZ, d) is a free CGDA over Fp and that y ∈ Λ(Zeven).
If dy 6= 0 then dyn = 0 if and only if n ≡ 0 mod p.

Lemma 2.3 Suppose that (ΛZ, d) is a free, minimal CGDA over Fp and that Y ∈
Zeven. If H∗(ΛZ, d) is finite dimensional, there exists x ∈ Λ(Zeven) ⊗ Zodd and an
integer α ≥ 2 such that dx ≡ yα mod 〈Zodd〉.

Proof: ypk is a cocycle for all k ≥ 1; thus there exists a minimal integer K such that
it is a coboundary (since the cohomology is in bounded degree). Therefore, there
exists z ∈ (ΛZ)odd such that dz = ypK . Write z = x +Φ, where x ∈ Λ(Zeven)⊗Zodd

and Φ ∈ ΛZeven ⊗ Λ>1(Zodd), then x will suffice. The condition α ≥ 2 follows by
the minimality hypothesis. �

Proposition 2.4 Suppose that (ΛZ, d) is a free, minimal Z(p)-CGDA which is ellip-
tic (so that Z and H∗(ΛZ) are finitely generated modules). Let B denote the algebra
B := Λ(Zeven) ⊗ Fp and J denote the ideal J := I ⊗ Fp. Then B/J is a finite-
dimensional Fp-algebra, generated by elements in the image of Zeven ⊗ Fp → B/J .

Proof: The statement concerning the generators of B/J is clear. Since B/J
is a finitely-generated, commutative algebra, it suffices to show that the algebra
generators are nilpotent. Take u ∈ Zeven⊗Fp; by Lemma 2.3, there exists a minimal
n such that upn is a coboundary in ΛZ ⊗ Fp, with upn ≡ dx mod 〈Zodd〉, where x

may be taken in Λ(Zeven) ⊗ Zodd. In particular, extending d̂ as a map of Λ(Zeven)-
modules, upn = d̂(x) ∈ J , the ideal generated by d̂(Zodd) ⊗ Fp. This shows that
upn = 0 in B/J . �

Remark 2.5 These results are an important part of the consideration of the
odd spectral sequence for elliptic Z(p)-CGDAs. �
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In order to prove the results of this paper, basic results concerning complete
intersections of Krull dimension zero are considered.

Proposition 2.6 Suppose that A := Fp[y1, . . . , yn]/(φ1, . . . , φk) is a graded commu-
tative algebra, with the generators and relations in even degrees ≥ 2.

1. Suppose that A is finite dimensional as an Fp-vector space, then k ≥ n.

2. If k = n, then A is finite dimensional over Fp if and only if (φ1, . . . , φn) is a
regular sequence, when A is a complete intersection of dimension zero.

This is a standard result for the non-graded case; for the graded commutative case,
the requisite material is covered fairly briefly in [5, Chapter 4]. In particular, note
that a finite dimensional, graded, connected algebra has Krull dimension zero. For
algebraic topologists, [4, Section 3] may be a familiar reference.

Corollary 2.7 Suppose that A is as in Proposition 2.6; there does not exist an
ordering of the generators and relations and an integer 2 ≤ m ≤ n such that
φ1, . . . , φm ∈ Fp[y1, . . . , ym−1].

Proof: Suppose that φ1, . . . , φm ∈ Fp[y1, . . . , ym−1] and pass to the quotient by the
ideal generated by (Fp[y1, . . . , ym−1])

+. This gives a commutative diagram:

Fp[y1, . . . , yn] −→ A
↓ ↓

Fp[ym, . . . , yn] −→ Fp[ym, . . . , yn]/(φm+1, . . . , φn)

(where φ∗ denotes the image of φ∗), in which all the arrow are surjections. However,
A is finite dimensional so that Fp[ym, . . . , yn]/(φm+1, . . . , φn) must be as well. This
contradicts Proposition 2.6. �

In particular, for the application, the following hypothesis is valid;

Hypothesis 2.8 The elements φk lie in the sub-algebra of Fp[y1, . . . , yn] generated
by the elements of degree < |φk|.

Corollary 2.9 Suppose that A is as in Proposition 2.6 and that Hypothesis 2.8
applies. Then, for all k, |φk| > |yk|.

2.1 The Euler-Poincar é characteristic

To state the main result of this section, recall the following definition:

Definition 2.10 Suppose that (ΛZ, d) is a minimal, free Z(p)-CGDA such that Z is
a finitely-generated Z(p)-module. The Euler-Poincaré characteristic of (ΛZ, d) over
Fp is defined as χπ(ΛZ;Fp) := dim(Zeven)− dim(Zodd).
The rational Euler-Poincaré characteristic is defined as χπ(ΛZ;Q) := dim(W even)−
dim(W odd), where (ΛW, d) is a Q-minimal model for (ΛZ, d) ⊗Q. �
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A standard result for minimal models in rational homotopy theory implies the
following result:

Proposition 2.11 Suppose that (ΛZ, d) is a minimal, free Z(p)-CGDA such that Z
is finite dimensional, then χπ(ΛZ;Fp) = χπ(ΛZ;Q).

As an application of the previous theory, we have the following result:

Theorem 3 Suppose that (ΛZ, d) is a minimal, elliptic Z(p)-CGDA with Euler-
Poincaré characteristic χπ(ΛZ;Fp) = 0. The lowest degree elements of Z are in
even degree and are cocycles. In particular, H̃∗(ΛZ;Fp) has lowest degree elements
in even degree.

Proof: By Proposition 2.4, the algebra B/J is finite dimensional. Suppose that
dimZeven = n = dim Zodd (equality by the hypothesis on the Euler-Poincaré charac-
teristic), then B/J ∼= Fp[y1, . . . , yn]/(φ1, . . . , φn) where {y1, . . . , yn} are in degree-

preserving bijection with a basis of Zeven ⊗Fp and φj represents d̂(zj), as zj ranges
through a basis of Zodd ⊗ Fp, so that |φj| = |zj| + 1; we may order the bases by
increasing degree. The minimality condition on (ΛZ, d) shows that Hypothesis 2.8
holds, so that Corollary 2.9 implies that |φ1| > |y1|, which proves the result. �

The proof of Theorem 1, part 1 appears as a corollary.

Corollary 2.12 Suppose that Z is a 1-connected, p-elliptic space for which p is a
large prime. If Z has the rational homotopy type of a sphere S2n then it has the
p-local homotopy type of S2n.

Proof: It suffices to show that H̃∗(Z;Fp) is concentrated in degree 2n. Proposition
2.1 shows that Z has a minimal, commutative cochain model (ΛW, d) over Z(p) with
W = U ⊕〈w2n, z4n−1〉, with U concentrated in degrees ≤ 2n−2 and d acts as stated
in the Proposition (the subscripts indicate the degrees of the elements). The form
of W0 follows from the well-known rational homotopy groups for an even sphere.

In particular, χπ(ΛZ;Fp) = 0, so that the Theorem may be applied. In par-
ticular, if U were non-trivial, then the lowest degree element of W lies in U and
would be in odd degree, contradicting the Theorem. Conclude that U is trivial;
thus (ΛW, d) ∼= (Λ(w, z), dz = w2), so that H̃∗(Z;Fp) is one dimensional in degree
2n.

3 The odd sphere case

A significant step of the proof of part 2 of Theorem 1 is in showing that no two
generators of W lie in the same degree. This is done by considering the model
(ΛW, d)⊗ Fp, with coefficients in the prime field.

Proposition 3.1 Suppose that Z is a p-elliptic space for which p is a large prime,
and that Z ∼Q S2n+1, for some n ≥ 1. Then Z is p-formal and H∗(Z;Fp) ∼=
Λx(2t − 1) ⊗ B(2t) (as stated in Theorem 1) and the minimal model (ΛW, d) over
Z(p) has at most one generator in each degree.
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Proof: By Proposition 2.1, Z has a minimal cochain model of the form (ΛW, d)
with W ∼= 〈w0〉⊕U , where |w0| = 2n+1 and U is concentrated in degrees ≤ 2n−2;
d1 induces an isomorphism Uodd ⊗Q→ Ueven ⊗Q.

To commence, one shows that W is at most one-dimensional in each degree, using
the previous theory. Choose bases for Uodd and Ueven in order of increasing degree,
{x1, . . . , xK}, {y1, . . . , yK}, respectively, so that d1xi = yi over Q and |xi| = |yi| − 1.
For notational purposes, w0 may be denoted by xK+1.

Consider the algebra B/J , as in Proposition 2.4; by minimality of (ΛW, d),
x1 is a cocycle over Fp, so that B/J ∼= Fp[y1, . . . , yK ]/(φ2, . . . , φK+1) where φi =

d̂xi, (2 ≤ i ≤ K + 1) in Λ(W even)⊗Fp. Now, since (ΛW, d) is elliptic, B/J is finite
dimensional; moreover the minimality condition implies that Hypothesis 2.8 holds,
so that φ2, . . . , φK+1 is a regular sequence, with |φi+1| > |yi|. Since the elements
yi, φj are in even degrees, this implies that the bases are in order of strictly increasing
degree.
Claim: The algebra Fp[y1, . . . , yk]/(φ2, . . . , φk+1) is finite dimensional for each k.
It suffices to show that φ2, . . . , φk+1 is a regular sequence for Fp[y1, . . . , yk] for each k.
Suppose that φm+1 is a zero divisor in the ring Γ(m) := Fp[y1, . . . , ym]/(φ2, . . . , φm),
so that there exists an element ζ ∈ Fp[y1, . . . , ym] representing a non-zero element
in Γ(m) such that φm+1ζ is zero in Γ(m). To derive a contradiction to the fact that
φ2, . . . , φK+1 is a regular sequence for Fp[y1, . . . , yK ], it suffices to show that ζ 6≡ 0 in
Fp[y1, . . . , yK ]/(φ2, . . . , φm). This is immediate: the algebra map Fp[y1, . . . , yK ] →
Fp[y1, . . . , ym] sending yj, (j > m) to zero and yi 7→ yi, for i ≤ m, passes to a
map Fp[y1, . . . , yK]/(φ2, . . . , φm)→ Fp[y1, . . . , ym]/(φ2, . . . , φm) which is split by the
canonical inclusion. Consider the image of ζ under these maps. �

In particular, this implies that φk(k ≥ 2) is in degree αk|yk|, for some integer αk ≥
2. (If not, yk would be an element of infinite height in Fp[y1, . . . , yk]/(φ2, . . . , φk+1),
contradicting the claim).

Taking coefficients in Fp, the minimality condition implies that one may define
sub-differential graded algebras Am ⊂ (ΛW, d)⊗ Fp by:

Am = (Λ(x1, y1, . . . , xm−1, ym−1, xm), d)⊗ Fp.

Here A1 = (Λ(x1, 0)⊗Fp), AK+1 = (ΛW, d)⊗Fp and Am+1 = (Am⊗Λ(ym, xm+1), d).
(Am cannot be defined as a sub-differential graded algebra over Z(p), since the linear
part of dxm involves ym).
Claim: For each m, 1 ≤ m ≤ K + 1, H∗(Am, d) is finite dimensional, concentrated
in degrees ≤ |xm| < |ym|.
Proof by induction: the statement is true for A1, since A1 = Λx1 ⊗ Fp.

Suppose that the statement is true for Aj with j ≤ m; consider Am+1 = (Am ⊗
Λ(ym, xm+1), d). dym is a cocycle in Am of degree > |xm|; thus it is cohomologous to
zero in H∗(Am), by the inductive hypothesis, so is the boundary of a decomposable
element in Am. Making a new choice of space of indecomposables of ((ΛW, d)⊗Fp),
we may assume that ym is a cocycle, so that H∗(Am ⊗ Λym) ∼= H∗(Am)⊗ Λ(ym).

The inductive hypothesis on the degrees of the cohomology algebras shows that
yαmm is the generator of the unique cohomology class in degree αm|ym|. The regular
sequence argument requires that xm+1 is not a cocycle, hence (again by choice of
space of indecomposables) we may assume that dxm+1 = yαmm with coefficients in
Fp.
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Thus H∗(Am+1) ∼= H∗(Am) ⊗ Fp[ym]/(yα), so that the induction hypothesis on
the degrees of the cohomology is satisfied. �

This argument calculates the cohomology algebra H∗(ΛW ;Fp). This is:

H∗(Z;Fp) ∼= Λ(x1)⊗
K⊗
i=1

Fp[yi]/(y
αi
i ).

To complete the proof of the proposition and the second statement of Theorem 1, it
remains to show the statement concerning p-formality. This follows from the form
of the model constructed over Fp, which is the tensor product of an exterior algebra
by factors of the form Λ(x, y) with dy = 0 and dx = yα. It may be seen that these
factors correspond to p-formal spaces, using the techniques of [7], so that the tensor
product does as well.

3.1 The model over Z(p)

Using the above, it is possible to give the model (ΛW, d) with coefficients in Z(p).
Let Bm be the sub-CGDA over Z(p) defined by Bm = (Λ(x1, y1, . . . , xm, ym), d),
where the elements xi, yi are basis elements as in Proposition 3.1. (There is no
ambiguity here, since W has at most one element in each degree). Thus Bm+1 =
(Bm⊗Λ(xm+1, ym+1), d), with Bm as a sub-CGDA. Observe that W is in degrees ≥ 3
since W is connected and the lowest degree element of W must be in odd degree.
This shows that the differential of ym+1 cannot involve xm+1; that is{

dxm+1 = prm+1ym+1 + (Bm)
dym+1 = (Bm),

where (Bm) indicates decomposable elements of Bm.

Proposition 3.2 For all 1 ≤ m ≤ K the algebra H∗(Bm;Z(p)) is concentrated in
even degrees k|y1| for k ≥ 0. As an algebra it is generated by elements: {y1, . . . , ym}
subject to the relations {

pr1y1 = 0
prj+1yj+1 + y

αj
j = 0

for some integers rj ≥ 1; there is a choice of indecomposables of Bm so that the
differential is: {

dx1 = pr1y1

dxj+1 = prj+1yj+1 + y
αj
j for j < K.

Proof: The proof is by induction on m.
B1 = (Λ(x1, y1), dx1 = pr1y1), where the differential is forced to act as given, for

degree reasons.
Suppose that the result is true for m ≤M and consider BM+1 = (BM⊗Λ(yM+1)⊗

Λ(xM+1), d). Now dym is a cocycle of odd degree in BM , so it is the coboundary of
a decomposable element in BM , by the hypothesis on the cohomology of BM over
Z(p). By changing the space of indecomposables if necessary, one may suppose that
dyM+1 = 0.
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Knowledge of the structure of (ΛZ, d)⊗Fp shows that |xM+1|+ 1 = αM |yM | for
some αM ≥ 2. Now, by the inductive hypothesis on the structure of the cohomology
algebra, the cohomology H∗(BM) is generated in degree (|xM+1| + 1) by the class
represented by the cocycle yαMM , so that H∗(BM )⊗ Λ(yM+1) is generated as a Z(p)-
module by yαMM and yM+1 in that degree.

Thus, again by changing the choice of indecomposable if necessary and absorbing
any unit multiples (in Z(p)) into the choice of generators, one may suppose that

dxM+1 = prM+1yM+1 + (yM )αM .

for some rM+1 ≥ 1. This proves the inductive step of the argument, since the
homology of H∗(BM+1) may be calculated and it satisfies the statement of the
Proposition. �

To complete the determination of the model (ΛW, d), one may show via the same
arguments that there is a choice of indecomposable representing w0 with differential
dw0 = yαKK . Thus, the minimal model M = (ΛW, d) has a choice of space of inde-
composables over Z(p) for which W has a free basis: {x1, . . . , xK , }, {y1, . . . , yK}, w0

with respect to which the differential is:
dx1 = pr1y1

dxj+1 = prj+1yj+1 + y
αj
j for j < K

dw0 = yαKK

where rj ≥ 1 and αj ≥ 2 for all j.

3.2 Formality of the space Z over Z(p)

It remains to determine an Adams-Hilton model for Z from the commutative cochain
modelM = (ΛW, d). To do this, one may exploit a property of formality over Z(p).

Write M as an extension of commutative differential graded algebras: M =
(Γ⊗Λx1, d) where Γ is the subalgebra ofM generated by all elements of W except
x1, and the differential makes Γ a sub differential algebra, Γ ↪→M. The cohomology
of Γ may be calculated directly; it has underlying module which is torsion-free:

H∗(Γ, d) = Z(p)[y1, . . . , yK ]/{(prj+1yj+1 + y
αj
j = 0)1≤j<K , yαKK = 0}

and there is a morphism of commutative differential graded algebras (Γ, d) →
H∗(Γ, d), defined by yi 7→ [yi], xi 7→ 0, which induces an isomorphism in Z(p)-
cohomology.

This extends to a map of CGDAs: M → N = (H∗(Γ, d) ⊗ Λx1, d), where the
differential is zero in H∗(Γ, d) and dx1 = pr1 [y1]. This map induces an isomorphism
in cohomology.

If B is a Z(p)-free differential graded algebra of finite type, write Ω(B∨) for the
cobar construction on the dual of the algebra B. Here, by results derived from
Adams’ cobar equivalence (see [12]), Ω(M∨) gives a model for the Z(p)-chains on ΩZ.
Again, standard techniques in differential homological algebra imply that Ω(N ∨)
serves as a model for the Z(p)-chains on ΩZ, since the cohomology equivalence
becomes a homology equivalence when applying the functor Ω(−∨).
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Now N has generators (as a free Z(p)-module) in one-one correspondence with
the Fp-vector space generators of the mod-p homology of Z. Thus the algebra
A = Ω(N ∨) is a tensor algebra on a free Z(p)-module, with generators in one-one
correspondence with the cells of a p-minimal decomposition of Z. Thus it has the
appearance of a classical Adams-Hilton model for the p-minimal CW decomposition
of Z. Moreover it has a quadratic differential, which is a property of Z(p)-formality
generalizing that of Definition 1.3.

Example 3.3 This behaviour is exhibited by the differential graded algebra A =
A(r) of Example 1.5, in which the commutative differential graded algebra N is as
follows:

N = (Z(p)[b̂, ê]/(p
rê + b̂2 = 0)⊗ Λ(â), d)

where |â| = 2N−1, |b̂| = 2N, |Ê| = 4N and dâ = pkb̂. The naming of the generators
indicates a correspondence with the generators of A(r).
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[7] M. EL HAOUARI, p-Formalité des espaces, J. Pure and Applied Algebra 78
(1992), 27-47.

[8] Y. FELIX, La Dichotomie Elliptique-Hyperbolique en Homotopie Ra-
tionnelle, S.M.F. Astérisque 176 (1989).
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