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Abstract

Let Γ be a generalized quadrangle weakly embedded in projective space
such that {a, b}⊥⊥ contains a point different from a and b, where a and b

are opposite points of Γ. We prove that Γ admits non-trivial central elations.
Further, each central elation of Γ is induced by a special linear transformation
of the underlying vector space. This generalizes a result of Lefèvre-Percsy [3,
Th. 1]. Furthermore, we show that Γ is a Moufang quadrangle.

1 Introduction

A point-line geometry Γ = (P ,L) is called a (thick) generalized quadrangle if the
incidence graph of Γ has diameter 4 and girth 8 (i.e., the length of a shortest circuit
is 8) and each element is incident with at least three elements. We always identify a
line of Γ with the set of points incident with it. Generalized quadrangles have been
introduced by Tits. They have the following property: If l is a line and p is a point
not on l, then p is collinear with a unique point of l; called the projection of p onto
l. Examples of generalized quadrangles are polar spaces of rank 2 associated to a
non-degenerate pseudo-quadratic or (σ, ε)-hermitian form, see Tits [10, §8].

Let Γ be a generalized quadrangle and p a point of Γ. An automorphism of Γ
which fixes every point collinear with p, is called a central elation with center p. If
x is a point of Γ collinear with p, then we write x ∈ p⊥. If x1, x2, x3, x4 are points
of Γ such that x2 ∈ x⊥1 , x3 ∈ x⊥2 , x4 ∈ x⊥3 and x4 ∈ x⊥1 , then (x1, x2, x3, x4) is an
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apartment of Γ. Non-collinear points are called opposite. For opposite points a and
b, the set {a, b}⊥⊥ is called a hyperbolic line on a and b. For more information on
generalized quadrangles, we refer to the monograph of Payne & Thas [4], to Thas
[8], or (also for the infinite case) to Van Maldeghem [12].

Let V be a vector space over some skew field K. By 〈M〉 we denote the subspace
of V generated by M . The 1-dimensional subspaces of V are called points and the
2-dimensional subspaces lines. A linear mapping t : V → V is a transvection, if
H := {v ∈ V | vt = v} is a hyperplane of V and P := {vt− v | v ∈ V } is a point
contained in H. We call H the hyperplane and P the point (or center) associated
to t. By SL(V ) we denote the subgroup of the group GL(V ) of all invertible linear
transformations from V in V , which is generated by the transvections. The elements
of SL(V ) are also called special linear transformations.

Let Γ be a generalized quadrangle. We say that Γ is weakly embedded in the
projective space P(V ), if there exists an injective map π from the set of points of Γ
to the set of points of P(V ) such that

(a) the set {π(x) | x point of Γ} generates P(V ),

(b) for each line l of Γ, the subspace of P(V ) spanned by {π(x) | x ∈ l} is a line,

(c) if x, y are points of Γ such that π(y) is contained in the subspace of P(V )
generated by the set {π(z) | z ∈ x⊥}, then y ∈ x⊥.

The map π is called the weak embedding. Weakly embedded polar spaces have been
introduced by Lefèvre-Percsy [3]. Recently, they have been studied by Steinbach,
Thas and Van Maldeghem, see [5], [6], [9]. For each point p of Γ, we denote by
Hp := 〈π(p⊥)〉 the hyperplane of P(V ) spanned by π(p⊥), see Lemma 2.1. An
equivalent formulation of Condition (c) is that for each point p of Γ, the set π(p⊥)
does not generate P(V ).

In [6] Steinbach & Van Maldeghem classify the generalized quadrangles weakly
embedded in projective space under the assumption that the degree of the weak
embedding is > 2. This means that each secant line (that is a line of P(V ) which is
spanned by two non-collinear points of Γ) contains a third point of Γ. The first step
is to show that Γ is a Moufang quadrangle. Then the several classes of Moufang
quadrangles are treated separately; some of them without the assumption on the
degree. The proof of the Moufang condition in Steinbach & Van Maldeghem [6]
relies on the fact that Γ admits central elations (induced by transvections on V ),
according to a result due to Lefèvre-Percsy [3, Th. 1].

Let Γ be a generalized quadrangle weakly embedded in P(V ) with a, b opposite
points of Γ. Under the assumption, that the hyperbolic line {a, b}⊥⊥ contains a third
point, it is possible (with one exception) to construct transvections on V leaving
Γ invariant (see Theorem 4.1). The example of a generalized quadrangle arising
from an ordinary quadratic form with non-trivial radical of the bilinear form (in
characteristic 2, see Section 3) shows, that this assumption is weaker than assuming
that a secant line contains a third point. Hence we obtain a generalization of the
result of Lefèvre-Percsy mentioned above. But in general we may not conclude
that a central elation of Γ with center p is induced by a transvection associated
to the point π(p), see Lemma 3.3. In characteristic 6= 2, this conclusion remains
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valid, except for the universal weak embedding of the symplectic quadrangle W (2)
over GF(2) (see Section 5). For this exceptional weak embedding, where W (2) is
weakly embedded of degree 2 in a 5-dimensional vector space in characteristic 6= 2,
see Van Maldeghem [12, Section 8.6]. The central elations are induced by linear
transformations; not by transvections, but by homologies.

In the proof of Theorem 4.1 we need the result (see Proposition 2.1) that if
p, q, r are different collinear points of Γ, then Hp∩Hq ⊆ Hr or (Γ, π) is the universal
weak embedding of W (2). Proposition 2.1 is an important tool in the classifica-
tion of weakly embedded generalized quadrangles of degree 2 in Steinbach & Van
Maldeghem [7], since it makes it possible to construct non-trivial axial elations of
Γ.

Theorem 4.1 yields that Γ is a Moufang quadrangle (see Theorem 6.1), similarly
as in Steinbach & Van Maldeghem [6] with arguments depending on degree > 2
replaced by the existence of a third point in {a, b}⊥⊥ and Proposition 2.1.

Acknowledgement. I am indebted to H. Van Maldeghem for a helpful discussion
on the subject of this article.

2 A property of weak embeddings

In this section, Γ is a generalized quadrangle weakly embedded in the projective
space P(V ) (via π), where V is a vector space over the skew field K. We show that π
has the following important property: If p, q, r are different collinear points of Γ, then
Hp ∩Hq ⊆ Hr or (Γ, π) is the universal weak embedding of W (2) (see Proposition
2.1). This resembles the fact that a vector is perpendicular to all vectors of a line,
if it is perpendicular to two vectors spanning the line (read v is perpendicular to p
instead of v in Hp); compare the one or all-axiom in polar spaces due to Buekenhout
and Shult.

Lemma 2.1
For each point a of Γ, the subspace Ha = 〈π(a⊥)〉 is a hyperplane of P(V ). If b is a
point opposite a, then Ha ∩Hb = 〈π(a⊥ ∩ b⊥)〉.

Proof. If b is a point of Γ with b 6∈ a⊥, then the subspace of Γ generated by a⊥

and b is Γ itself, see Cohen & Shult [2, (1.1)i)]. Hence Ha is properly contained in
〈Ha, π(b)〉 = P(V ), and Ha is a hyperplane of P(V ).

Every line of Γ through a contains a point in a⊥ ∩ b⊥. Hence the subspace of Γ
generated by a⊥ ∩ b⊥ and a is a⊥ itself. This shows that Ha = 〈π(a⊥ ∩ b⊥), π(a)〉
and Ha ∩Hb = 〈π(a⊥ ∩ b⊥)〉. �

Remark

For weak embeddings π of degree 2, we use the following method to calculate
image points under π. Let (x1, x2, x3, x4) be an apartment in Γ. Then U :=
〈π(x1), π(x2), π(x3), π(x4)〉 is a 4-dimensional subspace of V . The set of all points x
of Γ with π(x) ⊆ U together with the lines of Γ through these points yields a (not
necessarily thick) generalized quadrangle Γ′, which is weakly embedded in P(U).
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Let t+ 1 be the number of lines of Γ′ through a point of Γ′. Considering x1
⊥ ∩ x3

⊥,
we obtain a line of P(U), which is not a line of Γ′ and meets Γ′ in exactly t + 1
points. If the degree of the weak embedding is 2, then t + 1 = 2. This means that
Γ′ is a grid (and any line of Γ is a so-called regular line). There are exactly two lines
of Γ′ through each point of Γ′.

Let x be a point on x1x2\{x1, x2} and set y := x3x4 ∩ x⊥. Let a be a point on
x1x4\{x1, x4} and set b1 := xy ∩ a⊥ and b2 := x2x3∩ a⊥. Then a, b1, b2 are collinear,
since there are only two lines of Γ′ through a. We have π(b2) ⊆ 〈π(x2), π(x3)〉 ∩
〈π(a), π(x), π(y)〉. Since this intersection is a point, we obtain equality. We will use
this argument with the 3× 3-grid several times in the following.

Proposition 2.1
Let Γ be a (thick) generalized quadrangle weakly embedded in P(V ). For different
collinear points p, q, r of Γ, we have Hp ∩Hq ⊆ Hr , except for the case where (Γ, π)
is the universal weak embedding of the symplectic quadrangle over GF(2).

We first prove some special cases of Proposition 2.1 in separate lemmas.

Lemma 2.2
Proposition 2.1 holds when lines of Γ have three points.

Proof. If Γ is a (thick) generalized quadrangle with three points per line, then
there are exactly t + 1 lines through each point where t ∈ {2, 4}. For each t, there
is only one quadrangle, namely the orthogonal quadrangle over GF(2) in vector
space dimension 5 or 6, respectively. The weak embeddings of these quadrangles
have been determined in Steinbach [5] and Steinbach & Van Maldeghem [6, (5.1.1)].
They are induced by a semi-linear mapping (and Hp ∩Hq ⊆ Hr holds) or we have
the universal weak embedding of W (2) (which is an exception for Proposition 2.1,
as we may deduce from Van Maldeghem [12, Section 8.6]). �

Lemma 2.3
Proposition 2.1 holds when V has vector space dimension 5 and π is of degree 2.

Proof. Because of Lemma 2.2, we may assume that lines of Γ have more than
three points. We prove Hp ∩Hq ⊆ Hr . Let (p, q, t, z) be an apartment in Γ and set
s := zt ∩ r⊥. Then U := 〈π(p), π(q), π(t), π(z)〉 is a 4-dimensional subspace of Γ.
There exists a ∈ q⊥ ∩ z⊥ with π(a) 6⊆ U . (Otherwise Hq ∩Hz = 〈π(q⊥ ∩ z⊥)〉 ⊆ U
and Hq ∩ Hz = U ∩ Hq ∩ Hz = 〈π(p), π(t)〉. But then V is 4-dimensional.) Then
V = U ⊕ π(a). We set

x := rs ∩ a⊥, b1 := xa ∩ p⊥, b2 := za ∩ r⊥,
y1 := pz ∩ x⊥, y2 := qa ∩ y1

⊥.

We choose p′, q′, z′, t′, a′ ∈ V such that

π(p) = 〈p′〉, π(q) = 〈q′〉, π(r) = 〈p′ + q′〉,
π(z) = 〈z′〉, π(y1) = 〈p′ − z′〉,
π(t) = 〈t′〉, π(s) = 〈t′ − z′〉,
π(a) = 〈a′〉, π(b2) = 〈z′ + a′〉.

(For any point b of Γ, we denote by b′ a vector in V such that π(b) = 〈b′〉.)
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Since the set of all points d of Γ with π(d) ⊆ U is a grid by the remark on page
449, we see that y1, x and c := qt ∩ y1

⊥ are collinear. Hence

π(x) ⊆ 〈π(r), π(s)〉 ∩ 〈π(y1), π(q), π(t)〉= 〈p′ + q′ + t′ − z′〉

and π(c) = 〈q′ + t′〉. Similarly, using the apartment (p, q, a, z), we obtain that

π(y2) ⊆ 〈π(q), π(a)〉 ∩ 〈π(y1), π(r), π(b2)〉 = 〈a′ − q′〉.

We are left with calculating π(b1). Set n1 := zt ∩ b1
⊥. Then there exists γ ∈ K

such that π(n1) = 〈t′ − γz′〉. We have π(b1) ⊆ 〈π(x), π(a)〉 ∩ 〈π(n1), π(r), π(b2)〉 =
〈p′ + q′ + t′ − z′ + (γ − 1)a′〉. Set n2 := qt ∩ b1

⊥. Then π(n2) ⊆ 〈π(c), π(q)〉 ∩
〈π(y1), π(y2), π(b1)〉 = 〈γq′ + t′〉.

We first assume that γ 6= 0. Then Hb1 = 〈π(n1), π(n2), π(p), π(a)〉. Because of
π(x) ⊆ Hb1 , we may compare coefficients. This yields γ = 2 and π(b1) = 〈p′ + q′ +
t′ − z′ + a′〉. Since

Hp = 〈π(p), π(q), π(z), π(b1)〉 = 〈p′, q′, z′, t′ + a′〉,
Hq = 〈π(p), π(q), π(t), π(a)〉 = 〈p′, q′, t′, a′〉,

we have Hp∩Hq = 〈p′, q′, t′+a′〉 ⊆ 〈p′, q′, t′− z′, z′+a′〉 = 〈π(p), π(q), π(s), π(b2)〉 =
Hr.

We are thus left with the case γ = 0. Then

π(b1) = 〈b1
′〉, where b1

′ = p′ + q′ + t′ − z′ − a′,

and t ∈ b1
⊥. Because of Hb1 ∩Hq = 〈p′, t′, a′〉 ⊆ Hz , we see that b1

⊥ ∩ q⊥ ⊆ z⊥.
Let r1 ∈ pq with π(r1) = 〈λp′ + q′〉, 0 6= λ ∈ K. For s1 := zt ∩ r1

⊥, we obtain

π(s1) ⊆ 〈z′, t′〉 ∩ 〈r1
′, y1

′, c′〉 = 〈t′ − λz′〉.

Using the apartment (c, x, a, q), we calculate that π(m) = 〈p′ + q′ − z′ − a′〉, where
m := tb1 ∩ y1y2. Further for f := pb1 ∩ s1

⊥, we see

π(f) ⊆ 〈p′, b1
′〉 ∩ 〈s1

′, y1
′, m′〉 = 〈−λp′ + b1

′〉.

Set g0 := r1s1 ∩ b1
⊥ and g := b1g0 ∩ q⊥. Then g ∈ b1

⊥ ∩ q⊥ ⊆ z⊥. Hence

π(g) ⊆ 〈r1
′, s1

′, b1
′〉 ∩Hq ∩Hz = 〈λ(λ − 1)p′ − (λ− 1)t′ + λa′〉.

Hence, for g0 = b1g ∩ r1s1, we obtain π(g0) = 〈λr1
′ + s1

′〉. For i := qt ∩ f⊥,
we see π(i) ⊆ 〈q′, t′〉 ∩ 〈f ′, g′, z′〉 = 〈λq′ + t′〉. Let w := rs ∩ i⊥. Then π(w) ⊆
〈r′, s′〉 ∩ 〈p′, z′, i′〉 = 〈λr′ + s′〉. Similarly, for w1 := r1s1 ∩ i⊥, we calculate π(w1) =
〈λr1

′ + s1
′〉 = π(g0). Hence g0 = w1. We set k := pb1 ∩ w⊥. Then

π(k) ⊆ 〈p′, b1
′〉 ∩ 〈w′, z′, g′〉 = 〈(1− λ)p′ + b1

′〉.

The calculation of π(k) uses that λ 6= 0. On the other hand

π(k) ⊆ 〈p′, b1
′〉 ∩ 〈w′, q′, a′〉 = 〈(λ− 1)p′ + b1

′〉.

This yields 1−λ = λ− 1. Since we assume that the lines of Γ have more than three
points, there exists r1 ∈ pq such that π(r1) = 〈λp′ + q′〉, where 0, 1 6= λ ∈ K. Hence
charK = 2 and π(b1) = 〈p′ + q′ + t′ − z′ + a′〉. The result now follows as above. �
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Lemma 2.4
Proposition 2.1 holds when V has vector space dimension 5 and π is of degree > 2.

Proof. The complete list of examples in Steinbach & Van Maldeghem [6] yields
that Γ is an orthogonal, a hermitian or a mixed quadrangle and π is induced by a
semi-linear mapping. Hence Hp ∩Hq ⊆ Hr holds. �

Proof of Proposition 2.1: By Lemma 2.2 we may assume that the lines of Γ have
more than three points. We first consider the case where V is finite-dimensional. We
show that Hp∩Hq ⊆ Hr holds by induction on dimV . The intersection Hp∩Hq has
codimension 2 in V . Hence if V is 4-dimensional, we obtain Hp∩Hq = 〈π(p), π(q)〉 ⊆
Hr. The case where V is 5-dimensional is Lemma 2.3 and Lemma 2.4.

Let V be at least 6-dimensional. Then there exists 0 6= w ∈ Hp ∩ Hq ∩ Hr ,
w 6∈ 〈π(p), π(q)〉. For any point b of Γ, we denote by b′ a vector in V such that
π(b) = 〈b′〉. Let (r, q, t, s) be an apartment in Γ. We extend w, r′, q′, t′, s′ to a basis
of V , in a way that each new basis vector is of the form z′ for some point z of Γ (note
that w 6∈ 〈r′, q′, t′, s′〉, since otherwise w ∈ 〈π(p), π(q)〉). We denote the resulting
basis by {w} ∪ B.

Let v ∈ Hp ∩ Hq . Then v ∈ Hr , when v − λw ∈ Hr where λ ∈ K. Since
w ∈ Hp ∩Hq, we may hence assume that v is contained in the hyperplane H := 〈B〉
of V . Let H0 be the set of all points x of Γ with π(x) ⊆ H. Then H0 is a subspace
of Γ and a generalized quadrangle (containing an ordinary quadrangle), weakly
embedded in P(H). Since p, q, r are points of H0, we may apply induction to H0.
This yieldsW := 〈π(p⊥∩H0)〉∩〈π(q⊥∩H0)〉 ⊆ 〈π(r⊥∩H0)〉 ⊆ Hr. Since 〈π(p⊥∩H0)〉
is a hyperplane of P(H) by Lemma 2.1, we see that 〈π(p⊥ ∩H0)〉 = Hp ∩H. Hence
v ∈ Hp ∩Hq ∩H = W ⊆ Hr . This proves the claim in the finite-dimensional case.

Since in general v is a finite linear combination of the above basis vectors, we
may extend the result to the infinite-dimensional case. (Note that v is contained in
a finite-dimensional subspace U of V , spanned by points of Γ such that U contains
r′, q′, t′, s′.) �

Lemma 2.5
Let S be a (thick) non-degenerate polar space of rank at least 3 weakly embedded
in P(V ). For different collinear points p, q, r of Γ, we have Hp ∩Hq ⊆ Hr.

Proof. Let π : S → P(V ) be a weak embedding of the non-degenerate polar space S
of rank at least 3. If S is classical, then the result follows as in Lemma 2.4. Using the
classification of non-degenerate polar spaces of rank at least 3, see Tits [10, §8, §9],
Cohen [1, 3.34], we may hence assume that S has rank 3. As in Lemma 2.2 we may
assume that the lines of S have more than three points. Let p, q be different collinear
points of S and choose a ∈ p⊥ ∩ q⊥ with a not on pq. For b ∈ p⊥ ∩ q⊥ with b 6∈ a⊥,
the set of points in a⊥ ∩ b⊥ together with the lines of S through these points yields
a generalized quadrangle Γ, weakly embedded in P(V ′), where V ′ = 〈π(x) | x ∈ Γ〉.
For each point z of Γ, we set H ′z = 〈π(x) | x point of Γ, x collinear with z in Γ〉.
Then H ′p ∩ H ′q ⊆ H ′r ⊆ Hr by Proposition 2.1. Further, Hp = 〈H ′p, π(a), π(b)〉 and
similarly for Hq. Hence Hp ∩Hq = 〈H ′p ∩H ′q, π(a), π(b)〉 ⊆ Hr. �
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3 Central elations in generalized quadrangles arising from forms

Let L be a skew field with involutory anti-automorphism σ. For ε ∈ {1,−1}, we set

Λmin := {c− εcσ | c ∈ L}, Λmax := {c ∈ L | εcσ = −c}.

Let W be a (left) vector space over L and q : W → L/Λmin be a non-degenerate
pseudo-quadratic form with associated trace-valued (σ, ε)-hermitian form f : W ×
W → L in the sense of Tits [10, (8.2.1)]. If q is not an ordinary quadratic form, we
may (and will) assume ε = −1 and 1 ∈ Λmin by Tits [10, (8.2.2)]. (In the remaining
case (σ, ε) = (id, 1), hence L commutative and Λmin = 0.) For U ⊆ W , we set
U⊥ := {w ∈ W | f(w, u) = 0 for all u ∈ U}. The radical of f is Rad(W, f) := W⊥.
Since q is non-degenerate, we have q(r) 6= 0 for all 0 6= r ∈ Rad(W, f). An isometry
of W is a linear mapping ϕ : W → W with q(wϕ) = q(w) for w ∈W .

If q has Witt index 2, than the set of all singular points and lines of P(W )
(points and lines, where the pseudo-quadratic form q vanishes) yields a generalized
quadrangle, which is thick, except for the case that q is an ordinary quadratic form
and dimW = 4.

In Section 3, let Γ be a thick generalized quadrangle arising from some vector
space W (over L) endowed with a non-degenerate pseudo-quadratic form q (with
associated (σ, ε)-hermitian form f). We write points of Γ as 〈p〉 with a singular
vector p and we refer with the ⊥-symbol to the form f . In particular, p⊥ is a
hyperplane of W . Our aim is to describe all central elations (see Section 1) of Γ.

Lemma 3.1
Any central elation of Γ with center 〈p〉 is induced by an isometry t of W which
satisfies t|p⊥ = id.

Proof. If τ is a central elation of Γ with center 〈p〉, then τ : Γ → P(W ) is a weak
embedding. From Steinbach [5] and Steinbach & Van Maldeghem [6, (5.1.1)], we
may deduce that τ is induced by a semi-linear mapping ϕ : W → W (with respect
to an automorphism α : L → L), see also Tits [10, (8.6)]. Since 〈w〉ϕ = 〈w〉 for
all w ∈ p⊥, w singular, there exists c ∈ L such that xϕ = cx for all x ∈ p⊥ and
dα = cdc−1 for d ∈ L. Then t : W →W , defined by w 7→ c−1(wϕ) for w ∈W , is the
desired isometry of W . �

Lemma 3.2
Let 0 6= p ∈W be singular and let t be an isometry of W with t|p⊥ = id. Then there
exist a ∈ L and ra ∈ Rad(W, f) with q(ra) = a + Λmin such that

wt = w + f(w, p)(ap + ra) for w ∈W .

Proof. For w ∈W , we have wt−w ∈ p⊥⊥ = 〈p〉⊕Rad(W, f). Choose x ∈W with
f(x, p) = 1 and a ∈ L, ra ∈ Rad(W, f) with xt = x+ap+ra. Since each vector of W
is of the form s+λx, where s ∈ p⊥ and λ ∈ L, we obtain wt = w+ f(w, p)(ap+ ra)
for w ∈ W . Further, q(x) = q(xt) = q(x) + q(ra) + (aσ + Λmin). Hence q(ra) =
−aσ + Λmin. If q is a quadratic form with Rad(W, f) 6= 0, then charL = 2. Thus in
any case q(ra) = a + Λmin. �
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Combining Lemma 3.1 and Lemma 3.2, we see:

Lemma 3.3
Any central elation of Γ with center 〈p〉 is induced by a transvection with point-
hyperplane pair (R, p⊥), where R is a (not necessarily singular) point in p⊥⊥ =
〈p〉 ⊕ Rad(W, f). In particular, R ⊆ x⊥ for x ∈ p⊥. �

If ra = 0 in Lemma 3.2, then a ∈ Λmin and t is a transvection with center 〈p〉. Hence
Γ admits central elations unless q is an ordinary quadratic form with Rad(W, f) = 0.
(Then for opposite points a and b of Γ, the hyperbolic line {a, b}⊥⊥ has only two
points.) We will generalize Lemma 3.3 to arbitrary weakly embedded general-
ized quadrangles in Section 4. Only in characteristic 2 it may happen that R in
Lemma 3.3 is different from 〈p〉 (since in characteristic 6= 2, we have Rad(W, f) = 0).
For a generalization to arbitrary weakly embedded generalized quadrangles, see Sec-
tion 5.

Remark

We may describe the group of all central elations of Γ with center 〈p〉 as follows:
We set ∆ := {a ∈ L | there exists ra ∈ Rad(W, f) with a + Λmin = q(ra)}. Then
c∆cσ = ∆ for 0 6= c ∈ L. (If Rad(W, f) = 0, in particular if charK 6= 2, then
∆ = Λmin.) For a ∈ ∆, ra is unique and we define ta : w 7→ w+ f(w, p)(ap+ ra) for
w ∈ W , where 0 6= p ∈ W is singular. Then ta is an isometry of W and tatb = ta+b

for a, b ∈ ∆. We set Tp := {ta | a ∈ ∆}. Then Tp ' (∆,+) is the group of central
elations with center 〈p〉. If q is a quadratic form with Rad(W, f) = 0, then Tp = 1.

We close this section with a remark that for generalized quadrangles associated to
(σ, ε)-hermitian forms, we obtain similar results as for pseudo-quadratic forms.

Remark

Let Γ be a generalized quadrangle arising from a non-degenerate (σ, ε)-hermitian
form f : W × W → L such that Λmin = Λmax (e.g., a symplectic quadrangle in
characteristic 6= 2). Without loss ε = ±1. If t is an isometry of W with t|p⊥ = id,
where 0 6= p ∈ W with f(p, p) = 0, then, similarly as in Lemma 3.2, there exists
a ∈ Λmax such that wt = w + f(w, p)ap for w ∈W , i.e., t is a transvection.

4 The construction of central elations induced by transvections

Let V be a vector space over the skew field K and let Γ be a generalized quadrangle
weakly embedded in P(V ) (with weak embedding π). For each point p of Γ, we
denote by Hp the hyperplane of P(V ) generated by π(p⊥).

Let a, b be opposite points of Γ. If the hyperbolic line {a, b}⊥⊥ contains a third
point, then we prove that Γ admits non-trivial central elations. Furthermore, we
show that every central elation of a weakly embedded generalized quadrangle Γ is
induced by a transvection on V , except for the universal weak embedding of W (2).
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This generalizes a result of Lefèvre-Percsy [3, Th. 1]. For the case of polar spaces
of rank at least 3, see at the end of Section 4.

Theorem 4.1
Let Γ be a (thick) generalized quadrangle weakly embedded in the projective space
P(V ) with (Γ, π) not the universal weak embedding of W (2). Let a, b be opposite
points of Γ and b′ 6= a, b be a point of Γ such that a⊥ ∩ b⊥ ⊆ b′⊥. Set R :=
〈π(b), π(b′)〉 ∩Ha. Let t be the transvection on V with associated point-hyperplane
pair (R,Ha), which maps π(b) to π(b′). Then for each point x of Γ, there exists
some point x′ of Γ such that π(x)t = π(x′) (i.e., Γ is invariant under t). Further,
a⊥ ∩ x⊥ ⊆ x′⊥.

Proof. First, we remark that b′ 6∈ a⊥. Since if ab′ is a line of Γ and x is the
projection of b onto ab′, we choose x 6= y ∈ a⊥ ∩ b⊥. By assumption y ∈ b′⊥, hence
y ∈ ab′ ∩ b⊥ = x, a contradiction. Similarly, b′ 6∈ b⊥.

Let c be a point of Γ. We may assume c 6∈ a⊥ and c 6= b.
(1) We assume c ∈ b⊥. Let e 6= b, c be the projection of a onto bc. Then e ∈
a⊥ ∩ b⊥, hence e ∈ b′⊥. Because of c ∈ eb, we have π(c) ⊆ 〈π(e), π(b)〉 and π(c)t ⊆
〈π(e), π(b′)〉. Further, π(c) ⊆ 〈π(c), R〉, hence π(c)t ⊆ 〈π(c), R〉. This shows that
π(c)t = 〈π(c), R〉 ∩ 〈π(e), π(b′)〉, since the two lines are different. (Otherwise R ⊆
〈π(e), π(b′)〉 ∩ 〈π(a⊥)〉 = π(e). We choose e 6= z ∈ b⊥ ∩ b′⊥, then π(e) = R ⊆
〈π(b), π(b′)〉 ⊆ 〈π(z⊥)〉, a contradiction.)

We choose e 6= x ∈ a⊥ ∩ c⊥, and denote by y the projection of x onto b′e. Let q
be the projection of b onto ax. Then q ∈ a⊥ ∩ b⊥ ⊆ b′⊥. Since R ⊆ 〈π(b), π(b′)〉 ⊆
〈π(q⊥)〉 = Hq and R ⊆ 〈π(a⊥)〉 = Ha, we obtain R ⊆ Ha ∩Hq ⊆ Hx = 〈π(x⊥)〉 by
Proposition 2.1.

We set E := 〈π(e), π(b), π(b′)〉. Then π(y) ⊆ E∩〈π(x⊥)〉 = 〈π(c), R〉. We obtain
π(y) ⊆ 〈π(e), π(b′)〉 ∩ 〈π(c), R〉 = π(c)t. We set y =: c′.

For e 6= k ∈ a⊥ ∩ c⊥, we denote by l the projection of k onto b′e. Then π(l) =
π(c)t = π(c′) by the above argument. Hence l = c′ and k ∈ c′⊥. This yields that
a⊥ ∩ c⊥ ⊆ c′⊥.
(2) We assume that c 6∈ b⊥ and that there is f ∈ b⊥ ∩ c⊥, f 6∈ a⊥. By (1) there
exists a point f ′ with π(f)t = π(f ′) and a⊥ ∩ f⊥ ⊆ f ′⊥. We apply (1) again for the
pair (f, c), which yields the claim.
(3) We are left with the case c 6∈ b⊥ and b⊥ ∩ c⊥ ⊆ a⊥. We choose different points
p, q ∈ b⊥ ∩ c⊥. Since lines are thick, there is a point g on pc\{p, c}. We denote by f
the projection of g onto bq. Then f ∈ b⊥, g ∈ f⊥, c ∈ g⊥ and f, g 6∈ a⊥. We apply
(1) three times for the pairs (b, f), (f, g) and (g, c). �

If {a, b}⊥⊥ 6= {a, b}, where a, b are opposite points of Γ, then we may choose a, b 6=
b′ ∈ {a, b}⊥⊥ in Theorem 4.1. The inclusion a⊥ ∩ b⊥ ⊆ a⊥ ∩ b′⊥ yields a⊥ ∩ b⊥ =
a⊥ ∩ b′⊥.

Lemma 4.1
Let Γ be as in Theorem 4.1. If a, b are opposite points of Γ such that the hyperbolic
line {a, b}⊥⊥ contains at least three points, then {p, q}⊥⊥ contains at least three
points for all opposite points p, q of Γ.

Proof. By Theorem 4.1 we know that the hyperbolic line {a, x}⊥⊥ contains at least
three points for all x 6∈ a⊥. We use this argument repeatedly. If b 6∈ q⊥, then we
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use the sequence (a, b), (q, b), (q, p). We may hence assume that p, q ∈ a⊥ ∩ b⊥. We
choose a third point x on bq and use the sequence (a, b), (a, x), (p, x), (p, q). �

Lemma 4.2
In the notation of Theorem 4.1, we have y′ ∈ x′⊥, for y ∈ x⊥. The mapping θ
defined by xθ = x′, if π(x)t = π(x′) is a central elation of Γ with center a.

Proof. We may assume x, y 6∈ a⊥. The first claim follows from the construction in
Theorem 4.1(1) with (x, y) instead of (b, c). This yields that θ preserves collinearity.
We see, that θ is bijective, using t−1. �

Lemma 4.3
Let Γ be a generalized quadrangle weakly embedded in the projective space P(V )
with (Γ, π) not the universal weak embedding of W (2). Let a, b be opposite points
of Γ and let b′ be a third point with a⊥ ∩ b⊥ ⊆ b′⊥. Then there exists a central
elation of Γ with center a mapping b to b′. Further, each central elation τ of Γ with
center p is induced by a transvection of V with point-hyperplane pair (R,Hp), where
R = 〈π(q), π(qτ )〉 ∩Hp for q opposite p.

Proof. By Theorem 4.1 and Lemma 4.2, the first claim is obvious. Next, let τ
be a central elation of Γ with center p and let q be some point opposite p. Then
p⊥ ∩ q⊥ ⊆ p⊥ ∩ (qτ )⊥. (Since if x ∈ p⊥ ∩ q⊥, then (qx)τ = (qτ )x; i.e., x ∈ (qτ )⊥.)
We have to show that there exists a transvection t on V with π(x)t = π(xτ ) for all
points x of Γ. We set R := 〈π(q), π(qτ )〉 ∩Hp. Let t ∈ SL(V ) be the transvection
with point-hyperplane pair (R,Hp) which maps π(q) to π(qτ ). If x is a point of Γ,
then Theorem 4.1 yields that π(x)t = π(x′) for some point x′ of Γ. By Lemma 4.2,
the mapping θ defined by xθ = x′ if π(x)t = π(x′) is a central elation of Γ with
center p with qθ = qτ . Hence θ = τ by Van Maldeghem [12, (4.4.2)(v)]. This yields
π(x)t = π(xτ ) for all points x of Γ and t is unique with this property. We have thus
extended τ to P(V ). �

Remark

In view of Lemma 2.5, Theorem 4.1 is also valid for weakly embedded polar spaces
of rank at least 3; compare Cohen [1, p. 663].

5 The center of the inducing tran svection in characteristic 6= 2

In this section, we show that any central elation of a weakly embedded generalized
quadrangle in characteristic 6= 2 is induced by a transvection on V with center π(p),
except for the universal weak embedding of W (2). In characteristic 2, this is not
valid, see Lemma 3.3.

Lemma 5.1
Let Γ be a generalized quadrangle weakly embedded in the projective space P(V )
with (Γ, π) not the universal weak embedding of W (2). Let τ be a central elation
of Γ with center p, mapping the point q opposite p to q′. If charK 6= 2, then
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π(p) ⊆ 〈π(q), π(q′)〉. In particular, the degree of π is > 2 and τ is induced by a
transvection of SL(V ) with point-hyperplane pair (π(p), Hp).

Proof. By Lemma 4.3 τ is induced by a transvection t of SL(V ) with point-
hyperplane pair (R,Hp), where R = 〈π(q), π(q′)〉 ∩Hp. Our aim is to show that R
equals π(p), provided that charK 6= 2.

We write π(q) = 〈vq〉 and R = 〈r〉 such that vqt = vq + r ∈ π(q′). Set π(q′′) :=
π(q′)t. Because of (vq + r)t = vq + 2r and charK 6= 2, we see that q′′ is a third

point of Γ with π(q′′) ⊆ 〈π(q), π(q′)〉. Hence q⊥ ∩ q′⊥ ⊆ q′′⊥. By Theorem 4.1, the
transvection ϕ of SL(V ) with point-hyperplane pair (π(q), Hq), mapping π(q′) to
π(q′′), leaves Γ invariant.

There exists A ∈ K such that (vq + r)ϕ = vq + r + Avq ∈ π(q′′). Comparing
coefficients yields A = −1

2
. Hence rϕ = r − 1

2
vq. Thus the matrices of t and ϕ with

respect to the basis {r, vq} are

t ∼
(

1 0
1 1

)
, ϕ ∼

(
1 −1/2
0 1

)
.

The set {π(x) | x ∈ Γ, π(x) ⊆ 〈π(q), π(q′)〉} is invariant under t and ϕ and hence
also under the group generated by t and ϕ. Since this group contains the elements
with matrix representation

(
1 1
0 1

)
and

(
0 −1
1 0

)
, we see that π(q) may be mapped to

R under 〈t, ϕ〉. Hence there exists x ∈ Γ with R = π(x).
Next, we show that x = p. Let y ∈ x⊥ ∩ q⊥. Then π(q′) ⊆ 〈π(x), π(q)〉 ⊆ Hy

and y ∈ q′⊥. Hence x⊥ ∩ q⊥ = x⊥ ∩ q′⊥ = q⊥ ∩ q′⊥ = q⊥ ∩ p⊥, since τ is a central
elation with center p. This yields Hx = π(x)⊕ (Hx ∩Hq) ⊆ Hp and Hx = Hp. Thus
x⊥ = p⊥ and x = p. �

6 Proof of the Moufang condition

In this section, Γ is a generalized quadrangle weakly embedded in the projective
space P(V ) (via π), where V is a vector space over the skew field K.

For different collinear points p and y of Γ, an automorphism of Γ which fixes all
points on py, all lines through p and all lines through y, is called a (p, py, y)-elation.
If for some line pz, the group of all (p, py, y)-elations acts transitively on the points
of pz different from p, we say that (p, py, y) is a Moufang path. Dually we define
when (pz, p, py) is a Moufang path. If all paths (p, py, y) and all paths (pz, p, py) are
Moufang paths, then Γ is called a Moufang quadrangle. These definitions are due to
Tits [11].

Theorem 6.1
Let Γ be a generalized quadrangle weakly embedded in the projective space P(V ).
If Γ has a hyperbolic line with at least three points, then Γ is a Moufang quadrangle.

Proof. We may assume that the degree of the weak embedding is 2. Otherwise Γ
is a Moufang quadrangle by Steinbach & Van Maldeghem [6]. Furthermore, we may
suppose that Γ is not the symplectic quadrangle over GF(2).

Let y, z be opposite points of Γ and p ∈ y⊥ ∩ z⊥. Our aim is to show:
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(∗) If z′ is a third point on pz, then there exists a (p, py, y)-elation which maps z
to z′.

By Lemma 4.1, we see that the hyperbolic line {y, z}⊥⊥ contains at least three
points. Hence there exists a point a 6= y, z with y⊥ ∩ z⊥ ⊆ a⊥. By Lemma 4.3 there
is a central elation ty of Γ with center y which maps z to a. Because of a⊥∩z⊥ ⊆ y⊥,
Lemma 4.3 yields a central elation ta of Γ which maps z to y. Then y′ := z′ta ∈ py
and y′⊥∩a⊥ ⊆ z′⊥ by the definition of central elations. Let ty′ be the central elation
of Γ with center y′ mapping a to z′ by Lemma 4.3. We set t := tyty′ . Then zt = z′,
all points on py are fixed under t and the line pz is fixed under t.

We denote by the same names the extensions of ty, ty′ , t on the elements of P(V ),
see Lemma 4.3. Denote by Ry := 〈π(a), π(z)〉 ∩Hy the point of the extension of ty,
and similarly for ty′. Since Ry, Ry′ are contained in Hp, we see that Hp is invariant
under ty and ty′. The restriction of ty and ty′ to Hp is the identity on Hp ∩ Hy

and Hp ∩ Hy′ , respectively. By Proposition 2.1 these two intersections coincide.
Hence the restriction of t to Hp is a transvection. Its center is π(p), since the line
〈π(p), π(z)〉 is fixed by t. This yields that every line of Γ through p is fixed by t.

Choose a point q of Γ such that (p, y, q, z) is an apartment of Γ. By q′ we
denote the projection of z onto (yq)t. We show that q⊥ ∩ q′⊥ ⊆ p⊥. We have
V = 〈π(p), π(y), π(q), π(z)〉 ⊕ (Hp ∩ Hy ∩ Hq ∩ Hz). Let x ∈ q⊥ ∩ q′⊥. We write
π(x) = 〈vx〉 with vx = Avp + Bvq + Cvy + Dvz + h, where A,B,C,D ∈ K, h ∈
Hp ∩ Hy ∩ Hq ∩ Hz. We have h ∈ Hp ∩ Hy ⊆ Hy′ by Proposition 2.1. Hence
h = ht ⊆ (Hq)t = Hqt. This yields h ∈ Hy ∩ Hqt ⊆ Hq′ , using Proposition 2.1.
Because of Avp = vx − Bvq − Cvy − Dvz − h ∈ Hq , we see A = 0. This yields
Bvq = vx−Cvy−Dvz −h ∈ Hq′ , hence B = 0. Thus π(x) = 〈Cvy +Dvz +h〉 ⊆ Hp

and x ∈ p⊥.

Hence there exists a central elation tp with center p mapping q′ to q. The
composition θ := ttp maps z to z′, fixes all points on py and all lines through p.
Moreover, the line yq is fixed by θ. Similarly as above, the restriction of θ to Hy is
a transvection with center π(y). Hence θ fixes all lines through y, which proves (∗).

Finally, Γ is a Moufang quadrangle. The proof is the same as Steinbach & Van
Maldeghem [6, (4.0.2)]. �

Lemma 6.1
In the situation of Theorem 6.1, the subgroup of Aut(Γ) generated by all central
elations is induced by PSL(V ).

Proof. For the universal weak embedding of W (2), see Van Maldeghem [12, Sec-
tion 8.6]. Let G be the group generated by the central elations of Γ. For each
central elation τ of Γ, we denote by t the unique transvection of V inducing τ , see
Lemma 4.3. We write each element of G as a product τ1 . . . τr of central elations
and define a mapping χ : G → PSL(V ) by (τ1 . . . τr)χ = t1 . . . tr. Then χ is well-
defined, since two automorphisms of P(V ) are equal, if they coincide on all points
π(x), x ∈ Γ, which span P(V ). Hence the mapping τ 7→ t yields a homomorphism
χ : G→ PSL(V ) with π(x)χ(g) = π(xg) for all g ∈ G, x ∈ Γ. �
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