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Abstract

A new bound for the number of rational points on an algebraic curve over a
finite field is obtained in Theorem 1.3. It is derived from previous work on the
upper bounds for the size of a complete arc in a finite projective plane. In the
terminology of plane curves, the main result is Theorem 1.4, and considers an
absolutely irreducible, plane curve C of degree d defined over Fq, q = ph with
p prime and p ≥ 3. An upper bound is obtained for the number of branches
of C that are centred at Fq-rational points. To do this, two types of branches
are distinguished: (a) branches of order and class equal to r; (b) branches of
order r and class different from r.

The main theorem counts twice the number of branches of type (a) plus the
number of branches of type (b). As a corollary, this theorem gives an upper
bound for the number of Fq-rational points of C, since simple non-inflexion
points are branches of order 1 and class 1, while inflexions points are branches
of order 1 and class greater than 1.

1 Introduction

For a projective, geometrically irreducible, non-singular, algebraic curve C defined
over Fq , the number N1 of its rational points, that is, points with coordinates in Fq,
satisfies

|N1 − (q + 1)| ≤ 2g
√

q. (1.1)
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This is the Hasse-Weil theorem; a curve achieving the upper bound in (1.1) is called
maximal. The bound was improved by Serre to the following:

|N1 − (q + 1)| ≤ gb2√qc. (1.2)

If C is a non-singular plane curve of degree d, then (1.1) becomes

|N1 − (q + 1)| ≤ (d− 1)(d− 2)
√

q. (1.3)

These bounds are important for applications in Coding Theory (see [22]), Number
Theory (see [18] for example on cyclotomy), and in Finite Geometry (see [11, Chap-
ter 10]). However, in many applications what is actually required is to compute the
number N of zeros of an absolutely irreducible polynomial F (X, Y ) with coefficients
in Fq. In geometrical terms, N means the total number of Fq-rational points of the
plane curve C with equation F (X, Y ) = 0. Note that C may have singular points
over Fq that do not correspond to points of a non-singular model of C over Fq . Thus
N1 ≤ N but it is not necessarily true that N1 = N . For example, a plane cubic
curve with an isolated double point has q + 2 rational points; the double point is
not counted in the estimate (1.1).

If N1 is replaced by N , equation (1.3) remains true for singular curves; see
[17], [11, §2.8] for discussions of this. Also, as explained in [13], the main result
[23, Theorem 2.13] of the Stöhr-Voloch theory still holds when N denotes the total
number of Fq-rational points of the model of the curve X associated to a base-point-
free linear system defined on X .

Our aim here is to find an upper bound for the number of Fq-rational points of
a plane curve C which only depends on the degree of C and the order of the field.
Standard notation will be used; see [23, 4].

Let X be a projective, geometrically irreducible, non-singular, algebraic curve
defined over Fq, with q = ph and p an odd prime, and consider X over the algebraic
closure Fq equipped with the action of the Frobenius morphism relative to Fq.
Suppose that X admits two linear systems Σ1 and Σ2 such that

(A) Σ1 cuts out on X a simple, not necessarily complete, base-point-free linear
series g2

d;

(B) Σ2 = 2Σ1, and Σ2 cuts out on X a linear series g5
2d.

Note that g5
2d is also simple and base-point-free. For i = 1, 2, let πi be the morphism

associated to Σi. Then π1(X ) is a plane curve of degree d defined over Fq, and every
absolutely irreducible plane curve can be obtained in this way.

The set of all Fq-rational points on π1(X ) is

X̃ = X̃ (Fq) = {P ∈ X | π1(P ) ∈ π1(X )(Fq)};

that is, X̃ is the set of all points of X that correspond to branches of π1(X ) centred
at an Fq-rational point. Since two types of points P in X are distinguished according
as π1(P ) is regular or an inflexion, so X̃ (Fq) splits into two sets:

S1 = X̃1(Fq) = {P ∈ X̃ (Fq) | j1
2(P ) = 2j1

1(P )},
S2 = X̃2(Fq) = {P ∈ X̃ (Fq) | j1

2(P ) > 2j1
1(P )}, (1.4)
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where the symbol j1
r (P ) stands for the r-th (Σ1, P )-order of the ramification divisor

R1 associated with Σ1. Now, put

Mq =
∑
P∈S1

j1
1(P ),

M ′
q =

∑
P∈S2

j1
1(P ).

Then Mq + M ′
q is the total number of Fq-rational points on π1(X ); this may be

greater than the number N1 of Fq-rational points on X . Since M ′
q only counts

inflexion points, and so can be computed by standard techniques, the main problem
consists in finding an upper bound for Mq. This explains why Mq and M ′

q do not
play a symmetrical role in our investigation. The following proposition shows that,
if 2Mq + M ′

q is large enough, then both the ramification divisor R2 and the Fq-
Frobenius divisor S2 associated to Σ2 are non-classical; hence these divisors are of
great importance in the study of curves with many rational points. This was first
recognized in [23].

Proposition 1.1 Let X be a curve over Fq satisfying (A) and (B). Also suppose
that the following conditions hold:
(H1) 2Mq + M ′

q ≥ d(q −√q + 1);
(H2)

3 ≤ d



≤ √q when q > 232,

q 6= 36, 55,

≤ 22 when q = 36,

≤ 48 when q = 55,

< min{(q − 5
√

q + 45)/20, (q − 5
√

q + 57)/24} when q ≤ 232;

(H3) q ≥ 16;
(H4) p ≥ 3, and q is a square when p = 3.
Then

(i) Σ1 is classical;

(ii) q is a square;

(iii) the Σ2-orders are 0, 1, 2, 3, 4,
√

q;

(iv) the Fq-Frobenius orders of Σ2 are 0, 1, 2, 3,
√

q;

(v) d ≥ 1
2
(
√

q + 1).

The proof of this proposition is given in Section 2 using an argument similar to
that used by Voloch in [25].

The non-classicality of X with respect to Σ2 allows us to introduce a further
linear system on X and find an upper bound for its degree that depends on the
degree of the plane curve π1(X ). This upper bound together with some other results
depending on the Σ1-Weierstrass points of X gives the following result.
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Proposition 1.2 Let X be a curve over Fq satisfying (A) and (B). Suppose that
the following conditions hold:
(h1) 2Mq + M ′

q ≥ d(q −√q + 1);
(h2) ] 3 ≤ d ≤ √q − 3;
(h3) q is a square and p ≥ 3;
(h4) Σ1 is classical;
(h5) the Σ2-orders are 0, 1, 2, 3, 4,

√
q;

(h6) the Fq-Frobenius orders for Σ2 are 0, 1, 2, 3,
√

q.
Then

(i) d = 1
2
(
√

q + 1);

(ii) 2Mq + M ′
q = d(q −√q + 1).

The proof of Proposition 1.2 is the hard part of the work and is carried out in
Sections 4 to 9. The conditions (h1) to (h6) are referred to throughout the rest of
the paper.

Propositions 1.1 and 1.2 give the main result of the paper.

Theorem 1.3 Let X be a curve over Fq satisfying conditions (A) and (B). Suppose
also that p ≥ 3, that q is a square if p = 3, and that

3 ≤ d


≤ √q − 3 if q 6= 36, 55,

≤ 22 if q = 36,

≤ 48 if q = 55,

< min{(q − 5
√

q + 45)/20, (q − 5
√

q + 57)/24} if q ≤ 232.

Then

(i) 2Mq + M ′
q ≤ d(q −√q + 1);

(ii) 2Mq + M ′
q = d(q−√q + 1) if and only d = 1

2
(
√

q + 1), in which case the curve
is maximal.

Section 10 compares Theorem 1.3 with both the the Hasse-Weil theorem and the
Stöhr-Voloch theorem. Finally, Section 11 applies Theorem 1.3 to arcs in PG(2, q),
improving a result given in [13].

In terms of plane curves, Theorem 1.3 can be phrased in the following way, using
the terminology of [21]. Let C be an absolutely irreducible, plane curve of degree d
defined over Fq. Two types of branch are distinguished, both centred at Fq-rational
points: (a) the regular branches of order r, that is, branches of order and class equal
to r; (b) the irregular branches of order r, that is, branches of order r and class
different from r. Then Mq and M ′

q are the number of branches of type (a) and type
(b) respectively, each counted r times.

Theorem 1.4 Let C be an absolutely irreducible, plane curve of degree d defined
over Fq , with q = ph and p ≥ 3 but q a square when p = 3. If the condition on d in
Theorem 1.3 is satisfied, then the conclusions (i) and (ii) also hold.
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The result has some connection with recent investigations on maximal curves.
The genus g of a maximal curve satisfies g = 1

2

√
q(
√

q − 1) or g ≤ 1
4
(
√

q − 1)2, a
result conjectured in [27] and proved in [5]. It follows that, if a non-singular plane

curve is maximal, then d =
√

q + 1 or d ≤
√

(q/2).

A final point is that, in Theorem 1.4, if as in (ii), the degree d = 1
2
(
√

q +1), then
it is shown in [2] that C is isomorphic to a Fermat curve with affine equation

x(
√
q+1)/2 + y(

√
q+1)/2 + 1 = 0.

2 The proof of Proposition 1.1

Let X be a projective, geometrically irreducible, non-singular algebraic curve defined
over Fq . Consider X over the algebraic closure Fq equipped with the action of the
Frobenius morphism relative to Fq . To prove Proposition 1.1 the following results
from [23, §§1–2] are needed. For a base-point-free linear series D = grd on X defined
over Fq, let R = RD be the ramification divisor and S = SD,q the Fq-Frobenius
divisor associated to D. For P ∈ X , let ji(P ) be the i-th (D, P )-order, let εi = εDi
be the i-th D-order, and let νi = ν

(D,q)
i be the i-th Fq-Frobenius order. As in §1, for

the system Σn the divisors R and S are denoted by Rn and Sn, n = 1, 2. For Σn,
the parameters εi and νi are also denoted by εni and νni . Also, a divisor D is written∑

vP (D)P . The following properties hold:

(a) deg(R) =
∑r
i=0 εi(2g − 2) + (r + 1)d;

(b) ji(P ) ≥ εi;

(c) vP (R) ≥ ∑i(ji(P )− εi); equality holds if and only if det(
(
ji(P )
εj

)
) 6≡ 0 (mod p);

(d) {νi | i = 0, . . . , r − 1} is a subsequence of the D-orders;

(e) deg(S) =
∑r−1
i=0 νi(2g − 2) + (q + r)d;

(f) νi ≤ ji+1(P )− j1(P ) for P in X (Fq);

(g) vP (S) ≥ ∑r−1
i=0 (ji+1(P ) − νi) for P in X (Fq); equality holds if and only if

det(
(
ji+1(P )
νj

)
) 6≡ 0 (mod p).

Note that properties (f) and (g) imply

(g′) vP (S) ≥ rj1(P ) provided P ∈ X (Fq).

Also note that (f), (g), (g′) are still valid for a point P in X such that π(P ) ∈
π(X )(Fq), where π is the morphism over Fq associated to D.

Let N1 = |X (Fq)|. From (g′) and (e),

(h) (The Stöhr-Voloch theorem)

N1 ≤ r−1{
r−1∑
i=0

νi(2g − 2) + (q + r)d}.
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Assume now that (H1) and (H3) hold, and also that the following holds:

(H2a) 3 ≤ d ≤ √q.

Lemma 2.1 Σ1 is classical.

Proof. Suppose that ε = ε1
2 > 2. Then, by the p-adic criterion of [23, Corollary

1.9], ε is a power of p (cf. [7, Proposition 2]) and so, reasoning as in proof of [13,
Proposition 3.1], we have the following. For P ∈ X such that π(P ) ∈ X̃ (Fq),

j1
1(P )j1

2(P )(j1
2(P ) − j1

1(P )) ≡ 0 (mod p). (2.5)

Now consider two cases according as Σ1 is Fq-Frobenius classical or not.

Case 1: Σ1 is Fq-Frobenius classical.

Let P ∈ X such that π(P ) ∈ X̃ (Fq). By (g),

vP (S1) ≥ (j1
2(P ) − 1) + j1

1(P ).

Then vP(S1) ≥ 2j1(P ) for the case that π(P ) ∈ X̃2(Fq). Also, (2.5) and (g) imply
that vP (S1) ≥ 3j1

1(P ) for the case that π(P ) ∈ X̃1(Fq). Consequently,

deg(S1) = (2g − 2) + (q + 2)d ≥ 3Mq + 2M ′
q ≥ 3

2
(2Mq + M ′

q) . (2.6)

Since d(d − 3) ≥ 2g − 2, from (2.6) and (H1) we then have

(d− 3) + (q + 2) ≥ 3(q −√q + 1)/2;

that is, d ≥ (q − 3
√

q + 5)/2. Now (H2a) gives a contradiction for q ≥ 16.

Case 2: Σ1 is Fq-Frobenius non-classical.

Here we are going to show that

d(2g − 2) + 3d ≥ deg(R1) = (1 + ε)(2g − 2) + 3d ≥ 2Mq + M ′
q . (2.7)

This gives a contradiction because d(d−3) ≥ 2g−2 and (H1) imply that d2−3d+3 ≥
q −√q + 1; that is, (d − 3/2)2 ≥ (

√
q − 1)2/2 and so d ≥ √q + 1.

To finish the proof of Lemma 2.1 we prove (2.7). The Fq-Frobenius orders of Σ1

are 0 and ν1
1 = ε (see (d)); then, j1

2(P ) ≥ ε + j1
1(P ) for each P ∈ X̃ (Fq) (see (f)).

Since d ≥ j1
2(P ) and j1

1(P ) ≥ 1 we obtain d ≥ ε + 1 and hence the first inequality in
(2.7). Also, by (c), vP (R1) ≥ (j1

2(P )− ε)+(j1
1(P )−1), whence vP (R1) ≥ 2j1(P )−1.

It turns out that (2.5) improves this bound to vP (R1) ≥ 2j1
1(P ) for each P ∈ X̃1(Fq)

(see (c)). Finally j1
1(P ) ≥ 1 implies 2j1

1(P )− 1 ≥ j1
1(P ). �

Corollary 2.2 There exists P ∈ X with π(P ) ∈ X̃ (Fq) and (Σ1, P )-orders 0, 1, 2.

Proof. Suppose that j1
2(P ) ≥ 3 for each P ∈ X̃ (Fq). Then, by Lemma 2.1 and

(c), vP (R1) ≥ j1
1(P ); hence

deg(R1) = 3(2g − 2) + 3d ≥ Mq + M ′
q ≥ 1

2
(2Mq + M ′

q) .

Again using d(d − 3) ≥ 2g − 2 and (H1), this gives d ≥ (q −√q + 13)/6, and again
(H2a) gives a contradiction. �
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From Corollary 2.2 and (f) the next result follows.

Corollary 2.3 Σ1 is Fq-Frobenius classical.

Remark 2.4 The condition d ≤ √q is sharp. Indeed, consider the Hermitian curve
y
√
q + y = x

√
q+1, with q a square. Then Σ1 = |(√q + 1)P0|, where P0 is an Fq-

rational point, and the Σ1-orders are 0, 1,
√

q. So X̃ (Fq) = X (Fq) and, for each
P ∈ X (Fq), the (Σ1, P )-orders are 0, 1,

√
q + 1 (see [4]). In addition 2Mq + M ′

q =
M ′

q = (
√

q)3 + 1 = (
√

q + 1)(q − √q + 1). This example also shows that Corollary
2.2 is non-trivial.

Consider now the linear system Σ2. Let P0 ∈ X be a point satisfying Corollary
2.2. Then the (Σ2, P0)-orders are 0, 1, 2, 3, 4, j, where j = j2

5(P0) (Remark 2.4).
Consequently, the Σ2-orders are 0, 1, 2, 3, 4, ε, where 5 ≤ ε = ε2

5 ≤ j (see (b)). Also,
from (f) and (d), the Fq-Frobenius orders of Σ2 are 0, 1, 2, 3, ν, where ν = ν2

4 ∈ {4, ε}.
From (e) and (g′) we have the following:

deg(S2) = (6 + ν)(2g − 2) + (q + 5)2d ≥ 5(Mq + M ′
q) . (2.8)

Lemma 2.5 Let (H1), (H3), (H2b) hold, where

(H2b) 3 ≤ d

≤
√

q if q > 232,

< (q − 5
√

q + 45)/20 if q ≤ 232.

Then ν = ε .

Proof. Suppose that ν = 4. Then d(d − 3) ≥ 2g − 2, equation (2.8) and
5(Mq + M ′

q) ≥ 5
2
(2Mq + M ′

q) imply that

10(d − 3) + (q + 5)2 ≥ 5
2
(q −√q + 1);

that is, d ≥ (q − 5
√

q + 45)/20, a contradiction. �

Lemma 2.6 Assume that (H1), (H3), (H2c) hold, where

(H2c) 3 ≤ d

≤
√

q if q > 232,

< min{(q − 5
√

q + 45)/20, (q − 5
√

q + 57)/24} if q ≤ 232.

Then ε is a power of p.

Proof. By the previous lemma and [6, Corollary 3], p divides ε; so we may assume
that ε > 5. If ε were not a power of p, then by the p-adic criterion [23, Corollary
1.9] we would have p ≤ 3 and ε = 6. Then, as in the proof of Lemma 2.5, we obtain

12(d − 3) + (q + 5)2 ≥ 5
2
(q −√q + 1),

so that d ≥ (q − 5
√

q + 57)/24 and hence q > 232 by (H2c).
From (q− 5

√
q + 57)/24 ≤ d ≤ √q, we find q− 29

√
q + 57 ≤ 0 and so 529 < q <

722. This is a contradiction as no power of 2 or 3 lies in the interval [529, 722]. �
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Lemma 2.7 Assume that (H1), (H2), (H3), (H4) hold. Then ε = ν =
√

q. In
particular, if p ≥ 5, then q is a square.

Proof. By Lemma 2.5 and (f), ν = ε ≤ j2
5(P0)− 1 ≤ 2d − 1; that is, ν ≤ 2d− 1.

Suppose that ν >
√

q; that is, ν2 = peq with e ≥ 1. Now, ν ≥ 2
√

q; for, this is
clear for p ≥ 5 and, for p = 3, it follows from the hypothesis that q is a square. If
it were false, then ν ≤ 2d − 1 would imply d

√
q, a contradiction.

Suppose now that ν <
√

q; that is, q = peν2, with e ≥ 1. From d(d−3) ≥ 2g−2,√
q ≥ d, (H1) and equation (2.8) we have

(6 + ν)(
√

q − 3) + (q + 5)2 ≥ (6 + ν)(d − 3) + (q + 5)2 ≥ 5
2
(q −√q + 1). (2.9)

Hence 2ν
√

q − 6ν ≥ q − 17
√

q + 21; that is, 2ν − 6/
√

pe ≥ √q − 17 + 21/
√

q. So

17− 21
√

q
− 6√

pe
≥ ν(
√

pe − 2) . (2.10)

Since ν ≥ 5, we have pe < 36. Since q is a square for p = 3 and ν ≥ 5 is a power of
p we have the following possibilities:

(pe, ν, q) ∈ {(9, 9, 729), (5, 5, 125), (5, 25, 3125), (7, 7, 343), (11, 11, 1331)}.

From (2.10) we have respectively d ≥ 23, 6, 49, 13, 37, and the proof follows from
(H2). �

It remains to prove part (v) of Proposition 1.1. Take a point P on X . By (iii),
there is a divisor D in Σ2 such that vP (D) =

√
q. Hence deg D ≥ √q; on the other

hand, deg D = 2d by condition (B). Thus d ≥ 1
2

√
q and, as q is odd, so d ≥ 1

2
(
√

q+1).
This completes the proof of Proposition 1.1.

3 On certain curves over finite fields

As always, X is a curve over Fq satisfying (A) and (B). Suppose that X satisfies
(h4), (h5a), (h6a):

(h5a) the Σ2-orders are 0, 1, 2, 3, 4, pv , with pv < q;

(h6a) the Fq-Frobenius orders for Σ2 are 0, 1, 2, 3, pv .

Hypothesis (A) allows us to consider π1(X ) in PG(2, q) as a parametrized plane
curve C. In this model, points of C are viewded as branches, and the linear series gd2
is cut out by the linear system Σ1 of all lines. By hypothesis (B), the linear series
g2d

5 is cut out by the linear system Σ2 of all conics. To prove Proposition 1.2, we
will use this model and adopt standard terminology on plane curves; see [21].

The aim of this section is to determine, for a given branch γ of C, the equation
of a conic which meets γ with multiplicity at least pv. The conic coincides, except
for a finite number of branches of C, with the osculating conic at γ. We will give a
necessary and sufficient condition for C to be Frobenius non-classical for Σ2.

By [7, Theorem 1] and [9, Satz 10], if f(x, y) = 0 is a minimal equation for C,
then there exist h(x, y), zi = zi(x, y) in Fq[x, y], i = 0, . . . , 5 such that

h(x, y)f(x, y) = zp
v

0 + zp
v

1 x + zp
v

2 y + zp
v

3 x2 + zp
v

4 xy + zp
v

5 y2. (3.1)
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It should be noted that the polynomials h(x, y), z0(x, y), . . . , z5(x, y) can be chosen
in Fq[x, y]. Further, C is not a component of the curve with equation h(x, y) = 0;
otherwise, C would not be classical for Σ1, but would have order sequence (0, 1, pv),
which is not allowed by (h5a).

Conversely, given an absolutely irreducible curve classical for Σ1, if C has a
minimum equation f(x, y) = 0 such that there exist h, z0, . . . , z5 ∈ Fq[x, y] satisfying
(3.1), then C satisfies the conditions (h4), (h5).

Now, take a branch γ of C of order α and class β with the centre of γ at P = (a, b),
and fix a primitive representation x = x(t), y = y(t), where x(t), y(t) ∈ Fq [[t]].

Denote zi(x(t), y(t)) by zi(t), for 0 ≤ i ≤ 5. Then, from (3.1),

z0(t)
pv + z1(t)

pvx(t) + z2(t)
pvy(t) + z3(t)

pvx(t)2 + z4(t)
pvx(t)y(t) + z5(t)

pvy(t)2 = 0.

Choose an index j with 0 ≤ j ≤ 5 such that ord zj(t) ≤ ord zi(t) for 0 ≤ i ≤ 5.
Then mi(t) = zi(t)/zj(t) has non-negative order for 0 ≤ i ≤ 5, and it follows that

m0(t)
pv + m1(t)

pvx(t) + m2(t)
pvy(t) + m3(t)

pvx(t)2+

m4(t)
pvx(t)y(t) + m5(t)

pvy(t)2 = 0. (3.2)

with mj(t) = 1.
The expansion of mi(t) can be written in the following form:

mi(t) = µ
(0)
i + µ

(1)
i t + . . . + µ

(k)
i tk + . . . (3.3)

for 0 ≤ i ≤ 5. So

[(µ
(0)
0 )p

v
+ (µ

(0)
1 )p

v
x(t) + (µ

(0)
2 )p

v
y(t) + (µ

(0)
3 )p

v
x(t)2

+(µ
(0)
4 )p

v
x(t)y(t) + (µ

(0)
5 )p

v
y(t)2]

+ tp
v
[(µ

(1)
0 )p

v
+ (µ

(1)
1 )p

v
x(t) + (µ

(1)
2 )p

v
y(t) + (µ

(1)
3 )p

v
x(t)2

+(µ
(1)
4 )p

v
x(t)y(t) + (µ

(1)
5 )p

v
y(t)2]

+ . . .

+ tkp
v
[(µ

(k)
0 )p

v
+ (µ

(k)
1 )p

v
x(t) + (µ

(k)
2 )p

v
y(t) + (µ

(k)
3 )p

v
x(t)2

+(µ
(k)
4 )p

v
x(t)y(t) + (µ

(k)
5 )p

v
y(t)2]

+ . . . = 0.

For k = 0, 1, . . ., put

sk(x, y) = (µ
(k)
0 )p

v

+ (µ
(k)
1 )p

v

x + (µ
(k)
2 )p

v

y + (µ
(k)
3 )p

v

x2 + (µ
(k)
4 )p

v

xy + (µ
(k)
5 )p

v

y2.

Then, with sk(t) = sk(x(t), y(t)), it follows that

s0(t) + tp
v

s1(t) + . . . + tkp
v

sk(t) + . . . = 0. (3.4)

As s0(x, y) contains a non-zero coefficient, µ
(0)
j , we see that s0(x, y) = 0 is the

equation of a conic. For brevity, write µ
(i)
0 = mi(0) = mi; then the following result

is obtained.

Proposition 3.1 (i) The conic C(2)
0 with equation s0(x, y) = 0, where

s0(x, y) = mpv

0 + mpv

1 x + mpv

2 y + mpv

3 x2 + mpv

4 xy + mpv

5 y2,
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meets γ with multiplicity at least pv.
(ii) This multiplicity is greater than pv if and only if s1(a, b) = 0, where

s1(a, b) = (µ
(1)
0 )p

v

+ (µ
(1)
1 )p

v

a + (µ
(1)
2 )p

v

b + (µ
(1)
3 )p

v

a2 + (µ
(1)
4 )p

v

ab + (µ
(1)
5 )p

v

b2.

(iii) If P = (a, b) is not a common point of the six curves zi(x, y) = 0, for 0 ≤ i ≤ 5,

then the equation of C(2)
0 is

z0(a, b)p
v

+ z1(a, b)p
v

x+

z2(a, b)p
v

y + z3(a, b)p
v

x2 + z4(a, b)p
v

xy + z5(a, b)p
v

y2 = 0. (3.5)

In particular, if P = (a, b) is a generic point of C then the osculating conic of C at

P (a, b) is C(2)
0 and has equation (3.5).

Remark 3.2 It may happen that a particular branch does not have C(2)
0 as oscu-

lating conic, as the following example shows. The Fermat curve F with equation

xp−1 + yp−1 + 1 = 0,

satisfies (h4)and (h5) since xy(xp−1 + yp−1 +1) = ypx +xpy +xy. Now, take a point
P = (0, c) with cp−1 = −1 of F on the y-axis. Then P is an inflexion of F ; thus the
osculating conic of F at P is degenerate and consists of the horizontal line y = c
through P counted twice. On the other hand, the conic C(2)

0 is also degenerate but
consists of two distinct lines x(y − c) = 0, namely the horizontal and vertical lines
through P , since cpx + xy = x(y − c).

Looking back through this section, or alternatively looking forward to §§4–8 we see
that the conic C(2)

0 plays a central role in the study of non-classical curves with

respect to Σ2. When the symbol C(2)
0 is used it should be understood that C(2)

0

denotes the conic with equation

mpv

0 + mpv

1 x + mpv

2 y + mpv

3 x2 + mpv

4 xy + mpv

5 y2 = 0.

Now, we consider the other relevant condition on C, that C is Frobenius non-
classical for Σ2.

Proposition 3.3 The curve C is Frobenius non-classical for Σ2 if and only if there
exists s(x, y) in Fq[x, y] such that

s(x, y)f(x, y) = (3.6)

z0(x, y) + z1(x, y)xp
h−v

+ z2(x, y)yp
h−v

+

z3(x, y)x2ph−v + z4(x, y)xp
h−v

yp
h−v

+ z5(x, y)y2ph−v.

Proof. By the previous proposition, if P = (a, b) is a generic point of C, then the
osculating conic of C at P has equation (3.5). Therefore, C is Frobenius non-classical
if and only if

z0(a, b)p
v

+ z1(a, b)p
v

aq + z2(a, b)p
v

bq + z3(a, b)p
v

a2q+ z4(a, b)p
v

aqbq + z5(a, b)p
v

b2q = 0,

for a generic point of C. Since C is irreducible, the proposition follows. �

It should be noted that Proposition 3.3 will be crucial for embedding the curve
C in PG(5, q).
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4 Curves non-cl assical for conics

In this section we suppose (h2a), (h3a), (h4), (h5a), (h6a) hold:

(h2a) d < pv;

(h3a) p ≥ 3.

Now, we determine all possible triads (0, r, s) that can be the order sequence
of a branch γ of a curve C satisfying (h5a). Although there are, in general, many
possibilities, the conditions (h2a) and (h3a) imply that there are only three types
of branches. These will be studied in the subsequent sections.

Consider a branch γ of C of order r, class β = s − r and centre P = (a, b). We
will say that γ is regular if it is a linear branch, that is of order r = 1 and class
β = 1. In other words, γ is regular if the order sequence of γ with respect to Σ1 is
(0, 1, 2).

Now, take a primitive representation of γ in the form

x = x(t) = a + m11t
r + . . . ,

y = y(t) = b + m21t
r + . . . + bst

s + . . . ,
(4.1)

where the tangent ` to γ has equation m21(x− a)−m11(y − b) = 0.
Introduce a new system of reference taking P to the origin and ` to the x-axis.

This change of coordinates from (x, y) to (X, Y ) is given by

x = m11X + m12Y + a,
y = m21X + m22Y + b,

(4.2)

with ar = m11, br = m21. Equation (3.1) is invariant under this transformation. To
see this, let us put, for 0 ≤ i ≤ 5,

zi(x, y) = zi(m11X + m12Y + a, m21X + m22Y + b) = z̄i(X, Y ),
f(x, y) = f(m11X + m12Y + a, m21X + m22Y + b) = F (X, Y ),
h(x, y) = h(m11X + m12Y + a, m21X + m22Y + b) = H(X, Y ),
a = cp

v
, b = dp

v
, mij = nij

pv , i, j = 1, 2,

and write z̄i = z̄i(X, Y ). Then, with

Z0(X, Y ) = z̄0 + cz̄1 + dz̄2 + c2z̄3 + cdz̄4 + d2z̄5,
Z1(X, Y ) = n11z̄1 + n21z̄2 + 2cn11z̄3 + (cn11 + dn21)z̄4 + 2dn21z̄5,
Z2(X, Y ) = n12z̄1 + n22z̄2 + 2cn12z̄3 + (cn22 + dn12)z̄4 + 2dn22z̄5,
Z3(X, Y ) = n11

2z̄3 + n11n21z̄4 + n21
2z̄5,

Z4(X, Y ) = 2n11n12z̄3 + (n12n21 + n11n22)z̄4 + 2n21n22z̄5,
Z5(X, Y ) = n12

2z̄3 + n12n22z̄4 + n22
2z̄5,

and with Zi = Zi(X, Y ), i = 0, . . . , 5, equation (3.1) becomes

H(X, Y )F (X, Y ) = Zpv

0 + Zpv

1 X + Zpv

2 Y + Zpv

3 X2 + Zpv

4 XY + Zpv

5 Y 2. (4.3)

A primitive representation of γ in the new coordinate system is given by

X = X(t) = tr + . . . ,
Y = Y (t) = cts + . . . ,

(4.4)
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where
x(t) = m11X(t) + m12Y (t) + a,
y(t) = m21X(t) + m22Y (t) + b.

(4.5)

Put

zi(t) = zi(x(t), y(t))

= zi(m11X(t) + m12Y (t) + a, m21X(t) + m22Y (t) + b)

= z̄i(X(t), Y (t))

= z̄i(t);

Zi(t) = Zi(X(t), Y (t)),

for 0 ≤ i ≤ 5. Then, the relationship between the Zi(t) and the z̄i(t) is exactly the
same as between the Zi(X, Y ) and the z̄i(X, Y ). Since this relationship is linear and
invertible, it follows that

min
0≤i≤5

{ord zi(t)} = min
0≤i≤5

{ord Zi(t)}.

This shows that the index j introduced in §3 is invariant under a change of reference
system in the sense that ord Zj(t) ≤ ord Zi(t) for 0 ≤ i ≤ 5.

Put, as in §3, Mi(t) = Zi(t)/Zj(t) and Mi(0) = Mi, for 0 ≤ i ≤ 5. Then the

conic C(2)
0 has equation

Mpv

0 + Mpv

1 X + Mpv

2 Y + Mpv

3 X2 + Mpv

4 XY + Mpv

5 Y 2 = 0

with respect to the new reference system (X, Y ). This proves that the conic C(2)
0 is

a covariant of C. From (4.3) we obtain

M0(t)
pv + M1(t)

pvX+

M2(t)
pvY + M3(t)

pvX2 + M4(t)
pvXY + M5(t)

pvY 2 = 0. (4.6)

The following proposition comes from [13, Proposition 3.4].

Proposition 4.1 Let C be an irreducible algebraic curve of degree d < pv which
satisfies (h4), (h5). If r is the order and s− r is the class of a branch γ of C, then
one of the following holds:

s = 2r, and C(2)
0 has equation M2Y + M3X

2 + M4XY + M5Y
2 = 0 (4.7)

with M2M3 6= 0;

s = 1
2
(r + pv), and C(2)

0 has equation Y 2 = 0; (4.8)

s = pv − r, and C(2)
0 has equation M4XY + M5Y

2 = 0 with M2 6= 0. (4.9)

In this proposition, the cases (4.7), (4.8), and (4.9) correspond to the conic C(2)
0

being non-degenerate, a repeated line, and a proper line-pair.
Finally, in this section, we prove a result that will be useful below. With

∆(w0, w1, w2, w3, w4, w5) =

∣∣∣∣∣∣∣
2w0 w1 w2

w1 2w3 w4

w2 w4 2w5

∣∣∣∣∣∣∣ ,
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let us write

ui(t) = zi(t)
pv ,

‖m(t)‖ = ∆(m0(t), m1(t), m2(t), m3(t), m4(t), m5(t)),

a2(t) = u2(t) + u4(t)x(t) + 2u5(t)y(t),

b2(t) = m2(t)
pv + m4(t)

pvx(t) + 2m5(t)
pvy(t).

Analogously, we have M(t), A2(t), B2(t).
Henceforth, let m12 = 0; in other words, the infinite point Y∞ is the same for the

two reference systems. Under this hypothesis, we prove the next result. Here, using
(3.1) and (4.3),

z(t) = h(x(t), y(t)) f(x(t), y(t)),

Z(t) = H(X(t), Y (t))F (X(t), Y (t)),

and G is the curve given by H(X, Y )F (X, Y ) = 0.

Proposition 4.2

ord ‖z(t)‖ = ord ‖Z(t)‖; (4.10)

ord ‖a2(t)‖ = ord ‖A2(t)‖; (4.11)

ord ‖m(t)‖ = ord ‖M(t)‖; (4.12)

ord b2(t) = ord B2(t). (4.13)

Proof. For (4.10), both ord ‖z(t)‖ and ord ‖Z(t)‖ are equal to the intersection
multiplicity of the branch γ with the Hessian of the curve G. The first part of the
proposition follows. The second part follows from the fact that the intersection
multiplicity of γ with the polar curve of G with respect to the point Y∞ is equal
to both ord ‖a2(t)‖ and ord ‖A2(t)‖; by construction, the point Y∞ is the point at
infinity of both the y-axis and the Y -axis. Earlier in this section it was shown that
min0≤i≤5{ord zi(t)} = min0≤i≤5{ord Zi(t)}. Now, the third and fourth parts follow
similarly. �

5 Frobenius non-cl assical curves

Now, we examine more closely the effect of the condition (h6a) on C; namely, that
the Fq-Frobenius orders for Σ2 are 0, 1, 2, 3, pv .

(h6a) C is Frobenius non-classical with respect to Σ2.

Some geometric properties of the branches of C will now be established, depend-
ing on the types of branches found in §4. These properties described in Propositions
5.2−5.5 are interesting in themselves, but will also allow the application of Plücker’s
formula and the Theorem of Stöhr and Voloch in §9 to non-classical curves with many
rational points.

Some preliminary facts are required.
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Proposition 5.1 If C satisfies (h6a), then the conic C(2)
0 passes through the point

P ′ = (aq, bq).

Proof. First,

x̄(τ ) = aq + mq
11τ + . . . ,

ȳ(τ ) = bq + mq
21τ + . . .

is an irreducible representation of the branch γ̄ of C which is the image of γ under
the Frobenius collineation. We may argue as in the proof of Proposition 3.1. From
(3.6) we obtain the following:

[(µ
(0)
0 )p

v
+ (µ

(0)
1 )p

v
x̄(tq) + (µ

(0)
2 )p

v
ȳ(tq) + (µ

(0)
3 )p

v
x̄(tq)2

+(µ
(0)
4 )p

v
x̄(tq)ȳ(tq) + (µ

(0)
5 )p

v
ȳ(tq)2]

+ tp
v
[(µ

(1)
0 )p

v
+ (µ

(1)
1 )p

v
x̄(tq) + (µ

(1)
2 )p

v
ȳ(tq) + (µ

(1)
3 )p

v
x̄(tq)2

+(µ
(1)
4 )p

v
x̄(tq)ȳ(tq) + (µ

(1)
5 )p

v
ȳ(tq)2] + . . .

+ tkp
v
[(µ

(k)
0 )p

v
+ (µ

(k)
1 )p

v
x̄(tq) + (µ

(k)
2 )p

v
ȳ(tq) + (µ

(k)
3 )p

v
x̄(tq)2

+(µ
(k)
4 )p

v
x̄(tq)ȳ(tq) + (µ

(k)
5 )p

v
ȳ(tq)2] + . . . = 0.

For k = 0, 1, . . ., put

sk(x̄, ȳ) = (µ
(k)
0 )p

v

+ (µ
(k)
1 )p

v

x̄ + (µ
(k)
2 )p

v

ȳ + (µ
(k)
3 )p

v

x̄2 + (µ
(k)
4 )p

v

x̄ȳ + (µ
(k)
5 )p

v

ȳ2.

Then, with s̄k(τ ) = sk(x̄(τ ), ȳ(τ )), it follows that

s̄0(t
q) + tp

v

s̄1(t
q) + . . . + tkp

v

s̄k(t
q) + . . . = 0. (5.1)

So s̄0(0) = 0, whence s0(0) = 0, since s̄0(0) = s0(0). This shows that C(2)
0 passes

through P ′ = (aq, bq). �

From (5.1) we can also infer that s̄1(0) = 0. However, s̄1(0) = s1(0) only holds
in the case that γ is centred at an Fq-rational point.

Proposition 3.1(ii) gives the next result.

Proposition 5.2 If γ is a branch of C centred at an Fq-rational point, then C(2)
0

meets γ with multiplicity greater than pv.

Now we are in a position to investigate each one the three possibilities of Propo-
sition 4.1 under condition (h6a).

Proposition 5.3 Let γ be a branch of C with centre P = (a, b) not Fq-rational such
that (4.7) holds. If C satisfies (h6a) and d < pv, then the point P ′ = (aq, bq) does
not lie on the tangent to γ; also, (a− aq)m21 − (b− bq)m11 6= 0.

Proof. By Proposition 5.1, the conic C(2)
0 passes through the point P ′ = (aq, bq).

On the other hand, from (4.7) we know that C(2)
0 is a non-degenerate conic whose

tangent line at P = (a, b) coincides with the tangent of γ. �
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Proposition 5.4 Let γ be a branch of C with centre P = (a, b) not Fq-rational such
that (4.8) holds. If C satisfies (h6a) and d < pv, then the point P ′ = (aq, bq) lies on
the tangent to γ; also, (a− aq)m21 − (b− bq)m11 = 0.

Proof. By Proposition 4.1, C(2)
0 is a degenerate conic and consists of the tangent line

of γ counted twice. Thus, our assertion is an immediate consequence of Proposition
5.1. �

Proposition 5.5 Assume that C satisfies (h6a) and that d < pv. If γ is a branch
of C such that (4.9) holds, then the centre of γ is not Fq-rational.

Proof. In this case, C(2)
0 splits into two distinct lines, one of which coincides with

the tangent of γ. This shows that C(2)
0 meets γ with multiplicity s + r = pv. Hence,

the result follows from Proposition 5.2. �

6 The ramification divisor cut out by lines

As in §2, denote by R1 the linear series cut out on C by Σ1. With vP(R1) the weight
of a point P , or more precisely of a branch, of C, a count of the Weierstrass points,
each with the proper weight, gives the Plücker equation as in property (a) of §2:

∑
P∈C

vP (R1) = 3(2g − 2) + 3d. (6.1)

It should be noticed that the classical Plücker formula

vP (R1) = r + s− 3

is not valid when one of r, s, s− r is divisible by p. Instead, we can use the following
formula (see [13, Proposition 4.1]).

Proposition 6.1 If ord X(t) is not divisible by pv,

vP (R1) = pvord ‖Z(t)‖+ 3[ord X ′(t)− ord A2(t)].

By Proposition 4.2, this proposition is valid for the original reference system,
and we formulate this in the next result.

Proposition 6.2 If ord x(t) is not divisible by pv,

vP (R1) = pvord ‖z(t)‖+ 3[ordx′(t)− ord a2(t)].

It will be convenient to have Propositions 6.1 and 6.2 in the same notation as
that of §4. They become the following.

Proposition 6.3 If ord x(t) is not divisible by pv,

vP (R1) = pvord ‖m(t)‖+ 3[ord x′(t)− ord b2(t)].

Proposition 6.4 If ord X(t) is not divisible by pv, then

vP (R1) = pvord ‖M(t)‖+ 3[ord X ′(t)− ordB2(t)].



328 J. Hirschfeld – G. Korchmáros

7 The Frobenius divisor cut out by lines

The Frobenius divisor was originally used in [23, §2] to count, on a plane curve C that
is Fq-Frobenius classical, the points P such that the tangent at P passes through
the image P ′ of P under the Frobenius collineation. For this case, (e) becomes the
following: ∑

vP (S1) = (2g − 2) + (q + 2)d. (7.1)

Now we state some useful formulas for the weight vP (S1). Let γ be the branch
of C with primitive representation (4.1). From [23, Proposition 2.3], vP (S1) is given
by

vP (S1) = ord {[x(t)− x(t)q]y′(t)− [y(t)− y(t)q]x′(t)}.
Since vP (S1) is not invariant under all affine transformations but only for those
fixing the plane over Fq, one needs to know how vP (S1) changes under a linear
transformation (4.2). With x, x′, y, y′, X, X ′, Y, Y ′ all functions of t as in §4,

(x− xq)y′ − (y − yq)x′

= [a− aq + m11X + m12Y − (m11X + m12Y )q][m21X
′ + m22Y

′]

−[b− bq + m21X + m22Y − (m21X + m22Y )q][m11X
′ + m12Y

′]

= [(a− aq)m21 − (b− bq)m11]X
′ + [(a− aq)m22 − (b− bq)m12]Y

′

+(m11m22 −m12m21)(XY ′ − Y X ′)− (m11X + m12Y )q(m21X
′ + m22Y

′)

+(m21X + m22Y )q(m11X
′ + m12Y

′).

Then, from [13, Section 4], we derive Propositions 7.1 to 7.4.

Proposition 7.1

vP (S1) = ord X ′ +
ord {[(a− aq)m21 − (b− bq)m11]

+ [(a− aq)m22 − (b− bq)m12]Y
′/X ′

+ (m11m22 −m12m21)(XY ′/X ′ − Y )
− (m11X + m12Y )q(m21 + m22Y

′/X ′)
+ (m21X + m22Y )q(m11 + m12Y

′/X ′)}.
A useful corollary to this result is the following.

Proposition 7.2 Suppose that ord X(t) = r and ord Y (t) = s are both prime to p.
Then one of the following three cases occurs:

(i) if a, b ∈ Fq, then vP (S1) ≥ r + s− 1;

(ii) if (a−aq)m21−(b−bq)m11 = 0, but either a 6∈ Fq or b 6∈ Fq, then vP (S1) = s−1;

(iii) if (a− aq)m21 − (b− bq)m11 6= 0, then vP(S1) = r − 1.

Now, we show that this proposition allows us to establish a useful lower limit for
vP (S1) in the case that d < pv.

Proposition 7.3 If d < pv, then

ord {Y (t)/X(t)} = ord {Y ′(t)/X ′(t)}; (7.2)

ord {X(t)Y ′(t)/X ′(t)− Y (t)} ≥ ord Y (t). (7.3)

Proof. See [13, Proposition 4.3]. �
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Proposition 7.4 Let d < pv. Then one of the following holds:

vP (S1) ≥ ord X ′(t) + ord Y (t), if a, b ∈ Fq ; (7.4)

vP (S1) = ord X ′(t) + ord Y (t)− ordX(t), (7.5)

if (a− aq)m21 − (b− bq)m11 = 0 but a 6∈ Fq or b 6∈ Fq;

vP (S1) = ord X ′(t) if (a− aq)m21 − (b− bq)m11 6= 0. (7.6)

Proof. See [13, Proposition 4.4]. �

8 The embedding in five dimensions

In the study of non-classical curves it is often convenient to consider a model embed-
ded in a projective space of suitable dimension using the classical Veronese mapping.
Here, we will use a different embedding connected to the Gauss map. This will allow
us to find a bound for the degree of the embedded curve which depends on the num-
ber of its Fq-rational points. In turn, this leads in (8.11) to a strong upper bound
on the order of a branch γ of the curve C.

We now consider the linear series Γ on C cut out by the linear system of all
curves with equation λ0z0(x, y) + λ1z1(x, y) + . . . + λ5z5(x, y) = 0. We assume that
Γ is base-point-free and that Γ is simple in the sense that those of its divisors which
contain a generic point P of C cannot contain a further common point Q on C. This
follows from the hypothesis d < pv because the osculating conic of C at a point P
cannot be the osculating conic at another point Q.

By the Veronese morphism Φ2, the curve C is embedded in PG(5, Fq). Its dual
curve C′ is defined as the reduced closure of the set of osculating hyperplanes at
generic points of the curve C in PG(5, q). By Proposition 3.1, the Gauss map
σ : C → C′ is the product of the morphism ω : C → PG(5, Fq) given by

(1, x, y) 7→ (z0(x, y), z1(x, y), z2(x, y), z3(x, y), z4(x, y), z5(x, y))

and the Frobenius collineation of PG(5, q) defined by

ϕ : (x0, . . . , x5)→ (xp
v

0 , . . . , xp
v

5 ).

Let Z be the image curve of C under ω. Then Z is the projective image of C with
respect to Γ, and degZ = ord Γ. In particular, Z and C are birationally isomorphic.

Now, a formula for degZ will be established. In §4, we the introduced the cubic
hypersurface S3 with equation

∆(X0, X1, X2, X3, X4, X5) = 0.

Now, ord ‖m(t)‖ is equal to the intersection multiplicity of Z with S3 at the point
P ; that is, it equals the weight of the branch γ in Z ∩S3. By Bézout’s theorem and
(4.12), ∑

ord ‖M(t)‖ = ord ‖m(t)‖ = 3degZ, (8.1)

where the summation is over all branches of C. We are now ready to prove the next
result.
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Proposition 8.1 If ordx(t) is not divisible by pv, then

pv degZ = m− d +
∑

ord B2(t), (8.2)

where m is the class of C.
Proof. From property (a) in §2, equation (8.1), and Proposition 6.4,

3(2g − 2) + 3d =
∑

vP (R2) = 3pv degZ + 3
∑

(ord X ′(t)− ord B2(t)).

Further, by Hurwitz’s formula in the form of [13, Proposition 5.1],∑
ord X ′(t) = 2g − 2 + 2d−m.

The result follows. �

The next step is to give an upper bound for
∑

ord B2(t) in order to obtain an
upper bound for degZ. We limit ourselves to the case d < pv and we also assume
that (h6a) holds.

First, ord B2(t) is calculated for each of the three cases of Proposition 4.1.

The Case s = 2r:
Here ord Z2(t) = ord Z3(t) is strictly less than the orders of the four other Zi(t).

Therefore,
B2(t) = 1 + [Z4(t)/Z2(t)]

pv + [Z5(t)/Z2(t)]
pvX(t). Hence, ordB2(t) = 0.

The Case 2s− r = pv:
This time, ordZ5(t) is strictly less than the orders of the other Zi(t). Therefore,

B2(t) = [Z2(t)/Z5(t)]
pv + [Z4(t)/Z5(t)]

pvX(t) + 2Y (t). Since ord Y (t) < pv, so
ordB2(t) = s.

The Case s + r = pv:
Now, ord Z4(t) is strictly less than the orders of the other Zi(t). Therefore,

B2(t) = [Z2(t)/Z4(t)]
pv + X(t) + 2[Z5(t)/Z4(t)]

pvY (t). Since ord X(t) < pv, so
ordB2(t) = r.

Proposition 8.2 Let d < pv and suppose that C is Frobenius non-classical for Σ2.

(i) If a, b ∈ Fq, then

ord B2(t) ≤
{

vP (S1)− (3r − 1) if (4.7) holds,
vP (S1)− (r − 1) if (4.8) holds.

(8.3)

(ii) If either a 6∈ Fq or b 6∈ Fq , then

ord B2(t) ≤
{

vP (S1)− (r − 1) if (4.7) holds,
vP (S1) + 1 if (4.8) or (4.9) holds.

(8.4)

Proof. Let a, b ∈ Fq. From Proposition 7.4, vP (S1) ≥ s + r − 1. By Proposition
5.5, either (4.7) or (4.8) holds. From above, in the former case, ord B2(t) = 0 and
s = 2r; in the latter case, ord B2(t) = s and 2s− r = pv. From this we obtain (i).

The argument is similar for (ii). Assume that either a 6∈ Fq or b 6∈ Fq. If (4.7)
holds, then Proposition 5.3 shows that we can apply (7.6) in Proposition 7.4; we
obtain that vP (S1) ≥ r−1. If (4.8) holds, then (7.5) is applied following Proposition
5.4; here, we obtain vP (S1) ≥ s− 1. Since ord B2(t) = s, we get the required result.
Finally, if (4.9) holds, then ordB2(t) = r and also vP (S1) ≥ r − 1, using (7.5) and
(7.6); hence ord B2(t) ≤ vP (S1) + 1. �
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It may be observed that, from Proposition 5.5, in the same notation as (1.4),

Z̃1(Fq) = {branches centred at Fq-points of type (4.7)} ;

Z̃2(Fq) = {branches centred at Fq-points of type (4.8)} .

From (8.3) and (8.4) it follows immediately that∑
ord B2(t) ≤

∑
vP (S1)− 2Mq −M ′

q −
∑ ′(r − 1) + N, (8.5)

where Mq is the number of branches centred at an Fq-rational point of C of type
(4.7) and M ′

q is the number of branches centred at an Fq-rational point of type (4.8),
each one counted with multiplicity r ≥ 1, the summation

∑′ is over all branches of
C of type (4.7), and N denotes the number of branches of type (4.8) and (4.9).

We observe that
N ≤ 6(2g − 2 + d)/(pv − 3). (8.6)

In fact, from the inequality vP (R1) ≥ s + r − 3 ([23, Theorem 1.5]), it follows that∑
(s + r − 3) ≤

∑
vP (R1) = 3(2g − 2) + 3d.

On the other hand,∑
(s + r − 3) = N0(p

v − 3) +
∑′′

(pv + 3r − 6)/2,

where N0 is the number of branches of type (4.9) while the summation
∑′′ is over

the N −N0 branches of type (4.8); therefore,∑
(s + r − 3) ≥ N0(p

v − 3) + (N −N0)(p
v − 3)/2.

Hence,
∑

(s + r − 3) ≥ 1
2
N(pv − 3) and (8.6) follows. It should be noted that, since

2g − 2 ≤ d(d− 3) and d ≤ pv − 1, the expression on the right of (8.6) is at most 6d.
Hence (8.5) can be put in a more manageable but somewhat weaker form as follows:∑

ordB2(t) ≤
∑

vP (S1)− 2Mq −M ′
q + 6d. (8.7)

Putting together (7.1), (8.2) and (8.7) gives the next result.

Proposition 8.3 If C is Frobenius non-classical for Σ2 of degree d < pv, then

pv degZ < m + (2g − 2) + [(q + 1)d − 2Mq −M ′
q] + 6d, (8.8)

where Mq and M ′
q are the numbers of branches of C of type (4.7) and (4.8) centred

at Fq-rational points, each one counted with multiplicity equal to its order r.

To obtain a significant lower bound for the degree of Z depending only on d,
only condition (h6a) is required. To this end, the criterion of Proposition 3.3 for C
to be Frobenius non-classical will be useful.

The key idea for obtaining a lower bound for the degree of Z is to evaluate the
intersection multiplicity of Z with a particular hyperplane at one of their common
points. In fact, such an intersection multiplicity is always less than or equal to the
degree of Z. This motivates the following statement.
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Proposition 8.4 Suppose that C is Frobenius non-classical for Σ2. If a branch γ of
C has order r, then there is a hyperplane in PG(5, Fq) which meets the corresponding
branch of Z with multiplicity at least rph−v .

Proof. Let (4.1) be a primitive representation of γ. Then, with the notation
introduced in the proof of Proposition 3.1, we have that

X0(t) = m0(t), . . . , X5(t) = m5(t) (8.9)

is a representation of the corresponding branch γ∗ of Z. Since C is a birational model
of Z, this is a primitive branch representation of γ∗. Let H be the hyperplane with
equation

X0 + αX1 + βX2 + α2X3 + αβX4 + β2X5 = 0,

where α = ap
h−v

and β = bp
h−v

. Then the intersection multiplicity of H and γ∗ is
given by

I(H, γ∗) = ord {m0(τ ) + αm1(τ ) + βm2(τ ) + α2m3(τ ) + αβm4(τ ) + β2m5(τ )}
= ν ord {m0(t) + αm1(t) + βm2(t) + α2m3(t) + αβm4(t) + β2m5(t)}

(8.10)

where ν is taken as 1 when (8.9) is primitive.
Now, put αr = ap

h−v
r , βr = bp

h−v
r in (4.1) noting that ar = m11, br = m21; from

(3.6), we obtain

[m0(t) + αm1(t) + βm2(t) + α2m3(t) + αβm4(t) + β2m5(t)]+

trp
h−v

[αrm1(t) + βrm2(t) + 2ααrm3(t) + (αβr + βαr)m4(t)+
2ββrm5(t) + . . .] = 0,

whence I(H, γ∗) ≥ rph−v , which proves the result. �

Proposition 8.5 Suppose that C is Frobenius non-classical for Σ2. If C is singular,
then degZ ≥ 2ph−v .

Proof. Let P = (a, b) be a singular point of C and let H be the hyperplane
defined in the proof of Proposition 8.4. If P is the centre of only one branch of
C, it must have order greater than 1, and Proposition 8.5 follows from Proposition
8.4. Let us suppose that there exist two branches γ1 and γ2 of C both centred at
P . The corresponding branches γ∗1 and γ∗2 of Z are distinct, and so I(Z, H) ≥
I(γ∗1 , H) + I(γ∗2 , H). By Proposition 8.4, I(Z, H) ≥ 2pv . �

Propositions 8.3 and 8.4 also imply an interesting result on the order of the
branches of C.

Proposition 8.6 If d < pv and C is Frobenius non-classical for Σ2, the order r of
a branch of C satisfies the following bound:

r ≤ {m + (2g − 2) + [(q + 1)d − 2Mq −M ′
q] + 6d}/q. (8.11)



The number of points on an algebraic curve 333

9 The proof of Proposition 1.2

In this section, assume that all of (h1), (h2), (h3), (h4), (h5), (h6) hold. The results
obtained in §8 can be applied effectively. It is now possible to show that the order
of a branch is at most two. This implies among other things that branches of type
(4.9) do not exist, and in particular that C(2)

0 coincides with the osculating conic
at γ. Using formulas proved in §§6,7, it will finally be shown that a curve which
is Frobenius non-classical for Σ2 and which satisfies the hypotheses of Theorem 1.3
necessarily has degree 1

2
(
√

q + 1).
We start with a first application of (8.7). Since m ≤ d(d−1) and 2g−2 ≤ d(d−3),

from (8.8) and (8.11) the following result is obtained.

Proposition 9.1 Let C be Frobenius non-classical for Σ2 and of degree d < pv. If

2Mq + M ′
q ≥ d(q −√q + 1), (9.1)

then

pv degZ ≤ d(2d +
√

q + 2), (9.2)

r ≤ d(2d +
√

q + 2)/q. (9.3)

Now, we investigate more closely the case that q is a square and

pv =
√

q. (9.4)

Since d ≤ √q − 1, we have that d(2d +
√

q + 2)/q ≤ 3 − 3/
√

q < 3. From (9.3)
we immediately deduce the following. It should be noted that the linearity of the
branches of type (4.8) depends on the condition that p > 2.

Proposition 9.2 Let C be Frobenius non-classical for Σ2 and of degree d <
√

q and
suppose that (9.1) and (9.4) hold. Then

(i) the branches of C of type (4.8) are linear, while those of type (4.7) and (4.9)
have order r ≤ 2;

(ii) if C has a branch γ of type (4.9), there are only two cases: (a) d =
√

q − 2
and the order of γ is 2, (b) d =

√
q − 1 and the order of γ is 1.

A first consequence of this result is the following.

Proposition 9.3 Let τ1 and τ2 be the respective numbers of branches of C of type
(4.8) and (4.9). Then

3 degZ = 2τ1 + τ2. (9.5)

If d <
√

q − 2, then 3 degZ = 2τ1.

Proof. Since the order of a branch γ of C is, by the previous proposition, less than
the characteristic p of the ground field, the classical formulas vP (R2) = s + r − 3
and ordX ′(t) = r − 1 hold. From the results established in §8, we also know the
exact value of ord B2(t):

ord B2(t) =


0 if γ is of type (4.7),
s if γ is of type (4.8),
r if γ is of type (4.9).
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From Proposition 6.4,

ord ‖m(t)‖ =


0 if γ is of type (4.7),
2 if γ is of type (4.8),
1 if γ is of type (4.9).

Hence, from (8.1), equation (9.5) follows. The second assertion is a consequence of
(9.5) and Proposition 9.2(ii). �

Proposition 9.4 Let C be Frobenius non-classical for Σ2 and of degree d <
√

q−2.
If (9.1) and (9.4) hold, then

degZ ≤ 2d; (9.6)

degZ < 2(
√

q − 2). (9.7)

Proof. Since d <
√

q− 2 it follows from Proposition 9.2 that C has no branches of
type (4.9). Hence,

3vP (S1)− vP (R2) =
6r if γ is of type (4.7) centred at an Fq-rational point,
0 if γ is of type (4.7) centred at a point not Fq-rational,√

q + 3r if γ is of type (4.8) centred at an Fq-rational point,√
q if γ is of type (4.8) centred at a point not Fq-rational.

Since∑
3vP (S1)− vP (R2) = 3(2g − 2) + 3(q + 2)d− 3(2g − 2)− 3d = 3dq + 3d,

it follows that 3dq+3d = 6Mq+3M ′
q+τ1

√
q, whence 2(dq−2Mq−M ′

q+d) =
√

q degZ,
by Proposition 9.3. Now, taking (9.1) into account, (9.6) follows. Since d <

√
q− 2,

the inequality (9.7) follows. �

Proposition 9.5 Let C be Frobenius non-classical for Σ2 and of degree d <
√

q−2.
If (9.1) and (9.4) hold, then C is non-singular.

Proof. Suppose that C has a singular point. Then, from ph−v =
√

q and Proposition
8.5, it follows that degZ ≥ 2

√
q; this contradicts (9.7). �

Proposition 9.6 Let C be Frobenius non-classical for Σ2 and of degree d <
√

q−2.
If (9.1) and (9.4) hold, then d = 1

2
(
√

q + 1).

Proof. Since C is non-singular and since its inflexions are exactly the points of
type (4.8), from the formula

∑
vP (R2) = 3d(d − 2), we immediately deduce that

τ1 = 6d(d − 2)/(
√

q − 3); hence, by Proposition 9.3, degZ = 4d(d − 2)/(
√

q − 3).
On the other hand, from (9.6) we have degZ ≤ 2d. Hence, d ≤ 1

2
(
√

q + 1). Since
C is non-classical for Σ2, the intersection number of C and the osculating conic at a
point P is

√
q, which is at most 2d by Bézout’s theorem. Hence d = 1

2
(
√

q + 1). �
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Proposition 9.7 Let C be of degree d = 1
2
(
√

q + 1) and Frobenius non-classical for
Σ2, satisfying (9.1) and (9.4). Then equality holds in (9.1) and the number N1 of
Fq-rational points of C satisfies

N1 = q + 1 + (d− 1)(d − 2)
√

q;

that is, C is maximal.

Proof. We show that the points of inflexion of C are Fq-rational. If this were not the
case, C would have a point P = (a, b) not Fq-rational of type (4.8). By Proposition
5.4, the tangent ` to C at P would also pass through the point P ′ = (aq, bq), and
the the intersection ` with C would have cardinality at least 1

2
(
√

q + 1) + 1, which
is impossible as C is an absolutely irreducible curve of degree 1

2
(
√

q + 1). Therefore,
τ1 = M ′

q . From §7 or [23, Proposition 2.4 (a)], it follows that

vP (S1) =


0 if P is a point which is not Fq-rational,
2 if P is a regular Fq-rational point,
1
2
(
√

q + 1) if P is an Fq-rational inflexion.

From (7.1), it follows that 2Mq + 1
2
(
√

q + 1)τ1 = d(d − 3) + (q + 2)d. Since by
(9.5), degZ = 2d, we have M ′

q = 3d. Hence, Mq = 1
4
(
√

q + 1)(q − √q − 2); so
there is equality in (9.1). The number N1 of Fq-rational points of C is given by
Mq + 3

2
(
√

q + 1), which equals q + 1 + 1
4
(
√

q − 1)(
√

q − 3)
√

q, as required. �

Remark 9.8 For d = 1
2
(
√

q+1), the Fermat curve Fd with equation xd+yd+1 = 0
regarded as a curve over Fq with q an odd square has order sequence (0, 1, 2, 3, 4,

√
q)

and is also Frobenius non-classical for Σ2; see [8, p.354]. Both Mq and M ′
q have the

same value as in the final part of the previous proof. Hence Fd attains equality in
(9.1).

The proof of Proposition 1.2 is now complete, and hence also the proofs of
Theorems 1.3 and 1.4.

10 Comparison with previous results

The asymmetrical form of Theorem 1.4 does not allow a direct comparison with the
Hasse-Weil and Stöhr-Voloch theorems. However, a comparison may be made in as
follows.

I. Let C be classical with respect to lines.

Proposition 10.1 For
√

q−2 > d ≥ 1
2

√
q+6, Theorem 1.4 is better than the bound

(1.3).

Proof. In this case, the number of inflexions is M ′
q ≤ 3d(d − 2). Hence, from

Theorem 1.4, the number of rational points on C is

N1 = Mq + M ′
q ≤ 1

2
d[(q −√q + 1) + 3(d − 2)]. (10.1)

The right-hand side of (10.1) is seen to be less than q + 1 + (d − 1)(d − 2)
√

q for
d ≥ 1

2

√
q + 6, after some routine manipulations. �
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Proposition 10.2 For M ′
q ≤ d(d +

√
q − 2), Theorem 1.4 is better than the Stöhr-

Voloch bound.

Proof. From Theorem 1.4,

2N1 = 2(Mq + M ′
q) ≤M ′

q + d(q −√q + 1). (10.2)

The right-hand side of (10.2) less than or equal to d(d − 3) + (q + 2)d under the
given condition. �

Remark. If the number M ′
q of inflexion points satisfies M ′

q ≤ 2d(d + 1), then the
proposition is applicable. So, roughly speaking, if the number of inflexions is of the
order of 2d2 rather than the maximum of order 3d2, we have an improvement.

Comparing Theorem 1.4 with the Stöhr-Voloch theorem in the case that n = 5
gives a result similar to Proposition 10.1.

II. C is non-classical and Frobenius classical for Σ1.

In this case, a generic point is an inflexion point. This means that the Hessian is
indeterminate and it is no longer true that M ′

q ≤ 3d(d− 2). To evaluate M ′
q we can

instead use Theorem 2.1 in the case that n = 2. It then makes no sense to compare
Theorem 1.1 with the Stöhr-Voloch theorem. A comparison with the bound (1.3) is
still worthwhile.

In a forthcoming paper [14], it is shown that, if d <
√

q, a non-classical curve is
always Frobenius classical. Then result (h) in §2 gives

M ′
q ≤ 1

2
[2g − 2 + (q + 2)d] ≤ 1

2
d(q + d− 1).

Hence,
2N1 ≤ 2(Mq + M ′

q) ≤ d(q −√q + 1) + 1
2
d(q + d− 1),

whence
N1 ≤ 1

2
d(3

2
q −√q + 1

2
d − 1

2
).

Proposition 10.3 If
√

q ≥ d ≥ 3
4

√
q+2, then Theorem 1.1 is better than the bound

(1.3).

11 Some applications

Algebraic curves are important tools in finite geometry for solving problems on
arcs and special point sets in general; these problems are often intractable by other
means. It should be noted that the algebraic curves which appear in such contexts
are not necessarily irreducible. So, it is of interest to extend Theorem 1.3 to reducible
curves.

Let the curve C of degree d have absolutely irreducible components Di of degree
di, with numbers M (i)

q , M (i)
q

′
of branches as in Theorem 1.3 and defined in §8. So,

for C define
Mq =

∑
i

M (i)
q , M ′

q =
∑
i

M (i)
q

′
.
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Theorem 11.1 Let C be a plane algebraic curve of degree d defined over Fq, q = ph.
Suppose also that p, q, d satisfy the numerical conditions of Theorem 1.3. If C has
neither a linear nor a quadratic component,

2Mq + M ′
q ≤ d(q −√q + 1),

with equality if and only d = 1
2
(
√

q + 1).

Proof. If Di is not rational, then, arguing as in [11, Theorem 10.1.1],
∑

r2 ≤ d2
i

summed over the branches of Di centred at an Fq-rational point; hence

2M (i)
q + M (i)

q

′ ≤ 2
∑

r2 ≤ 2d2
i ≤ 2di(

√
q − 2) < di(q −

√
q + 1).

For a rational component Di, Theorem 1.3 implies that

2M (i)
q + M (i)

q

′ ≤ di(q −
√

q + 1).

Hence ∑(
2M (i)

q + M (i)
q

′) ≤ d(q −√q + 1),

which gives the result. �

We now discuss an application of Theorem 1.3. This will improve the previous
best estimate in a long-standing question in finite geometry.

A k-arc K in PG(2, q), q = pr and p prime, is a set of k points no three of
which are collinear. An arc is complete if it is maximal with respect to inclusion.
A k-arc corresponds to a [k, 3, k − 2] maximum distance separable (MDS) code of
length k, dimension 3 and minimum distance k − 2; a complete arc corresponds to
an MDS code that cannot be extended to another MDS code of greater length. The
maximum size of an arc is denoted by m(2, q) and the size of the second largest
complete arc is denoted by m′(2, q). Bose, in 1938, showed that m(2, q) = q + 1
when q is odd and q + 2 when q is even. In 1955 Segre [11, Theorem 8.14], showed
that for q odd a (q + 1)-arc is the set of rational points of an irreducible conic in
PG(2, q). The problem of determining m′(2, q) for q odd is still unsolved and seems
to be difficult. Apart from small q, that is q ≤ 29, the only case settled is for q
an even square. Here the result is that m′(2, q) = q − √q + 1. It is conjectured
that this result is also true for q an odd square. The connection with curves is via
the following fundamental theorem of Segre connecting a k-arc K with an algebraic
curve, [11, Theorems 10.1, 10.4].

Theorem 11.2 (i) The kt = k(q + 2 − k) tangents through the points of K lie on
an algebraic envelope Γ′ whose dual curve is of degree t or 2t according as q is even
or odd.
(ii) The envelope Γ′ contains no bisecant of K and so no pencil with vertex P in K.
(iii) For q odd, the t tangents to K through a point P of K each count twice in the
intersection of Γ′ with the pencil LP of lines through P.
(iv) For q odd, Γ′ may contain components of multiplicity two, but does not consist
entirely of double components.
(v) The arc K is incomplete if and only if Γ′ has a rational linear component.
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For q a square, odd or even with q > 4, a complete (q − √q + 1)-arc was
constructed as any orbit of the cyclic group 〈T q+

√
q+1〉, where T is a projectivity

acting on the points of PG(2, q) as a single cycle of length q2 + q + 1. In this case,
for q even, the curve Γ dual to Γ′ has degree

√
q +1 and is Hermitian, [3, 15]. For q

odd, the curve Γ has degree 2(
√

q +1) and it is shown in [1] that Γ has the following
properties: (i) Γ is classical for Σ1; (ii) Γ is non-classical for Σ2; (iii) Γ is Frobenius
non-classical; (iv) the genus of Γ is 1

2

√
q(
√

q − 1). By the theorem of [19], Γ is
birationally isomorphic to a Hermitian curve.

The investigation of Γ in the more general case of an arbitrary k-arc led in [13]
to the conclusion that, if p ≥ 5, then m′(2, q) ≤ q− 1

2

√
q +5. For q sufficiently large,

our main theorem gives an improvement of this bound.

Theorem 11.3 Let q = ph with p ≥ 3, and let q = 32e when p = 3. If q ≥ 232 and
q 6= 36 or 55, then

m′(2, q) ≤ q − 1
2

√
q + 5

2
.

Also,

m′(2, q) ≤


q − 22 when q = 55,

q − 9 when q = 36,

q − 9 when q = 232,

q − 5 when q = 192.

Proof. An essential tool for the proof is Theorem 11.2. Let K be a complete k-arc in
PG(2, q) and let C be the curve of degree d = 2t, with t = q+2−k, that corresponds
to Γ′ in the dual plane. By Segre’s theorem, C does not have a linear component
and if it has a component of degree two, then K is the set of rational points of a
conic. So, assume that each component of C has degree at least three. Then from
part (iii) of Segre’s theorem the line ` corresponding to the point Q meets C in
Fq-rational points, in number t, and the intersection multiplicity IP (`, C) of ` and
C at a common point P is still 2. If P is a simple point of C, then P is a regular
point of order 1. If P is a singular point of C, then it is a double point; so P is
the centre of either one branch of order 2 or of two branches of order 1. Thus P
counts at least twice in 2Mq +M ′

q. Since C has kt such Fq-rational points, we obtain
2Mq + M ′

q ≥ 2kt.
Assume now that K is an arc with more than q− 1

2

√
q +3 points. Then d = 2t =

2q−2k+4 ≤ √q−3. Hence, by Theorem 11.1, 2Mq +M ′
q ≤ 2t(q−√q +1) provided

that the hypotheses are satisfied. This yields that 2kt ≤ 2t(q −√q + 1) and hence
k ≤ q −√q + 1, contradicting that k > q − 1

2

√
q + 3. Hence k ≤ q − 1

2

√
q + 3 and,

since q is odd, in the relevant case in which q is a square, the 3 can be lowered to 5
2
.

A similar argument proves the second part of the theorem. �

Remark 11.4 The best result for the case q = 32e+1 is m′(2, q) ≤ q −
√

3
4

√
q + 103

16
;

see [25] and [11, Theorem 10.31].
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