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Abstract

We study the properties (2T )1, (IP )2, PRI, RPRI, QPRI and RWPRI for
inductively minimal pairs (Γ, G) consisting of a finite geometry and a group
acting flag-transitively on it. For each of these properties, we characterize
which inductively minimal pairs satisfy it.

1 Introduction and notation

This paper finds its origin in the systematic search of group-geometry pairs with
specified properties for given almost simple groups provided in [4], [7], [8], [5], [9],
[6] and the more theoretical paper [3]. The present work relies only on [3] as to
needed results and uses concepts that were introduced in [1] and [7].

We recall notation and definitions used for finite diagram geometries. More
details can be found in [2]. Let I be a finite set of n ≥ 1 elements called types. A
geometry over I is a triple Γ = (X, ∗, t) where X is a set whose members are called
elements of Γ, the symbol ∗ denotes a symmetric, reflexive binary relation on X,
called incidence relation and t is a mapping of X onto I , called type function, such
that a∗ b and t(a) = t(b) implies a = b. The rank of Γ is |I | = n. If A ⊆ X, the type
of A is the set t(A). A flag F of Γ is a complete subgraph of (X, ∗). We assume
that Γ is firm that is, every flag F with t(F ) 6= I is contained in at least two flags
of type I .
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The residue ΓF of a flag F , is the firm geometry over I\t(F ) whose elements are
all a ∈ X\F such that {a} ∪F is also a flag, together with the restrictions of ∗ and
t to these elements. For J ⊆ I , we define the J -truncation of Γ to be the geometry
over J , whose element set is t−1(J), together with the restrictions of ∗ and t.

A geometry is said to satisfy property (IP)2 if for every residue of rank 2 we
have that either every element of one type is incident with every element of the other
type or that two different elements of the same type are incident with at most one
element of the other type.

The diagram of Γ is the graph (I,∼) defined by i ∼ j, for i 6= j in I , if and only
if there is a flag F of type I\{i, j} such that ΓF is not a complete bipartite graph;
this means that ΓF has elements a, b with t(a) = i, t(b) = j and (a, b) 6∈ ∗. We
assume that the diagram (I,∼) is connected. A subgraph of (I,∼) is a subset J of
I provided with the restriction of ∼ to J . From here on, adjacency in a graph is
meant to be ∼. We call Γ thin if every flag F with |t(F )| = n − 1, has a residue
containing exactly two elements. The geometry Γ is residually connected if for every
residue ΓF with |t(ΓF )| ≥ 2, the graph induced by ∗ on ΓF is connected.

An automorphism of Γ is an automorphism α of the graph (X, ∗) mapping every
element x of X onto an element α(x) such that t(x) = t(α(x)).
Let G be a group of automorphisms of Γ. If G acts transitively on the flags F with
t(F ) = I , we say that G acts flag-transitively.

We now consider pairs (Γ, G) where Γ is a geometry and G is a group of auto-
morphisms acting flag-transitively. For i ∈ I , let Gi denote the stabilizer in G of
an element of type i. A pair (Γ, G) is said to be PRI (resp. WPRI ) provided for
every (resp. at least one) type i, the subgroup Gi is maximal in G. We denote the
element set of a residue ΓF by XF . The permutation group GXF

F induced by the
action of the stabilizer GF of F in G on XF is flag-transitive. In this work, the
kernel of this action is always the identity and therefore we replace the symbol GXF

F

by GF . The pair (Γ, G) is said to satisfy RPRI (resp. RWPRI ) if (ΓF , GF ) is PRI
(resp. WPRI) for every residue in Γ. Another interesting property is QPRI. We
recall that a subgroup H of G is quasi-maximal if there is a unique chain from H
to G in the subgroup lattice of G. A pair (Γ, G) is called QPRI if every stabilizer
Gi is quasi-maximal in G.

A pair (Γ, G) is said to satisfy (2T)1 if for each flag F of rank |I | − 1, the group
GF is 2-transitive on the residue ΓF .

Let (X,∼) be a finite connected graph. A vertex e of X is called an end if the
subgraph induced by ∼ on X\{e} is connected. In [10], the author defines what we
would call nonends as cutpoints. It is known that every finite nontrivial connected
graph has at least two ends (See for instance [10]). In a connected graph (X,∼), a
nonend f such that all connected components of X \ {f} have the same cardinality
will be called a middle of that graph.

The definition for inductively minimal pair is given in [3] as follows. Let (Γ, G)
be a pair consisting of a finite, firm geometry Γ of rank n with connected diagram,
together with a group G of automorphisms acting flag-transitively on Γ. This pair
is called minimal if |G| ≤ (n + 1)!. We call (Γ, G) inductively minimal if for any
connected subgraph J of (I,∼) and any flag F of Γ, with t(F ) = I\J , the pair
(ΓF , GF ) is minimal.

We recall the main theorem of [3].
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Lemma 1 If (Γ, G) is an inductively minimal pair and Γ has rank n and diagram
(I,∼), then

1. Γ is thin and residually connected;

2. G ∼= Sym(n+ 1) and for each i ∈ I such that I \ {i} is connected, Γ has n+ 1
elements of type i on which G acts faithfully;

3. (I,∼) has no minimal circuits of length greater than 3;

4. Every edge of (I,∼) is on a unique maximal clique;

5. Each vertex of (I,∼) is on either one or two maximal cliques.

In [3] it is also proved that for any connected finite graph (I,∼) satisfying the
last three conditions of lemma 1, there is, up to isomorphism, exactly one inductively
minimal pair (Γ, G) admitting (I,∼) for diagram.

For example, we can start with the following diagram which satisfies the condi-
tions.

h h
h

h
��
��
�

HHHHH
e1 f

e2

e3

This diagram has exactly three ends e1, e2, e3 and one nonend f . We now describe
the inductively minimal pair (Γ, G) having this diagram. For details, we refer to [3].

First of all we have G ∼= Sym(5). The rank 4 geometry Γ has 5 elements of each
end type e1, e2 and e3 which can be seen as the intersection points of a (5× 3)-grid.
Two elements of end type are incident iff they are on different rows and on different
columns of the grid. The elements of type f are pairs of orthogonal blocks in the grid
where one block contains only elements of type e1 and the other is its orthogonal
complement. A given element of type f is incident with all elements of end type
which are member of one of the blocks defining it.

A useful property of the diagram of an inductively minimal pair can easily be
proved.

Lemma 2 Let (I,∼) be the diagram of an inductively minimal geometry and f one
of its vertices. The number of connected components of I \ {f} is at most 2.

Proof. Suppose the number of connected components of I \ {f} is k. Then, by
connectedness of (I,∼), there must be vertices v1, v2, . . . , vk which are adjacent to
f and all lie in different connected components. Since these vertices are mutually
nonadjacent, no two of them can be member of the same (maximal) clique. We
know that in (I,∼) every edge lies on exactly one maximal clique. Hence the edges
vi ∼ f for 1 ≤ i ≤ k define k different maximal cliques containing f . Since the
vertex f can be on either one or two maximal cliques of the diagram, the number
of connected components is also at most 2. �
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The main results of this paper can now be stated.

Theorem 1 If (Γ, G) is inductively minimal then we have the following properties:

1. (Γ, G) satisfies RWPRI, (2T )1 and (IP )2;

2. The inductively minimal pair (Γ, G) satisfies PRI provided the rank of Γ is
even;

3. If (Γ, G) is not PRI, then it is QPRI and this is the case if and only if the
diagram I of Γ has a middle;

4. The pair (Γ, G) satisfies RPRI if and only if the diagram of Γ is a complete
graph.

2 Proof of the theorem

The definition of an inductively minimal pair (Γ, G) gives us the structure of the
automorphism group induced on the residue of a flag F provided this residue has
a connected diagram. Indeed, if I \ t(F ) is connected, we know that (ΓF , GF ) is
inductively minimal and hence that GF

∼= Sym(m+ 1) where m is the rank of ΓF .
This yields the parts of the theorem concerning (2T )1 and (IP )2 which are shown
in the next two lemmas.

Lemma 3 An inductively minimal pair satisfies (2T )1.

Proof. since a residue of rank 1 has a connected diagram, we know that it has two
elements and the group induced on it is the group of order 2. �

Lemma 4 An inductively minimal pair satisfies (IP )2.

Proof. Consider a residue of rank two in an inductively minimal geometry. If its
diagram is disconnected, it satisfies (IP )2 because of the way we defined the diagram
of a geometry. For a connected diagram, the residue is known to be inductively
minimal. In such an inductively minimal geometry of rank 2, there are three elements
of each type. Take two elements x and y of the same type. The residue being thin
(See lemma 1), both of them are incident with two of the three elements of the
other type. Suppose x and y are both incident with the same two elements of the
other type. Then the third element z of this type is neither incident with x nor with
y. But then z is incident with at most one element, contradicting the hypothesis
stating that inductively minimal geometries must be firm. �

Knowledge of the residues with connected diagram enabled us to prove properties
of inductively minimal pairs. It could be fruitful to know the structure of residues
whose diagram is not connected.

Let J be the type of a flag F in an inductively minimal pair (Γ, G) with I \ J
disconnected. We denote the connected components of I \ J by I1, . . . , Ik where
k ≥ 2. The Il-truncation of ΓF will be denoted by ΓIlF for 1 ≤ l ≤ k. By the direct
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sum theorem (see [2], p. 81), we know that every element of such a truncation ΓIlF is
incident to every element of ΓF whose type is not in Il. Now we understand that if
we complete the flag F to a flag F ′ of type I \ Il, the residue ΓF ′ will exactly be ΓIlF .
Hence this truncation is the residue of a flag F ′ such that I \ t(F ′) = Il is connected.

We define the group Gl
F to be the stabilizer in GF of the elements whose type

is not in Il. Again by the direct sum theorem we have Gl
F
∼= GF ′ . This means that

for every l ∈ {1, . . . , k}, the pair (ΓIlF , G
l
F ) is inductively minimal. An immediate

consequence is that all Gl
F must be symmetric groups of degree |Il|+ 1.

Lemma 5 Let F be a flag of type J in an inductively minimal pair (Γ, G) with I \J
disconnected and having components I1, . . . , Ik. Then GF is the direct product of the
groups Gl

F with l = 1, . . . , k.

Proof. We give a proof by induction on the number k of connected components of
I \ J . First we remark that the groups Gl

F are normal subgroups of GF .
If k = 2, it is clear that G1

F ∩ G2
F = {1ΓF }. For g ∈ GF , we can decompose g

to g1g2 ∈ G1
F .G

2
F . To achieve this, we define g1 : ΓI1F ∪ ΓI2F → ΓF to be the identity

on ΓI2F and the restriction of g on ΓI1F . The automorphism g2 is defined in the same
way. We now have GF

∼= G1
F ×G2

F .
Assume k > 2. Define G′ to be the stabilizer in GF of the elements whose type

appears in Ik. By the direct sum theorem (see [2], p. 81), the group G′ is isomorphic
to GF ′′ for a flag F ′′ of type J ∪ Ik containing F . Obviously, we have G′ E GF and
G′ ∩ Gk

F = {1ΓF }. In the same way as for k = 2, one shows GF = G′.Gk
F . These

conditions are sufficient to show that GF
∼= G′×Gk

F . Since ΓF ′′ has a diagram with
k − 1 connected components which are the components I1, . . . , Ik−1 of ΓF and for
every l ∈ {1, . . . , k − 1} we have Gl

F
∼= Gl

F ′′ , the induction hypothesis provides that
G′ is the direct product of the groups Gl

F for l < k. �

A particular case of this lemma arises when we put F = {x} for an element x of
nonend type f . By lemma 2, we have exactly two connected components in I \ {f}.
This implies that Gx is the direct product of two symmetric groups.

Corollary 1 If an inductively minimal pair is not PRI, then it is QPRI. This is
the case if and only if the diagram I of Γ has a middle.

Proof. If an inductively minimal pair (Γ, G) of rank n does not satisfy PRI, there
must be an i ∈ I with Gi not maximal in G ∼= Sym(n + 1). We know that i is
certainly not an end since the residue of an element of end type yields an inductively
minimal pair of rank n−1 and hence Gi

∼= Sym(n), which is maximal in Sym(n+1)
(See [11]). Let I1 and I2 be the two connected components of I\{i} and put n1 = |I1|
and n2 = |I2|. By lemma 5, we have that Gi = Sym(n1 + 1) × Sym(n2 + 1), where
n1 + n2 = n − 1. Referring to [11] we can assert that the direct product Gi of such
symmetric groups is not maximal in the symmetric group G if and only if n1 = n2,
but then Gi is quasi-maximal in G. �

Corollary 2 If (Γ, G) is an inductively minimal pair with Γ of even rank n, then
(Γ, G) satisfies PRI.

Proof. If the number of types n is even, there cannot be a type f such that I \ {f}
has two connected components of the same cardinality. �
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Let us remark that there exist non-PRI inductively minimal pairs if n is odd.
The smallest arises for G = Sym(4) with the following diagram.h h h

Sym(3) 22 Sym(3)

More generally, we can say that every inductively minimal pair of odd rank with a
string diagram is not PRI.

Lemma 6 If (Γ, G) is inductively minimal, then it satisfies RWPRI.

Proof. Let (Γ, G) be an inductively minimal pair over I . We first have to show
that there is at least one type i such that Gi is a maximal subgroup of G. Then
we prove that condition WPRI holds in every nontrivial residue of (Γ, G). We use
induction on the rank n of Γ.

1. For n = 1, the properties are clearly fulfilled.

2. Assume n ≥ 2. Take an end e of the diagram of Γ. Like in the proof of
corollary 1, we show that Ge is maximal in G.

3. Now take F to be a nonempty flag of Γ with J = t(F ) 6= I . If I\J is connected,
we apply induction. Assume now that I \J is disconnected and apply lemma 5
yielding GF

∼= G1
F ×· · ·×Gk

F , where k is the number of connected components
of I \ J . Take e to be an end of the connected component I1 and complete
F by an element x of type e. The stabilizer of x in the inductively minimal
pair (ΓI1F , G

1
F ) is then a maximal subgroup M of G1

F . Applying lemma 5 in
the residue (ΓF )x = ΓF∪{x}, we get GF∪{x} ∼= M × G2

F × · · · × Gk
F , which is

maximal in GF . �

We remark that the argument in part 3 of the proof of lemma 6 can be greatly
simplified if J contains an end e of (I,∼). We then simply choose an element x ∈ F
of type e. Then Γx has rank n − 1 and, by induction, the pair (Γx, Ge) satisfies
RWPRI. This means that (ΓF , GF ) has the property WPRI, as a residue in Γx.

Finally, we characterize the inductively minimal pairs which are RPRI.

Lemma 7 An inductively minimal pair (Γ, G) satisfies RPRI if and only if the
diagram of Γ is a complete graph.

Proof. If the diagram of Γ is a complete graph, then all types are ends and hence all
Gi are maximal subgroups of G. It is also the case that all residues have a complete
graph as diagram, so induction completes the proof of sufficiency.

If the diagram of Γ is not complete, then there is at least one pair of types i, j
with i 6∼ j. Since the diagram is connected, we have a shortest path (i = i0 ∼ i1 ∼
· · · ∼ ik = j) whose length k is at least 2. Put J = {i0, i1, . . . , ik}; then a residue of
type J has a string diagram and is inductively minimal of rank k + 1. If k is even,
we have found a residue which is not PRI. In the other case, we take a residue of
type J \ {j}. �

Finally, the theorem results from putting together the lemmas 3, 4, 6, 7 and the
corollaries 1 and 2.
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