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Abstract

We classify, up to isomorphism, all the thin residually connected geome-
tries on which the group Sz(8) acts flag-transitively. This paper is a sequel
of [12] where all the firm residually connected geometries on which Sz(8) acts
flag-transitively and residually weakly primitively are classified, up to isomor-
phism. We obtain 183 thin geometries, all of rank 3 (147 of them appearing
already in [12]). We compute all their rank 2 truncations. When the Neu-
maier construction is applyable, we give the geometries obtained from this
construction and we mention whether they are regular or chiral. Most of the
results obtained here rely on computer algebra.

1 Introduction

An observation that arises while classifying all firm, residually connected geometries
on which a group G acts flag-transitively and fulfils some primitivity condition (as
for example Pri, Rpri or Rwpri) is that when we get thin geometries, we generally
get lots of them.
The classification of all the firm, residually connected geometries on which Sz(8)
acts flag-transitively and residually weakly primitively (Rwpri) [12] gave us a lot of
thin geometries (147 out of the 151 rank 3 ones).
One of our projects is to classify all geometries satisfying these conditions for a
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Suzuki simple group Sz(q), with q an odd power of 2. Such a classification is already
accomplished for the rank 2 geometries [13], for which of course, no thin geometries
appeared. But for the higher ranks, we must be prepared to get lots of them. The
classification of all the thin geometries of Sz(8) might help us to guess what is
happening in the general case.

This work has first been done ”by hand”, that is by looking at the dihedral
subgroups of Sz(8) and seeing which of these subgroups could give rise to thin
geometries, using Magma [1]. During a stay at the University of Sydney, we made
a series of Magma programs that classify all thin residually connected geometries
on which a group G acts flag-transitively. This permitted us to cross-check the
results. And this is also the reason why we prefer to mention our results as a fact
instead of a theorem, because no proof is given for the classification itself.

The paper is organized as follows. In section 2, we give the basic definitions
and we fix some notation. In section 3, we list all the thin residually connected
geometries on which Sz(8) acts flag-transitively. We also give their correlation group
and their rank 2 truncations. Some of these geometries can be derived from others
by using a construction described in [14]. We mention when such relations occur.
In section 4, we give some observations we made while looking at the results. We
define a new diagram with more structure and we introduce a new property that
seems interesting to impose. In section 5, we apply the Neumaier construction to
obtain other geometries from those given in section 3. We mention whether they are
chiral or regular. The geometries mentioned in this section can be seen as abstract
polytopes which are a particular case of thin geometries. Much work has already
been accomplished on abstract regular polytopes. The spherical case has been well
detailed by Coxeter [8]. The toroidal case has been studied by McMullen and Shulte
in a series of papers (see [16] for references on the subject). Chiral polytopes have
been studied recently by Shulte and Weiss [17, 18] and Nostrand and Schulte [16].

This paper is also a prelude to a project quite similar to [6], [5], that is, to build
a new Atlas of thin geometries [11].
Acknowledgement. We would like to thank Francis Buekenhout for many inter-
esting discussions while solving this problem. We also would like to thank John
Cannon for his invitation to come at the University of Sydney, where part of this
research was accomplished.
Electronic Availability. A Magma file, that contains the maximal parabolic
subgroups of the 183 thin geometries given in this paper, is available at the address
http://cso.ulb.ac.be/∼dleemans/abstracts/sz8thin.html

2 Definitions and notation

The basic concepts about geometries constructed from a group and some of its
subgroups are due to Tits [19] (see also [4], chapter 3).
Let G be a group together with a finite family of subgroups (Gi)i∈I . We define the
pre-geometry Γ = Γ(G, (Gi)i∈I) as follows. The set X of elements of Γ consists of
all cosets gGi, g ∈ G, i ∈ I . We define an incidence relation * on X by :

g1Gi * g2Gj iff g1Gi ∩ g2Gj is non-empty in G.
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The type function t on Γ is defined by t(gGi) = i. The type of a subset Y of X is
the set t(Y ); its rank is the cardinality of t(Y ) and we call | I | the rank of Γ. The
subgroups Gi’s are called the maximal parabolic subgroups. The Borel subgroup of
the pre-geometry is the subgroup B = ∩i∈IGi. A flag is a set of pairwise incident
elements of X and a chamber of Γ is a flag of type I . An element of type i is also
called an i-element.
The group G acts on Γ as an automorphism group, by left translation, preserving
the type of each element.
As in [9], we call Γ a geometry provided that every flag of Γ is contained in some
chamber and we call Γ flag-transitive provided that G acts transitively on all cham-
bers of Γ, hence also on all flags of any type J , where J is a subset of I .
Assuming that Γ is a flag-transitive geometry and that F is a flag of Γ, the residue
of F is the pre-geometry

ΓF = Γ(∩j∈t(F )Gj , (Gi ∩ (∩j∈t(F )Gj))i∈I\t(F ))

and we readily see that ΓF is a flag-transitive geometry.
Let J be a subset of I . The J-truncation of Γ, denoted ΓJ , is the geometry consisting
of the elements of type j ∈ J , together with the restricted type-function and induced
incidence relation. In group-geometry terms, the J -truncation of Γ(G, (Gi)i∈I) is the
geometry Γ(G, (Gj)j∈J).
We call Γ firm (resp. thick, thin) provided that every flag of rank | I | −1 is
contained in at least two (resp. at least three, exactly two) chambers. We call Γ
residually connected provided that the incidence graph of each residue of rank ≥ 2
is a connected graph. We call Γ primitive (Pri) provided that G acts primitively
on the set of i-elements of Γ, for each i ∈ I .
As in [6], we call Γ residually primitive (Rpri) if each residue ΓF of a flag F is
primitive for the group induced on ΓF by the stabilizer GF of F .
We call Γ weakly primitive (Wpri) provided there exists some i ∈ I such that G acts
primitively on the set of i-elements of Γ and we call Γ residually weakly primitive
(Rwpri) provided that each residue ΓF of a flag F is weakly primitive for the group
induced on ΓF by the stabilizer GF of F .
If Γ is a geometry of rank 2 with I = {0, 1} such that each of its 0-elements is
incident with each of its 1-elements, then we call Γ a generalized digon.
Following [2] and [3], the diagram of a firm, residually connected, flag-transitive
geometry Γ is a graph together with additional structure, whose vertices are the
elements of I , which is further described as follows. To each vertex i ∈ I , we attach
the order si which is | ΓF | −1, where F is any flag of type I\{i}, the number ni of
varieties of type i, which is the index of Gi in G, and the subgroup Gi. Elements
i, j of I are not joined by an edge of the diagram provided that a residue ΓF of
type {i, j} is a generalized digon. Otherwise, i and j are joined by an edge endowed
with three positive integers dij , gij, dji where gij (the gonality) is equal to half the
girth of the incidence graph of a residue ΓF of type {i, j} and dij (resp. dji), the i-
diameter (resp. j-diameter) is the greatest distance from some fixed i-element (resp.
j-element) to any other element in the incidence graph of ΓF .
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On a picture of the diagram, this structure will often be depicted as follows.

i idij gij dji

si sj
ni nj
Gi Gj

If gij = dij = dji = n, then ΓF is called a generalized n-gon and on a picture, we do
not write dij and dji.
We denote by σ0(F ) the 0-shadow of a flag F , that is the set of elements of type
0 that are incident with the flag F . We say that a geometry Γ, over a set of type
I , satisfies the intersection property (IP ) when for every types 0, 1 ∈ I , for every
1-element x, and for every flag F , | σ0(x) ∩ σ0(F ) |> 1 implies that there exists a
flag F ′ such that x and F are incident with F ′ and σ0(F

′) = σ0(x)∩ σ0(F ). We say
that Γ satisfies the intersection property of rank 2 (IP )2 is every rank 2 residue of
Γ satisfies (IP ).
The ordered pairs (Γ, G) and (Γ′, G) are isomorphic (resp. conjugate) if there exists
an automorphism (resp. internal automorphism) of G mapping Γ onto Γ′. The group
Cor(Γ,G) (resp. Aut(Γ,G)) is the group of automorphisms (resp. type-preserving
automorphisms) of the pair (Γ,G).

As to notation for groups, we follow the conventions of the Atlas [7] up to slight
variations. The symbol ”:” stands for split extensions, the ”hat” symbol ”̂.”stands
for non split extensions and the symbol × stands for direct products.

Following ideas developped in [18], we say that a group G acts chirally on a
geometry Γ if the chambers of Γ are divided in two orbits of the same length on
which G acts transitively. We also say that the group G acts regularly on Γ if G is
transitive on the set of chambers of Γ.

3 The thin geometries of Sz(8)

Fact 3.1 Up to isomorphism, there are 183 thin residually connected geometries on
which the group Sz(8) acts flag-transitively.
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Table 1: The thin geometries of Sz(8)

Nr. a b c #CC Cor(Γ, G) Rwpri

1 2 5 7 3 Yes
2 2 5 13 3 No
3 2 7 7 3 Sz(8) Yes

4-6 2 7 13 3 Yes
7 2 13 13 3 Sz(8) No
8 5 5 5 1 Sz(8):3 No

9-12 5 5 7 3 Sz(8) Yes
13 5 5 7 3 Sz(8)×2 Yes

14-17 5 5 13 3 Sz(8) No
18 5 5 13 3 Sz(8)×2 No

19-31 5 7 7 3 Sz(8) Yes
32 5 7 7 3 Sz(8)×2 Yes

33-58 5 7 13 3 Yes
59-71 5 13 13 3 Sz(8) No

72 5 13 13 3 Sz(8)×2 No
73-83 7 7 7 3 Sz(8) Yes
84-85 7 7 7 3 Sz(8)×2 Yes

86 7 7 7 1 Sz(8):3 Yes
87-125 7 7 13 3 Sz(8) Yes
126-128 7 7 13 3 Sz(8)×2 Yes
129-166 7 13 13 3 Sz(8) Yes
167-169 7 13 13 3 Sz(8)×2 Yes
170-179 13 13 13 3 Sz(8) No
180-181 13 13 13 3 Sz(8)×2 No
182-183 13 13 13 1 Sz(8):3 No

Table 1 lists, up to isomorphism, the thin geometries on which Sz(8) acts flag-
transitively. The columns a, b, and c correspond to those a, b and c appearing in the
diagram given above. The column ”#CC” gives the number of conjugacy classes of
geometries. These conjugacy classes are fused under Aut(G). The correlation groups
are given in the column Cor(Γ, G). We do not mention the automorphism groups
because Aut(Γ, G) = G for every thin geometry Γ. We mention also when a geom-
etry satisfies the Rwpri condition. If this condition is satisfied, the corresponding
geometry was already mentioned in [12].

In [14], a concept of derived geometry is defined. It would be too long to recall
that definition here. Roughly speaking, the construction is applyable to geometries
having points and pairs of points as some of their varieties. If these geometries
satisfy some additional conditions, we can replace the pairs of points by a copy of
the points to obtain a new geometry. This process goes in the opposite way of the
Neumaier construction (see section 5) which is a linearization process. Table 2 gives
for each geometry having one of a, b or c = 2, the number of the derived geometry
in the sense of [14].

If we decide to group geometries with their derived geometries and just count
the ”primitive” ones, then we have 176 geometries instead of 183.
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Table 2: The derived geometries
Γ Γ’
1 13 (replacing 2 by 5) and 32 (replacing 2 by 7)
2 18 (replacing 2 by 5) and 72 (replacing 2 by 13)
3 84 and 85 (replacing 2 by one of the two 7)

4-6 126-128 (replacing 2 by 7) and 167-169 (replacing 2 by 13)
7 180 and 181 (replacing 2 by one of the two 13)

Table 3 lists the rank 2 geometries appearing as truncations of the thin geome-
tries. The first column gives a number to each of them. The next two columns give
the structure of the maximal parabolic subgroups. And the last three columns give
the diameters and the gonality of these geometries.

Table 3: Rank 2 geometries of Sz(8) appearing as trun-
cations of the thin geometries

Nr. G0 G1 d01 g01 d10

1 D4 D10 16 7 15
2 D4 D14 14 5 13
3 D4 D26 10 5 10

4-5 D10 D10 9 4 10
6 10 5 10
7 D10 D14 8 2 8
8 8 3 8

9-11 8 4 8
12 10 3 9
13 D10 D26 6 3 6
14 8 2 8
15 8 3 8
16 8 4 8
17 D14 D14 7 2 7

18-22 7 3 7
23 7 4 7

24-26 D14 D26 6 2 6
27-29 6 3 6
30-31 D26 D26 6 2 6

32 6 3 6



Thin geometries for the Suzuki simple group Sz(8) 379

Table 4 gives, for each of the 183 thin geometries, its rank 2 truncations. The
first column contains the number of the geometry that is analysed. The next three
columns give the three truncations Γij = Γ(G;Gi, Gj). Sometimes, two truncations
that are non-isomorphic have the same parameters. For these, when they appear as
truncations in table 4, we precise their number. For example, geometry 4 of table 4
has a truncation Γ12 isomorphic to geometry number 25 of table 3.

A ∗ at the end of the information given in one of these three columns means that
the corresponding truncation is isomorphic to the dual of the geometry given in table
3. For example, geometry 3 of table 4 has a truncation Γ12 which is isomorphic to
the dual of geometry 17 appearing in table 3.

Table 4: The truncations of the thin geometries

Nr. Γ01 Γ02 Γ12

1 16− 7− 15 14− 5− 13 8− 2− 8
2 16− 7− 15 10− 5− 10 8− 2− 8
3 14− 5− 13 14− 5− 13 7− 2− 7∗
4 14− 5− 13 10− 5− 10 6− 2− 6(25)

5 14− 5− 13 10− 5− 10 6− 2− 6(26)

6 14− 5− 13 10− 5− 10 6− 2− 6(24)

7 10− 5− 10 10− 5− 10 6− 2− 6(31)

8 9− 4− 10(4)∗ 9− 4− 10(4) 9− 4− 10(4)∗
9 9− 4− 10(4)∗ 8− 4− 8(9) 10− 3− 9
10 9− 4− 10(4)∗ 8− 4− 8(9) 8− 4− 8(9)

11 9− 4− 10(4)∗ 8− 4− 8(9) 8− 4− 8(11)

12 9− 4− 10(4)∗ 8− 4− 8(10) 8− 2− 8
13 10− 5− 10 8− 2− 8 8− 2− 8
14 9− 4− 10(4) 6− 3− 6 8− 2− 8
15 10− 5− 10 6− 3− 6 6− 3− 6
16 9− 4− 10(4)∗ 6− 3− 6 8− 2− 8
17 9− 4− 10(4) 8− 2− 8 8− 2− 8
18 10− 5− 10 8− 2− 8 8− 2− 8
19 8− 3− 8 8− 3− 8 7− 3− 7(19)

20 8− 4− 8(10) 8− 3− 8 7− 3− 7(20)∗
21 8− 4− 8(10) 8− 3− 8 7− 3− 7(21)

22 8− 4− 8(11) 8− 4− 8(11) 7− 4− 7
23 8− 4− 8(10) 8− 4− 8(11) 7− 2− 7∗
24 8− 2− 8 8− 4− 8(11) 7− 2− 7
25 8− 4− 8(10) 8− 4− 8(11) 7− 3− 7(21)

26 10− 3− 9 8− 4− 8(11) 7− 3− 7(18)

27 8− 4− 8(9) 8− 4− 8(9) 7− 3− 7(18)

28 8− 4− 8(10) 8− 4− 8(9) 7− 3− 7(18)

29 8− 4− 8(10) 8− 4− 8(9) 7− 4− 7
30 10− 3− 9 8− 2− 8 7− 3− 7(20)

31 8− 2− 8 8− 2− 8 7− 2− 7
32 8− 2− 8 8− 2− 8 7− 4− 7

33 8− 4− 8(9) 8− 2− 8 6− 2− 6(24)
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Table 4: The truncations of the thin geometries

Nr. Γ01 Γ02 Γ12

34 8− 3− 8 6− 3− 6 6− 2− 6(24)

35 8− 2− 8 6− 3− 6 6− 2− 6(24)

36 8− 4− 8(11) 8− 2− 8 6− 2− 6(24)

37 8− 3− 8 8− 2− 8 6− 2− 6(24)

38 8− 2− 8 8− 2− 8 6− 2− 6(24)

39 8− 4− 8(9) 8− 2− 8 6− 2− 6(24)

40 8− 4− 8(11) 8− 3− 8 6− 2− 6(24)

41 8− 4− 8(10) 8− 2− 8 6− 3− 6(27)

42 8− 4− 8(10) 8− 3− 8 6− 3− 6(27)

43 8− 4− 8(11) 6− 3− 6 6− 3− 6(27)

44 8− 2− 8 6− 3− 6 6− 3− 6(27)

45 8− 4− 8(9) 6− 3− 6 6− 3− 6(27)

46 8− 3− 8 6− 3− 6 6− 3− 6(27)

47 10− 3− 9 8− 2− 8 6− 3− 6(27)

48 8− 3− 8 6− 3− 6 6− 2− 6(25)

49 8− 4− 8(9) 8− 2− 8 6− 2− 6(25)

50 8− 4− 8(11) 6− 3− 6 6− 2− 6(25)

51 8− 3− 8 8− 4− 8 6− 2− 6(25)

52 8− 3− 8 8− 3− 8 6− 2− 6(26)

53 8− 4− 8(10) 6− 3− 6 6− 2− 6(26)

54 8− 4− 8(10) 6− 3− 6 6− 2− 6(26)

55 8− 3− 8 8− 3− 8 6− 3− 6(28)

56 8− 3− 8 8− 3− 8 6− 3− 6(28)

57 8− 4− 8(11) 8− 3− 8 6− 3− 6(28)

58 8− 4− 8(10) 8− 3− 8 6− 3− 6(29)

59 6− 3− 6 8− 3− 8 6− 2− 6(31)

60 8− 2− 8 6− 3− 6 6− 2− 6(31)

61 8− 2− 8 8− 2− 8 6− 2− 6(31)

62 6− 3− 6 8− 2− 8 6− 2− 6(31)

63 8− 3− 8 8− 2− 8 6− 2− 6(31)

64 6− 3− 6 8− 2− 8 6− 2− 6(31)

65 8− 2− 8 8− 4− 8 6− 2− 6(31)

66 6− 3− 6 8− 2− 8 6− 2− 6(31)

67 6− 3− 6 6− 3− 6 6− 2− 6(31)

68 8− 4− 8 8− 3− 8 6− 2− 6(31)

69 6− 3− 6 8− 3− 8 6− 2− 6(31)

70 8− 4− 8 6− 3− 6 6− 3− 6
71 6− 3− 6 8− 3− 8 6− 3− 6
72 8− 2− 8 8− 2− 8 6− 3− 6

73 7− 3− 7(22) 7− 3− 7(19)∗ 7− 3− 7(20)

74 7− 3− 7(20) 7− 3− 7(19)∗ 7− 3− 7(21)

75 7− 3− 7(21) 7− 3− 7(19)∗ 7− 2− 7∗
76 7− 3− 7(21)∗ 7− 3− 7(19)∗ 7− 3− 7(21)
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Table 4: The truncations of the thin geometries

Nr. Γ01 Γ02 Γ12

77 7− 3− 7(20)∗ 7− 3− 7(19)∗ 7− 3− 7(20)∗
78 7− 3− 7(22) 7− 3− 7(20)∗ 7− 3− 7(21)

79 7− 3− 7(20)∗ 7− 2− 7∗ 7− 3− 7(20)

80 7− 3− 7(21)∗ 7− 4− 7 7− 3− 7(20)

81 7− 2− 7∗ 7− 4− 7 7− 3− 7(18)

82 7− 3− 7(21) 7− 3− 7(18) 7− 2− 7
83 7− 3− 7(21)∗ 7− 3− 7(18) 7− 3− 7(18)

84 7− 2− 7 7− 4− 7 7− 2− 7∗
85 7− 2− 7∗ 7− 4− 7 7− 2− 7
86 7− 3− 7(19) 7− 3− 7(19)∗ 7− 3− 7(19)

87 7− 3− 7(19)∗ 6− 2− 6(26) 6− 2− 6(24)

88 7− 2− 7∗ 6− 2− 6(26) 6− 3− 6(29)

89 7− 3− 7(19) 6− 3− 6(29) 6− 2− 6(24)

90 7− 3− 7(21)∗ 6− 2− 6(24) 6− 2− 6(24)

91 7− 3− 7(19) 6− 3− 6(28) 6− 2− 6(24)

92 7− 3− 7(20) 6− 3− 6(27) 6− 2− 6(24)

93 7− 3− 7(20)∗ 6− 3− 6(28) 6− 2− 6(24)

94 7− 3− 7(22) 6− 2− 6(26) 6− 2− 6(24)

95 7− 2− 7∗ 6− 2− 6(25) 6− 2− 6(24)

96 7− 2− 7∗ 6− 3− 6(27) 6− 2− 6(24)

97 7− 4− 7 6− 3− 6(28) 6− 2− 6(24)

98 7− 3− 7(20)∗ 6− 3− 6(27) 6− 2− 6(24)

99 7− 3− 7(19)∗ 6− 3− 6(27) 6− 2− 6(25)

100 7− 3− 7(19)∗ 6− 2− 6(25) 6− 2− 6(25)

101 7− 2− 7∗ 6− 2− 6(25) 6− 2− 6(25)

102 7− 3− 7(19)∗ 6− 2− 6(26) 6− 2− 6(25)

103 7− 3− 7(20) 6− 3− 6(27) 6− 2− 6(25)

104 7− 3− 7(21) 6− 2− 6(26) 6− 2− 6(25)

105 7− 3− 7(20)∗ 6− 2− 6(26) 6− 2− 6(25)

106 7− 3− 7(20) 6− 2− 6(26) 6− 2− 6(25)

107 7− 3− 7(19) 6− 2− 6(26) 6− 2− 6(26)

108 7− 2− 7∗ 6− 2− 6(26) 6− 2− 6(25)

109 7− 3− 7(19)∗ 6− 3− 6(28) 6− 3− 6(28)

110 7− 3− 7(19) 6− 3− 6(27) 6− 3− 6(28)

111 7− 2− 7∗ 6− 2− 6(26) 6− 3− 6(28)

112 7− 3− 7(18) 6− 2− 6(26) 6− 3− 6(28)

113 7− 2− 7 6− 3− 6(28) 6− 3− 6(28)

114 7− 3− 7(19)∗ 6− 3− 6(27) 6− 3− 6(28)

115 7− 3− 7(21) 6− 3− 6(29) 6− 3− 6(28)

116 7− 3− 7(19) 6− 3− 6(28) 6− 3− 6(28)

117 7− 3− 7(21) 6− 2− 6(26) 6− 3− 6(28)

118 7− 3− 7(20)∗ 6− 3− 6(29) 6− 3− 6(28)

119 7− 3− 7(21) 6− 3− 6(27) 6− 3− 6(28)
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Table 4: The truncations of the thin geometries

Nr. Γ01 Γ02 Γ12

120 7− 3− 7(21) 6− 3− 6(29) 6− 3− 6(28)

121 7− 3− 7(18) 6− 3− 6(29) 6− 3− 6(27)

122 7− 3− 7(21) 6− 2− 6(26) 6− 3− 6(27)

123 7− 4− 7 6− 3− 6(27) 6− 3− 6(27)

124 7− 3− 7(21)∗ 6− 2− 6(26) 6− 3− 6(27)

125 7− 3− 7(20)∗ 6− 2− 6(26) 6− 3− 6(27)

126 7− 4− 7 6− 2− 6(24) 6− 2− 6(24)

127 7− 4− 7 6− 2− 6(25) 6− 2− 6(25)

128 7− 4− 7 6− 2− 6(26) 6− 2− 6(26)

129 6− 2− 6(25) 6− 2− 6(24) 6− 2− 6(31)

130 6− 3− 6(29) 6− 3− 6(27) 6− 2− 6(30)

131 6− 3− 6(28) 6− 2− 6(24) 6− 2− 6(30)

132 6− 3− 6(27) 6− 2− 6(24) 6− 2− 6(31)

133 6− 2− 6(25) 6− 2− 6(24) 6− 2− 6(30)

134 6− 2− 6(24) 6− 2− 6(24) 6− 2− 6(30)

135 6− 2− 6(25) 6− 2− 6(24) 6− 2− 6(31)

136 6− 3− 6(27) 6− 2− 6(24) 6− 2− 6(31)

137 6− 2− 6(26) 6− 2− 6(24) 6− 2− 6(31)

138 6− 3− 6(27) 6− 2− 6(24) 6− 3− 6
139 6− 3− 6(28) 6− 2− 6(24) 6− 2− 6(31)

140 6− 2− 6(26) 6− 2− 6(24) 6− 2− 6(31)

141 6− 3− 6(28) 6− 2− 6(25) 6− 2− 6(30)

142 6− 2− 6(26) 6− 3− 6(29) 6− 2− 6(31)

143 6− 2− 6(25) 6− 2− 6(25) 6− 2− 6(31)

144 6− 3− 6(29) 6− 2− 6(25) 6− 2− 6(30)

145 6− 3− 6(28) 6− 2− 6(25) 6− 3− 6
146 6− 3− 6(27) 6− 2− 6(25) 6− 2− 6(30)

147 6− 3− 6(29) 6− 2− 6(25) 6− 3− 6
148 6− 2− 6(26) 6− 2− 6(25) 6− 2− 6(30)

149 6− 2− 6(26) 6− 2− 6(25) 6− 2− 6(31)

150 6− 3− 6(27) 6− 2− 6(25) 6− 3− 6
151 6− 3− 6(28) 6− 2− 6(25) 6− 2− 6(30)

152 6− 3− 6(28) 6− 2− 6(25) 6− 2− 6(30)

153 6− 2− 6(26) 6− 2− 6(25) 6− 2− 6(30)

154 6− 2− 6(26) 6− 3− 6(28) 6− 2− 6(31)

155 6− 3− 6(27) 6− 3− 6(28) 6− 2− 6(31)

156 6− 3− 6(29) 6− 3− 6(28) 6− 2− 6(31)

157 6− 2− 6(26) 6− 3− 6(28) 6− 3− 6
158 6− 3− 6(27) 6− 3− 6(28) 6− 2− 6(31)

159 6− 3− 6(28) 6− 3− 6(28) 6− 2− 6(31)

160 6− 2− 6(26) 6− 3− 6(28) 6− 2− 6(30)

161 6− 3− 6(27) 6− 3− 6(28) 6− 3− 6
162 6− 2− 6(26) 6− 3− 6(27) 6− 2− 6(31)
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Table 4: The truncations of the thin geometries

Nr. Γ01 Γ02 Γ12

163 6− 2− 6(26) 6− 3− 6(27) 6− 2− 6(31)

164 6− 3− 6(27) 6− 3− 6(27) 6− 2− 6(30)

165 6− 2− 6(26) 6− 3− 6(27) 6− 2− 6(31)

166 6− 2− 6(26) 6− 3− 6(27) 6− 2− 6(30)

167 6− 2− 6(24) 6− 2− 6(24) 6− 3− 6
168 6− 2− 6(25) 6− 2− 6(25) 6− 3− 6
169 6− 2− 6(26) 6− 2− 6(26) 6− 3− 6
170 6− 2− 6(30) 6− 2− 6(31) 6− 3− 6
171 6− 2− 6(31) 6− 2− 6(31) 6− 2− 6(30)

172 6− 2− 6(31) 6− 2− 6(31) 6− 2− 6(31)

173 6− 3− 6 6− 2− 6(31) 6− 2− 6(30)

174 6− 3− 6 6− 2− 6(31) 6− 3− 6
175 6− 2− 6(31) 6− 2− 6(31) 6− 3− 6
176 6− 2− 6(31) 6− 2− 6(31) 6− 2− 6(31)

177 6− 2− 6(30) 6− 2− 6(31) 6− 2− 6(31)

178 6− 2− 6(30) 6− 2− 6(31) 6− 3− 6
179 6− 3− 6 6− 2− 6(31) 6− 2− 6(31)

180 6− 2− 6(31) 6− 2− 6(31) 6− 3− 6
181 6− 3− 6 6− 2− 6(31) 6− 2− 6(31)

182 6− 2− 6(30) 6− 2− 6(31) 6− 2− 6(30)

183 6− 2− 6(30) 6− 2− 6(31) 6− 2− 6(30)

4 Some observations

We give in this section some observations arising from the tables given in the pre-
ceding section.

First, let us remark that we get only 15 distinct diagrams for 183 non-isomorphic
geometries. It might be a good idea to add some information on our diagrams. We
now decide to add three parameters on each edge of the diagram, that are the three
parameters of the rank 2 truncation obtained by the two vertices of an edge.

Definition 4.1 The extended diagram of a firm, residually connected, flag-transitive
geometry is a diagram (as defined in section 2), whose structure is completed by
adding between every pair of vertices three parameters that are the diameters and
the gonality of the corresponding rank 2 truncation.

For example, geometry number 9 has an extended diagram as follows.
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Looking at the truncations of table 4, we obtain 75 distinct extended diagrams.
It is of course not sufficient to look at the truncations in order to say whether two

geometries are isomorphic or not. If two geometries have distinct rank 2 truncations,
they are non-isomorphic. But the converse is not necessarily true. There are several
examples appearing here. The geometries having three rank 2 truncations in com-
mon are (33,39), (53,54), (55,56), (59,69), (62,64,66), (84,85), (105,106), (109,116),
(115,120), (129,135), (132,136), (137,140), (141,151,152), (148,153), (155,158),
(162,163,165).

If we observe table 4, we see that a lot of truncations do not satisfy the (IP )2

condition. A new condition to impose on our geometries is the following.

Condition 4.2 Γ satisfies the strong intersection property of rank 2 (SIP )2 if Γ is
(IP )2 and for every edge of the diagram of Γ, the corresponding truncation satisfies
the (IP )2 condition.

Remark that when a geometry has a rank 2 residue which is a generalized digon,
the rank 2 truncation obtained by the two vertices that are not joined by an edge
does not satisfy (IP )2 or is a generalized digon. This is why we restrict ourselves to
truncations corresponding to edges of the diagram. Out of the 183 thin geometries
of Sz(8), only 50 are (SIP )2. This new condition seems attractive because the
intersection property (IP ) implies it for every geometry of finite rank.

Theorem 4.3 Let Γ be a geometry of rank n < ∞. If Γ satisfies (IP ), then Γ
satisfies (SIP )2.

Proof. Let I be the set of types of Γ. Suppose Γ is not (SIP )2. To show that Γ
cannot be (IP ), we suppose it is (IP ) and we derive a contradiction. Because Γ is
not (SIP )2, there exist two types 0 and 1 in I such that the residue of a flag of type
I \ {0, 1} has gonality at least 3 and the truncation Γ{0,1} has a circuit of length 4.
Hence there are two 1-elements, say e and e′, such that | σ0(e)∩σ0(e

′) |≥ 2. Because
Γ satisfies (IP ), it must have a flag F such that e∗F ∗e′ and σ0(F ) = σ0(e)∩σ0(e

′).
Thus σ0(F ) has at least two 0-elements. It implies that F is a flag of type t(F ) ⊆
I \ {0, 1}.
If t(F ) = I \ {0, 1}, then the geometry ΓF is not (IP )2 and thus Γ cannot be (IP ),
a contradiction.
Otherwise, the geometry ΓF , whose rank is smaller than the rank of Γ, satisfies (IP )
and does not satisfy (SIP )2. We may then suppose Γ = ΓF and start the discussion
again until we get the contradiction. �



Thin geometries for the Suzuki simple group Sz(8) 385

In a first version of this paper, we stated theorem 4.3 for flag-transitive ge-
ometries. Antonio Pasini showed us that it was not necessary to impose the flag-
transitivity in the hypotheses of this theorem.

Because buildings satisfy (IP ), it might be interesting to impose this new prop-
erty. Also, theorem 4.3 shows that (SIP )2 is a necessary condition for (IP ). This
is very helpful because (IP ) is not easy to test with a computer whereas (SIP )2 is.
For example, the second rank 4 geometry mentionned in [10] for the Janko group
J1 cannot satisfy (IP ) because one of its rank 2 truncations, namely the one with
PSL(2, 11) and S3 ×D10 is not (IP )2 and hence this geometry is not (SIP )2.

5 Applying the Neumaier construction

This construction is detailed in [15]. It would be too long to recall it here. We just
give a rough idea of how it works. We start from a diagram as the one given below.
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@
@@
i

i ib
a a

1 1

1

D2a D2a

D2b

B = 1

Applying the Neumaier construction to a geometry corresponding to the diagram
given above, we obtain another geometry whose diagram is given below, for the
group Sz(8)×2. This group acts chirally or regularly on the geometry, depending
on the correlation group of the starting geometry. Roughly speaking, if the starting
geometry has a duality involving the two D2a, then Sz(8)×2 acts regularly on the
new geometry. Otherwise, it acts chirally. Remark that the starting diagram was a
triangle whereas the diagram of the geometry obtained by the Neumaier construction
is linear. This construction may be seen as a linearisation process of the diagram of
a geometry.

ii ia = a’ 2b = b’

1 1 1
29120

2b
14560 29120

a

D4b 22 D2a B = 1
In table 5 we give for each thin geometry obtained in section 3 the geometry

obtained by applying this construction (when the construction is applyable) and we
mention whether the group Sz(8)×2 acts chirally or regularly.
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Table 5: The geometries obtained by the Neumaier con-
struction

Nr. a b c a’ b’ Chiral or Regular

3 2 7 7 4 7 Chiral
7 2 13 13 4 13 Chiral
8 5 5 5 3 5 Chiral

9-12 5 5 7 5 14 Chiral
13 5 5 7 5 14 Regular

14-17 5 5 13 5 26 Chiral
18 5 5 13 5 26 Regular

19-31 5 7 7 7 10 Chiral
32 5 7 7 7 10 Regular

59-71 5 13 13 10 13 Chiral
72 5 13 13 10 13 Regular

73-83 7 7 7 7 14 Chiral
84-85 7 7 7 7 14 Regular

86 7 7 7 3 7 Chiral
87-125 7 7 13 7 26 Chiral
126-128 7 7 13 7 26 Regular
129-166 7 13 13 13 14 Chiral
167-169 7 13 13 13 14 Regular
170-179 13 13 13 13 26 Chiral
180-181 13 13 13 13 26 Regular
182-183 13 13 13 3 13 Chiral

Remark that, according to Francis Buekenhout, Jacques Tits arrived at the same
construction independently.
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