Subsets of association schemes corresponding to eigenvectors of the Bose-Mesner algebra

Jörg Eisfeld

Abstract

This paper is motivated by the following question: given a group G operating as a permutation group on a set X, which are the pairs of subsets $M, M^{\prime} \subseteq X$ such that $\left|M \cap g M^{\prime}\right|=c$ for a constant c and all $g \in G$? We give a characterization of these pairs in terms of eigenspaces of the corresponding association scheme, and we give further characterizing properties of these sets M. We apply our results to a generalization of a question of Cameron and Liebler in projective spaces.

1 Introduction

In [4] Cameron and Liebler proposed the problem to determine the line sets \mathcal{B} of a projective space with the following property:

Each spread has the same number of lines in common with \mathcal{B}.
This problem was generalized in [7], where the following question was considered:
Let G be a group operating as a symmetrical rank 3 permutation group on the set V. Which are the pairs $\left(M_{1}, M_{2}\right)$ of subsets of V such that $\left|M_{1} \cap g M_{2}\right|=c$ for a constant c and all $g \in G$?

[^0]If V is the set of lines of $\operatorname{PG}(d, q)$ and $G=\operatorname{PGL}(d+1, q)$, and if M_{2} is a spread, then this reduces to the original question of Cameron and Liebler.

However, a more natural generalization of Cameron's and Liebler's question is not included in the generalization of [7], namely the question:

Which are the sets of t-dimensional subspaces of $\operatorname{PG}(k(t+1)-1, q)$ having the same number of elements in common with every t-spread?
(Here a t-spread is a set of t-dimensional subspaces partitioning the point set.)
In this paper we extend the theory of [7] to permutation groups of higher permutation rank, thus giving a first answer to this question in Theorem 7, being a generalization of [9, Lemma 9].

To do our extension, we consider subsets of association schemes. So this paper gives a link between the theory of association schemes and Galois geometries. The main result of this paper is Theorem 5, making clear that questions of the Cameron-Liebler-Type are in fact questions about eigenspaces of association schemes.

This paper is mostly taken out of the Ph. D. Thesis [8], where in some parts more details are given.

2 Association schemes

We start with some basic results on association schemes. For a complete introduction see e.g. [3, Ch. 2], [1, Ch. 2], or [5, Ch. 17].

We start with the definition of an association scheme.

Definition 1

Let X be a finite set. An association scheme with d classes is a pair (X, \mathcal{R}), where $\mathcal{R}=\left(\sim_{0}, \ldots, \sim_{d}\right)$ is a set of binary relations on X (i.e. subsets of $\left.X \times X\right)$ with the following properties:
(a) For $x, y \in X$ there is exactly one i with $x \sim_{i} y$.
(b) $x \sim_{0} y$ holds if and only if $x=y$.
(c) If $x \sim_{i} y$, then also $y \sim_{i} x$.
(d) There are numbers $p_{i j}^{k} \in \mathbb{R}$ with the following property: for $x, y \in X$ with $x \sim_{k} y$ there are exactly $p_{i j}^{k}$ elements $z \in X$ with $x \sim_{i} z$ and $z \sim_{j} y$.

The number $n_{i}:=p_{i i}^{0}$ is called i-valency.

Remarks

1. Sometimes in the literature axiom (c) is omitted and an association scheme fulfilling (c) is called symmetrical.
2. The case $d=2$ corresponds to strongly regular graphs. In this case, our results reduce to results in [7].

Definition 2

A symmetrical rank k permutation group is a pair (G, P), where G is a group operating transitively on the set P such that the stabilizer of an element $p \in P$ has exactly k orbits, and such that for all $p_{1}, p_{2} \in P$ the pairs $\left(p_{1}, p_{2}\right)$ and $\left(p_{2}, p_{1}\right)$ lie in the same orbit under G.

Lemma 1

Let (G, X) be a symmetrical rank $d+1$ permutation group. Let $\sim_{0}, \sim_{1}, \ldots, \sim_{d}$ be the orbits of pairs of elements of X under G, where $\sim_{0}=\{(x, x) \mid x \in X\}$. Then $\left(X,\left\{\sim_{0}, \ldots, \sim_{d}\right\}\right)$ is an association scheme with d classes.

Definition 3

Let (X, \mathcal{R}) be an association scheme with d classes. Let x_{1}, \ldots, x_{N} be an enumeration of the elements of X.
(a) The adjacency matrices of (X, \mathcal{R}) are the matrices $A_{i} \in \mathbb{R}^{N \times N}(i \in\{0, \ldots, d\})$ with

$$
\left(A_{i}\right)_{s t}= \begin{cases}1 & \text { if } x_{s} \sim_{i} x_{t} \\ 0 & \text { otherwise }\end{cases}
$$

(b) The Bose-Mesner algebra \mathcal{A} of (X, \mathcal{R}) is the \mathbb{R}-algebra generated by the adjacency matrices (see [2]), i.e.

$$
\mathcal{A}=\left\{f\left(A_{0}, \ldots, A_{d}\right) \mid f \in \mathbb{R}\left[x_{0}, \ldots, x_{d}\right]\right\}
$$

(c) The characteristic vector of a set $M \subseteq X$ is the vector $v \in \mathbb{R}^{N}$ with:

$$
v_{i}= \begin{cases}1 & \text { if } x_{i} \in M \\ 0 & \text { otherwise }\end{cases}
$$

(d) The characteristic vector of X, i.e. the all-one-vector, is denoted by $\mathbf{1}$. The unit matrix is denoted by I. The all-one-matrix is denoted by J.

Theorem 1

[see [3, 2.2]]
(a) The Bose-Mesner algebra \mathcal{A} is a $(d+1)$-dimensional commutative algebra of symmetrical matrices.
(b) The space \mathbb{R}^{N} is the direct sum of $d+1$ maximal common eigenspaces of the matrices of \mathcal{A}. One of these eigenspaces has dimension 1 and is spanned by 1 .

Remark

If we normalize C_{i} such that $C_{i} v_{i}=v_{i}$, these matrices are the minimal idempotents of the Bose-Mesner algebra (see $[3,2.6]$).

From now on let V_{0}, \ldots, V_{d} be the eigenspaces of the matrices from \mathcal{A}, where $V_{0}=\langle\mathbf{1}\rangle$.

3 Properties of subsets corresponding to eigenspaces of the Bose-Mesner algebra

In this section we shall see that subsets of association schemes whose characteristic vectors decompose into few eigenvectors of the Bose-Mesner algebra have some characterizations, one of them being a generalization of the Cameron-Liebler-problem (see Theorem 5).

The first two theorems can be stated more generally for graphs.

Theorem 2

Let (X, \mathcal{R}) be an association scheme with d classes. Let M be a subset of X, and let $r \in\{1, \ldots, d\}$. Then

$$
\begin{aligned}
\frac{|M|}{|X|}\left(n_{r}|M|+\alpha(|X|-|M|)\right) \leq \mid\{(x, y) & \left.\in M \times M \mid x \sim_{r} y\right\} \mid \\
\leq & \frac{|M|}{|X|}\left(n_{r}|M|+\beta(|X|-|M|)\right)
\end{aligned}
$$

where n_{r} is the eigenvalue of A_{r} to the eigenvector $\mathbf{1}$, while α (resp. β) is the smallest (resp. biggest) other eigenvalue of A_{r}.

Equality holds if and only if the characteristic vector of M is contained in the span of 1 and the eigenspace of A_{r} to the eigenvalue α (for the left hand side) resp. β (for the right hand side).

Proof. Let $v=\left(v_{1}, \ldots, v_{N}\right)$ be the characteristic vector of M. Then $v^{T} v=|M|$. We write v as the sum of eigenvectors: $v=w_{0}+\cdots+w_{d}$ with $w_{i} \in V_{i}$. All elements of $V_{i}(i \geq 1)$ are orthogonal to the vector $\mathbf{1}$, hence the sum of their entries is zero. As the sum of the entries of v is $|M|$, the sum of the entries of w_{0} is equal to $|M|$ i.e. $w_{0}=|M| /|X| \cdot \mathbf{1}$ and so $w_{0}^{T} w_{0}=|M|^{2} /|X|$. As the eigenspaces are orthogonal, $|M|=v^{T} v=w_{0}^{T} w_{0}+\cdots+w_{d}^{T} w_{d}$. Hence

$$
\begin{equation*}
\left|w_{1}\right|^{2}+\left|w_{2}\right|^{2}+\cdots+\left|w_{d}\right|^{2}=|v|^{2}-\left|w_{0}\right|^{2}=|M|-|M|^{2} /|X|=|M|(|X|-|M|) /|X| . \tag{*}
\end{equation*}
$$

On the other hand

$$
v^{T} A_{r} v=\sum_{i} \sum_{j} v_{i}\left(A_{r}\right)_{i j} v_{j} .
$$

Here the only summands not vanishing are those where all three factors are one, i.e. where $x_{i} \in M, x_{i} \sim_{r} x_{j}$ and $x_{j} \in M$. Hence

$$
\begin{aligned}
\left|\left\{(x, y) \in M \times M \mid x \sim_{r} y\right\}\right| & =v^{T} A_{r} v=w_{0}^{T} A_{r} w_{0}+\cdots+w_{d}^{T} A_{r} w_{d} \\
& =n_{r}|M|^{2} /|X|+\alpha_{1}\left|w_{1}\right|^{2}+\cdots+\alpha_{d}\left|w_{d}\right|^{2}
\end{aligned}
$$

where α_{i} is the eigenvalue of A_{r} to the eigenspace V_{i}. As $\left|w_{i}\right|^{2} \geq 0$, this expression has its minimal (resp. maximal) value, if the whole sum in $(*)$ consists of the vector with the smallest (resp. biggest) eigenvalue. From this the assertion follows.

Remark

The same statement holds for linear combinations of adjacencies.

Theorem 3

Let (X, \mathcal{R}) be an association scheme with d classes. Let M be a subset of X, and let $i \in\{1, \ldots, d\}$. Then the following statements are equivalent.
(a) There are numbers $c_{1}, c_{2} \in \mathbb{R}$ such that each element of M is i-adjacent to exactly c_{1} elements of M, and each element of $X \backslash M$ is i-adjacent to exactly c_{2} elements of M.
(b) The characteristic vector v of M is contained in the span of the unit vector $\mathbf{1}$ and an eigenspace of the adjacency matrix A_{i}.

In this case $c_{1}-c_{2}$ is the corresponding eigenvalue.
Proof. Assertion (a) holds if and only if $A_{i} v=c_{1} v+c_{2}(\mathbf{1}-v)$.
Suppose that (a) holds. Then for every constant α the equation

$$
A_{i}(v-\alpha \mathbf{1})=\left(c_{1}-c_{2}\right) v+\left(c_{2}-\alpha n_{i}\right) \mathbf{1}
$$

holds. If $c_{1}-c_{2}<n_{i}$, we set $\alpha:=c_{2} /\left(n_{i}-c_{1}+c_{2}\right)$. This yields the equality

$$
A_{i}(v-\alpha \mathbf{1})=\left(c_{1}-c_{2}\right)(v-\alpha \mathbf{1})
$$

Hence $v-\alpha \mathbf{1}$ is an eigenvector of A_{i} to the eigenvalue $c_{1}-c_{2}$, from which (b) follows. If on the other hand $c_{1}-c_{2} \geq n_{i}$, then $c_{1}=n_{i}$ and $c_{2}=0$ (for $0 \leq c_{1}, c_{2} \leq n_{i}$), which implies $A_{i} v=\left(c_{1}-c_{2}\right) v$, from which (b) follows.

Now suppose that (b) holds. Then $v=v_{0}+\alpha \mathbf{1}$, where v_{0} is an eigenvector of A_{i} (to the eigenvalue c) and $\alpha \in \mathbb{R}$. Hence

$$
A_{i} v=c v_{0}+\alpha n_{i} \mathbf{1}=c v+\left(n_{i}-c\right) \alpha \mathbf{1}=\left(c+\alpha\left(n_{i}-c\right)\right) v+\left(n_{i}-c\right) \alpha(\mathbf{1}-v)
$$

from which (a) follows.

Remark

An analogous statement holds for linear combinations of adjacencies. This leads to the following theorem characterizing the span of eigenspaces.

Theorem 4

Let (X, \mathcal{R}) be an association scheme with d classes. Let $M \neq \emptyset$ be a subset of X with characteristic vector v. We define the matrix $B \in \mathbb{R}^{X \times\{0, \ldots, d\}}$ by $B_{x i}:=\mid\{y \in$ $\left.M \mid y \sim_{i} x\right\} \mid$. Let $k \in\{1, \ldots, d\}$. Then the following statements are equivalent:
(a) There are k eigenspaces $V_{r_{1}}, \ldots, V_{r_{k}}$ of the Bose-Mesner algebra of (X, \mathcal{R}) such that $v \in\left\langle\mathbf{1}, V_{r_{1}}, \ldots, V_{r_{k}}\right\rangle$.
(b) The matrix B has rank $\leq k+1$.

Proof. Let $v=v_{0}+\cdots+v_{d}$ with $v_{i} \in V_{i}$. Because of $M \neq \emptyset$, we have $v_{0} \neq 0$. We renumber the coefficients such that $v_{0}, \ldots, v_{t} \neq 0$ and $v_{t+1}=\cdots=v_{d}=0$. Let $p_{i j}$ be the eigenvalue of the matrix A_{i} corresponding to the eigenspace V_{j}. Let $P=\left(p_{i j}\right)$.

The i-th column of B is equal to $A_{i} v$. Hence (b) is equivalent to the statement that for each $k+2$ values $0 \leq s_{0}<\cdots<s_{k+1} \leq d$ there are coefficients c_{i} not all equal to zero such that $\sum_{i} c_{i}\left(A_{s_{i}} v\right)=0$. This means:

$$
0=\sum_{i=0}^{k+1} c_{i} A_{s_{i}}\left(\sum_{j=0}^{t} v_{j}\right)=\sum_{i=0}^{k+1} c_{i} \sum_{j=0}^{t} p_{s_{i} j} v_{j}=\sum_{j=0}^{t}\left(\sum_{i=0}^{k+1} c_{i} p_{s_{i} j}\right) v_{j} .
$$

As the v_{j} are linearly independent, the expression in parentheses vanishes. This holds for every choice of the s_{i}, which means that the submatrix of P formed by the columns $0,1, \ldots, t$ has rank at most $k+1$. As the matrix P is regular (otherwise A_{0}, \ldots, A_{d} would be linearly dependent), this means that $t \leq k$, i.e. (a) holds. The other direction follows analogously.

For the rest of the paper we suppose that we have the situation of Lemma 1, i.e. (G, X) is a rank $d+1$ permutation group, and (X, \mathcal{R}) is the corresponding association scheme with d classes. The matrices A_{i} and the algebra \mathcal{A} are defined as usual.

Each element $g \in G$ can be regarded as a permutation matrix from $\mathbb{R}^{N \times N}$: if $g x_{i}=x_{j}$, then the corresponding permutation matrix maps the i-th unit vector (i.e. the characteristic vector of $\left.\left\{x_{i}\right\}\right)$ to the j-th unit vector.

Let $\mathcal{G}=\langle\{g \mid g \in G\}\rangle_{\mathbb{R}}$ be the span of these permutation matrices as \mathbb{R}-vector space (or as subalgebra of $\mathbb{R}^{N \times N}$).

As above let V_{0}, \ldots, V_{d} be the common eigenspaces of the matrices from \mathcal{A}.
The following lemmata can be concluded from the fact that the permutation representation of (G, X) is the direct sum of $d+1$ distinct irreducible representations (see e.g. [1, II.1]). However we give more basic proofs.

Lemma 2

[compare [1, Thm. II.1.3]] The algebra \mathcal{A} consists of exactly the matrices commuting with all permutation matrices of G (or, equivalently, with all elements of \mathcal{G}).

Proof. As permutation matrices are orthogonal, a matrix A commutes with a permutation matrix $g \in G$ if and only if $g^{T} A g=A$, i.e. if

$$
\left(g e_{i}\right)^{T} A\left(g e_{j}\right)=e_{i}^{T} g^{T} A g e_{j}=e_{i}^{T} A e_{j}
$$

for all unit vectors e_{i}, e_{j}. If $g x_{i}=x_{i^{\prime}}, g x_{j}=x_{j^{\prime}}$, this means that $e_{i^{\prime}}^{T} A e_{j^{\prime}}=e_{i} A e_{j}$, i.e. the $\left(i^{\prime}, j^{\prime}\right)$-entry of A is equal to the (i, j)-entry of A. In other words: if $\left(x_{i}, x_{j}\right)$ and $\left(x_{i^{\prime}}, x_{j^{\prime}}\right)$ are in a common orbit under G, then the entries in A on the positions (i, j) and $\left(i^{\prime}, j^{\prime}\right)$ are equal. The matrices A with this property are by definition the linear combinations of the matrices A_{0}, \ldots, A_{d}, i.e. the matrices from \mathcal{A}.

Lemma 3

The elements of \mathcal{G} map the eigenspaces V_{s} onto themselves.

Proof. Is is sufficient to prove the assertion for the permutation matrices from G. Let $w_{s} \in V_{s}$ and $g \in G$. Let $g w_{s}=v_{0}+\cdots+v_{d}$ with $v_{i} \in V_{i}$. Let A_{t} be one of the adjacency matrices. Then

$$
A_{t} g w_{s}=A_{t} v_{0}+\cdots+A_{t} v_{d}=\alpha_{0} v_{0}+\cdots+\alpha_{d} v_{d}
$$

where α_{i} is the eigenvalue of A_{t} to the eigenspace V_{i}. On the other hand by Lemma 2 we have

$$
A_{t} g w_{s}=g A_{t} w_{s}=g \alpha_{s} w_{s}=\alpha_{s} g w_{s}=\alpha_{s} v_{0}+\cdots+\alpha_{s} v_{d} .
$$

Hence

$$
\left(\alpha_{0}-\alpha_{s}\right) v_{0}+\left(\alpha_{1}-\alpha_{s}\right) v_{1}+\cdots+\left(\alpha_{d}-\alpha_{s}\right) v_{d}=0
$$

This holds for all adjacency matrices A_{t}. As for each $i \neq s$ there is an adjacency matrix A_{t} whose eigenvalues for V_{i} and V_{s} are different, we get $v_{i}=0$ for all $i \neq s$. Hence $g w_{s} \in V_{s}$.

Lemma 4

Let $v=v_{0}+\cdots+v_{d} \in \mathbb{R}^{N}$, where $v_{i} \in V_{i}$.
(a) If $v_{i} \neq 0$, then for each $w_{i} \in V_{i}$ there is an $M \in \mathcal{G}$ with $M v_{i}=w_{i}$.
(b) If $v_{i} \neq 0$ and $j \neq i$, then there is an $M \in \mathcal{G}$ with $M v_{j}=0$ and $M v_{i} \neq 0$.
(c) If $v_{i} \neq 0$ and $w_{i} \in V_{i}$, then there is an $M \in \mathcal{G}$ with $M v=w_{i}$.

Proof. (a) Let $W:=\left\{M v_{i} \mid M \in \mathcal{G}\right\}$. We want to show that $W=V_{i}$. By Lemma 3, $W \subseteq V_{i}$. Suppose that W is a true subspace of V_{i}. Let $W^{\prime}:=W^{\perp} \cap V_{i}$. Then W, W^{\prime} are complementary subspaces of V_{i} which are mapped into themselves by \mathcal{G}. (For W^{\prime} this holds because \mathcal{G} is spanned by orthogonal (permutation) matrices.) Let A be the matrix inducing the identity on W and mapping W^{\prime} and the spaces V_{j} with $j \neq i$ to zero. This matrix commutes with all elements of G. By Lemma 2, A is an element of \mathcal{A}. This produces a contradiction, because V_{i} is not an eigenspace of A. Hence $W=V_{i}$.
(b) If $v_{j}=0$, the assertion is clear. Let now $v_{j} \neq 0$. Suppose that for all $M \in \mathcal{G}$ with $M v_{j}=0$ we have $M v_{i}=0$. Let A be the matrix mapping all $V_{s}(s \neq j)$ to zero, while the operation of A on V_{j} is defined by $A M v_{j}:=M v_{i}$ for all $M \in \mathcal{G}$. By (a) this yields values for all elements of V_{j}. The map is well-defined: if $M v_{j}=M^{\prime} v_{j}$, then $\left(M-M^{\prime}\right) v_{j}=0$, hence $\left(M-M^{\prime}\right) v_{i}=0$, and so $M v_{i}=M^{\prime} v_{i}$. The matrix A commutes with all elements of \mathcal{G}. (For $M \in \mathcal{G}, v_{j} \in V_{j}$ we have $A M v_{j}=M v_{i}=M A v_{j}$.) By Lemma $2, A \in \mathcal{A}$. This is a contradiction, because $A v_{j}=v_{i}$ such that A does not map V_{j} into itself.
(c) Apply first (b) for all $j \neq i$ and then (a).

Theorem 5

Let (G, X) be a rank $d+1$ permutation group. Let M, M^{\prime} be subsets of X with characteristic vectors v, w. Let $v=v_{0}+\cdots+v_{d}$ and $w=w_{0}+\cdots+w_{d}$ the decompositions of v, w into eigenvectors of the Bose-Mesner algebra \mathcal{A} (i.e. v_{i}, w_{i} are elements of the eigenspace V_{i}, where $V_{0}=\langle\mathbf{1}\rangle$). Then the following statements are equivalent:
(a) There is a constant $c \in \mathbb{R}$ such that $\left|M \cap g M^{\prime}\right|=c$ for all $g \in G$.
(b) For each $i \in\{1, \ldots, d\}$ one of the vectors v_{i}, w_{i} is equal to zero.

Proof. As the group G operates transitively on X, the stabilizer of an element $x \in X$ has exactly $|G| /|X|$ elements, and the same number of elements maps x onto an arbitrary $x^{\prime} \in X$. Hence the number of triples $\left(g, x, x^{\prime}\right) \in G \times M \times M^{\prime}$ with $x=g x^{\prime}$ is equal to $|M| \cdot\left|M^{\prime}\right| \cdot|G| /|X|$. This is the number of pairs $(g, x) \in G \times M$ with $x \in g M^{\prime}$. Hence the average number of elements of $M \cap g M^{\prime}$ is equal to $|M|\left|M^{\prime}\right| /|X|$. Thus (a) can hold only with the value $c=|M|\left|M^{\prime}\right| /|X|$.

Each element of $V_{i}(i \geq 1)$ is orthogonal to the all-one-vector $1 \in V_{0}$, so the sum of its entries is 0 . As the sum of entries of v is $|M|$, also the sum of entries of v_{0} is $|M|$, i.e. $v_{0}=|M| /|X| \cdot 1$. Analogously, for each $g \in G$, we have $g w_{0}=$ $\left|g M^{\prime}\right| /|X| \cdot \mathbf{1}=\left|M^{\prime}\right| /|X| \cdot \mathbf{1}$, and so $v_{0}^{T} g w_{0}=|M|\left|M^{\prime}\right| /|X|=c$.

The number of elements of $M \cap g M^{\prime}$ is equal to

$$
v^{T} g w=v_{0}^{T} g w_{0}+\cdots+v_{d}^{T} g w_{d}=c+v_{1}^{T} g w_{1}+\cdots+v_{d}^{T} g w_{d} .
$$

(Here we use Lemma 3.) Hence (a) holds if and only if

$$
v_{1}^{T} g w_{1}+\cdots+v_{d}^{T} g w_{d}=0 \quad \text { for all } \quad g \in G .
$$

This obviously is true if (b) holds.
Now suppose that (a) holds. Then

$$
\left(v_{1}+\cdots+v_{d}\right)^{T} g\left(w_{1}+\cdots+w_{d}\right)=0 \quad \text { for all } \quad g \in G .
$$

This equality holds for all $g \in \mathcal{G}$, too. Suppose that for some $i \in\{1, \ldots, d\}$ we have $w_{i} \neq 0$. By Lemma 4(c), for each $u_{i} \in V_{i}$ there is an element $g \in \mathcal{G}$ with $g\left(w_{1}+\cdots+w_{d}\right)=u_{i}$. For this g we get

$$
0=\left(v_{1}+\cdots+v_{d}\right)^{T} g\left(w_{1}+\cdots+w_{d}\right)=v_{i}^{T} u_{i} .
$$

Hence v_{i} is orthogonal to V_{i}, and so $v_{i}=0$. This yields (b).

4 Application to projective spaces

We give now the application of Theorem 5 to our original problem on spreads in projective spaces, namely the generalization of [9, Lemma 9].

Let $\mathcal{P}=\operatorname{PG}(k(t+1), q)$ be a projective space, and let \mathcal{L}_{i} be the set of i dimensional subspaces of \mathcal{P} for all i.

We need the characterization of the eigenspaces of the Bose-Mesner-Algebra corresponding to projective spaces, given in [6]. From this we need the following result [6, Thm. 2.7]:

Theorem 6

For $r \in\{0, \ldots, \min (t+1, d-n)\}$ let V_{r} be the vector space of functions $f: \mathcal{L}_{t} \rightarrow \mathbb{R}$ that can be written in the form

$$
f\left(L_{t}\right)=\sum_{L_{r-1} \subseteq L_{t}} g\left(L_{r-1}\right),
$$

where $g: \mathcal{L}_{r-1} \rightarrow \mathbb{R}$ is a function for which holds:

$$
\sum_{L_{r-1} \supseteq L_{r-2}} g\left(L_{r-1}\right)=0 \quad \text { for all } L_{r-2} \in \mathcal{L}_{r-2} .
$$

(In particular, V_{0} is the space of constant functions.)
Then the V_{r} form a complete system of eigenspaces of the association scheme formed by the t-dimensional subspaces of \mathcal{P}.

Theorem 7

(a) Let $f: \mathcal{L}_{0} \rightarrow \mathbb{R}$ be a function such that for the function

$$
g: \mathcal{L}_{t} \rightarrow \mathbb{R}, \quad L_{t} \mapsto \sum_{P \in L_{t}} f(P)
$$

there are two constants $c_{1}, c_{2} \in \mathbb{R}$ such that $g\left(L_{t}\right) \in\left\{c_{1}, c_{2}\right\}$ for all $p \in P$. Then the set

$$
M:=\left\{L_{t} \in \mathcal{L}_{t} \mid g\left(L_{t}\right)=c_{1}\right\}
$$

is a subset of \mathcal{L}_{t}, having the same number of elements in common with each t-spread of \mathcal{P}
(b) Let $M \subseteq \mathcal{L}_{t}$ be a set of t-dimensional subspaces of \mathcal{P}, having the same number of elements in common with each regular t-spread. If $k \geq 3$ or if $k=2, t \leq 2$, then M can be expressed as in (a).

Proof. By Theorem 6, the sets constructed in (a) are exactly the subsets of \mathcal{L}_{t} whose characteristic vector is contained in $\left\langle\mathbf{1}, V_{1}\right\rangle$. As a spread covers each point exactly once, its characteristic vector lies in $\left\langle V_{0}, V_{2}, V_{3}, \ldots, V_{t+1}\right\rangle$. From Theorem 5 we get immediately (a).

For the proof of (b) we have to show that the characteristic vector of a regular spread, when decomposed into eigenvectors, contains a non-zero part of each V_{i} $(i \neq 1)$. We show this for every spread.

Let M be a t-spread of \mathcal{P}. We must show that the characteristic vector of M is not contained in the span of $\langle\mathbf{1}\rangle$ and $t-1$ other eigenspaces. By Theorem 4 we have to show that the matrix $B \in \mathcal{R}^{\mathcal{L}_{t} \times\{0, \ldots, t+1\}}$ defined by

$$
B_{L_{t} i}:=\left|\left\{L_{t}^{\prime} \in M \mid \operatorname{dim}\left(L_{t}^{\prime} \cap L_{t}\right)=t-i\right\}\right|
$$

has at least rank $t+1$. Therefore we must find $t+1$ linear independent rows of B. It suffices to show that for each $s=0, \ldots, t$ there is a row or B whose first $t-s-1$ entries vanish, while the $(t-s)$-th entry is non-zero.

This can be done combinatorially by observing that for an element $L \in M$ and an s-dimensional subspace $T \subseteq L$ the number of elements of L_{t} intersecting L in T is bigger than the number of elements of L_{t} intersecting L in T and intersecting some other element of M in at least a line. (More details are given in [8].)

References

[1] E. Bannai and T. Ito. Algebraic Combinatorics I. Benjamin Cummings, Menlo Park, California, 1984.
[2] R. C. Bose and D. M. Mesner. On linear associative algebras corresponding to association schemes of partially balanced designs. Ann. Math. Statist., 30:21-38, 1959.
[3] A. E. Brouwer, A. M. Cohen, and A. Neumaier. Distance-Regular Graphs. Springer Verlag, Berlin, 1989.
[4] P. J. Cameron and R. A. Liebler. Tactical decompositions and orbits of projective groups. Linear Algebra Appl., 46:91-102, 1982.
[5] P. J. Cameron and J. H. van Lint. Designs, Graphs, Codes and their Links, volume 22 of London Math. Soc. Stud. Texts. Cambridge Univ. Press, Cambridge, 1991.
[6] J. Eisfeld. The eigenspaces of the Bose-Mesner algebras of the association schemes corresponding to projective spaces and polar spaces. Submitted to Designs, Codes and Cryptography.
[7] J. Eisfeld. On the common nature of spreads and pencils in $\operatorname{PG}(d, q)$. To appear in Discrete Math.
[8] J. Eisfeld. Theorie der Cliquoide in stark regulären Graphen, Assoziationsschemata, partiellen geometrischen Designs, projektiven Räumen und Polarräumen. PhD thesis, Universität Gießen, 1997.
[9] T. Penttila. Cameron-Liebler line classes in PG(3, q). Geom. Dedicata, 37(3):245252, 1991.

Mathematisches Institut
Jörg Eisfeld
Arndtstr. 2
D-35392 Gießen
Germany
email: Joerg.Eisfeld@math.uni-giessen.de

[^0]: Received by the editors August 1997.
 Communicated by Willem Haemers.
 1991 Mathematics Subject Classification. 51E20, 05E30.
 Key words and phrases. Spreads, finite projective spaces, association schemes, Bose-Mesner algebra.

