Finite Dimensional Hopf Algebras Coacting on Coalgebras

Fred Van Oystaeyen
Yinhuo Zhang

Introduction

Let H be a finite dimensional Hopf algebra and let C be a left H-comodule coalgebra. In [2], a Morita-Takeuchi context arising from a left H-comodule coalgebra has been constructed. Utilizing that Morita- Takeuchi context we may characterize the HopfGalois coactions on coalgebras, and use it to prove the duality theorem for crossed coproducts. In this note, we show that the Morita-Takeuchi context constructed in [2] is generated by the left comodule $C \rtimes H C$, where $C \rtimes H$ is the smash coproduct coalgebra of C by H. As a consquence, we obtain that the coaction of Hopf algebra H on C is Galois if and only if $C \rtimes H C$ is a cogenerator. This dualizes the corresponding result in [1]. Another functorial description of Galois coactions is in Theorem 2.8, which is the dualization of the weak structure theorem in [4].

In Section 3, we define the cotrace map for an H^{*}-coextension C / R. There are various descriptions of the cotrace map being injective. For instance, the comodule $C \rtimes H C$ is an injective comodule; the canonical map G in the Morita-Takeuchi context is injective; the cohom functor $h_{C \rtimes H-}(C,-)$ is equivalent to the cotensor functor $C \square_{C \rtimes H}-$ cf.Theorem 3.5.

1 Preliminaries

Throughout k is a fixed field. All coalgebras, algebras, vector spaces and unadorned \otimes, Hom, etc, are over $k . C, D$ always denote coalgebras and H is a Hopf algebra. We refer to [9] for detail on coalgebras and comodules. We adapt the usual sigma notation for the comultiplications of coalgebras, and adapt the following sigma notation

[^0]for a (left) C-comodule structure map ρ_{X} of X :
$$
\rho_{X}(x)=\sum x_{(-1)} \otimes x_{(0)} .
$$

For a left H-comodule M, we use the following sigma notation to denote the comodule structure map ρ_{M} of M :

$$
\rho_{M}(m)=\sum m_{<-1>} \otimes m_{<0>} .
$$

Let $\mathbf{M}^{C}\left(\right.$ or $\left.{ }^{C} \mathbf{M}\right)$ denote the category of right (or left) C-comodules. If $\alpha: C \longrightarrow$ D is a coalgebra map, then any left C-comodule X may be treated as a left D comodule in a natural way:

$$
(\alpha \otimes 1) \rho: X \longrightarrow C \otimes X \longrightarrow D \otimes X .
$$

A $(C-D)$-bicomodule is a left C-comodule and a right D-comodule X, denoted by ${ }_{C} X_{D}$, such that the C-comodule structure map $\rho_{C}: X \longrightarrow C \otimes X$ is right D-colinear (or a D-comodule map).

For a right C-comodule M and a left C-comodule N, the contensor product $M \square \square_{C} N$ is the kernel of

$$
\rho_{M} \otimes 1-1 \otimes \rho_{N}: M \otimes N \Longrightarrow M \otimes C \otimes N .
$$

The functors $M \square_{C}-$ and $-\square_{C} N$ are left exact and preserve direct sums. If ${ }_{C} X_{D}$ and ${ }_{D} Y_{E}$ are bicomodules, then $X \square_{D} Y$ is a $(C-E)$-bicomodule with comodule structures induced by those of X and Y.

We recall from [10] the definition of a cohom functor and some of its basic properties. A comodule ${ }_{C} X$ is quasi-finite if $\operatorname{Com}_{C_{-}}(Y, X)$ is finite dimensional for any finite dimensional comodule ${ }_{C} Y$. A comodule ${ }_{C} X$ is finitely cogenerated if it is isomorphic to a subcomodule of $C \otimes W$ for some finite dimensional space W. A finitely cogenerated comodule is quasi-finite. But the coverse is not true. A comodule $X \in{ }^{C} \mathbf{M}$ is said to be a cogenerator if for any comodule $M \in{ }^{C} \mathbf{M}$ there is a space W such that $M \hookrightarrow X \otimes W$ as comodules. The following lemma relates the existence of the cohom functor to quasi-finiteness:

Basic Lemma[10]: Let ${ }_{C} X_{D}$ be a bicomodule. Then ${ }_{C} X$ is quasi-finite if and only if the functor $X \square_{D}-:{ }^{D} \mathbf{M} \longrightarrow{ }^{C} \mathbf{M}$ has a left adjoint functor, denoted by $h_{C-}(X,-)$. That is, for comodules ${ }_{C} Y$ and ${ }_{D} W$,

$$
\operatorname{Com}_{D-}\left(h_{C-}(X, Y), W\right) \simeq \operatorname{Com}_{C-}\left(Y, X \square_{D} W\right)
$$

Where,

$$
h_{C-}(X, Y)=\lim _{\vec{\mu}} \operatorname{Com}_{C-}\left(Y_{\mu}, X\right)^{*} \simeq \lim _{\vec{\mu}}\left(Y_{\mu}^{*} \square_{C} X\right)^{*}
$$

is a left D-comodule, $\left\{Y_{\mu}\right\}$ is the directed family of finite dimensional subcomodules of ${ }_{C} Y$ such that $Y=\bigcup_{\mu} Y_{\mu}$. In particular, if $C=X, D=k$, then $h_{C-}(C,-)$ is nothing else but the forgetful functor $U:{ }^{C} \mathbf{M} \longrightarrow \mathbf{M}$, here \mathbf{M} is the k-module category; if $C=D, X=C, h_{C-}(C,-)$ is the identity functor from ${ }^{C} \mathbf{M}$ to ${ }^{C} \mathbf{M}$. Let θ denote the canonical C-colinear map $Y \longrightarrow X \square_{D} h_{C_{-}}(X, Y)$ which corresponds to the identity map $h_{C_{-}}(X, Y) \longrightarrow h_{C_{-}}(X, Y)$ in (\#). Similarly, there is a right version of the basic lemma for a quasi-finite comodule X_{D}.

Assume that ${ }_{C} X$ is a quasi-finite comodule. Consider a bicomodule ${ }_{C} X_{k}$. Then $e_{C-}(X)=h_{C-}(X, X)$ is a coalgebra, called the co-endomorphism coalgebra of X. The comultiplication of $e_{C-}(X)$ corresponds to $(\theta \otimes 1) \theta: X \longrightarrow X \otimes e_{C_{-}}(X) \otimes$ $e_{C-}(X)$ in $(\#)$, and the counit of $e_{C-}(X)$ corresponds to the identity map 1_{X}. Also X is a $C-e_{C-}(X)$-bicomodule with right comodule structure map θ, the canonical map $X \longrightarrow X \otimes h_{C-}(X, X)$.

A Morita-Takeuchi (M-T) context $\left(C, D,_{C} P_{D, D} Q_{C}, f, g\right)$ consists of coalgebras C, D, bicomodules ${ }_{C} P_{D}, D Q_{C}$, and bicolinear maps $f: C \longrightarrow P \square_{D} Q$ and $g: D \longrightarrow$ $Q \square_{C} P$ satisfying the following commutative diagrams:

The context is said to be strict if both f and g are injective (equivalently, isomorphic). In this case we say that C is M-T equivalent to D, denoted by $C \sim D$.

Let H be a Hopf algebra, C a coalgebra. C is said to be a right H-module coalgebra if
i). C is a right H-module,
ii). $\Delta(c \leftharpoonup h)=\sum c_{(1)} \leftharpoonup h_{(1)} \otimes c_{(2)} \leftharpoonup h_{(2)}, c \in C, h \in H$,
iii). $\varepsilon(c \leftharpoonup h)=\varepsilon(c) \varepsilon(h)$.

Dually, a coalgebra C is called a left H-comodule coalgebra if
i). C is a left H-comodule,
ii). $\sum c_{<-1>} \otimes \Delta\left(c_{<0>}\right)=\sum c_{(1)<-1>} c_{(2)<-1>} \otimes c_{(1)<0\rangle} \otimes c_{(2)<0>}$,
iii). $\sum \varepsilon\left(c_{<0>}\right) c_{<-1>}=\varepsilon(c) 1_{H}$.

If H is a finite dimensional Hopf algebra, a coalgebra C is a right H-module coalgebra if and only if C is a left H^{*}-comodule coalgebra. On the other hand, for any Hopf algebra H and right H-module coalgebra C, the convolution algebra C^{*} is a left H -module algebra with H -module structure induced by transposition.

Let C be a right H-module coalgebra, H a Hopf algebra. Denote by H^{+}the augmentation ideal ker ε which is a Hopf ideal. Then $C H^{+}=C \leftharpoonup H^{+}$is a coideal of C, and $C / C H^{+}$is a coalgebra with a trivial right H-module structure. Let R be the quotient coalgebra C / CH^{+}. It is not hard to check that R^{*} is the invariant subalgebra of the left H-module algebra C^{*}. Dual to the terminology of ' H-extension', we call C / R an H-coextension. View C as a left and right R-comodule. There is a canonical linear map

$$
\beta: C \otimes H \longrightarrow C \square_{R} C, c \otimes h \mapsto \sum c_{(1)} \square c_{(2)} \leftharpoonup h .
$$

If β is bijective, then C / R is said to be an H-Galois coextension cf.[7] (sometimes it is called H-cogalois cf.[3] [8]).

Let C be a left H-comodule coalgebra. We may form a smash coproduct coalgebra $C \rtimes H$ which has counit $\varepsilon_{C} \rtimes \varepsilon_{H}$ and comultiplication as follows:

$$
\Delta(c \rtimes h)=\sum\left(c_{(1)} \rtimes c_{(2)<-1>} h_{(1)}\right) \otimes\left(c_{(2)<0>} \rtimes h_{(2)}\right) .
$$

If H is finite dimensional, C^{*} is a left H^{*}-module algebra. We have the usual smash product algebra $C^{*} \# H^{*}$. It is easy to see that $C^{*} \# H^{*}$ is exactly the convolution algebra $(C \rtimes H)^{*}$.

Now let H be a finite dimensional Hopf algebra, C a left H-comodule coalgebra. We recall from [2] the M-T context arising from a left H-comodule coalgebra C. Let R be the quotient coalgebra C / CH^{*+}. Then C may be viewed as a left or a right R-comodule in a natural way. There is a canonical left $C \rtimes H$-coaction on C given by

$$
\begin{equation*}
\rho^{l}(c)=\sum\left(c_{(1)} \rtimes c_{(2)<-1>}\right) \otimes c_{(2)<0>} \tag{1}
\end{equation*}
$$

This coaction is compatible with the right R-coaction on C, and makes C into a ($C \rtimes H-R$)-bicomodule.

Let T be a left integral of H^{*} and λ be the distinguished group-like element cf.[6] of H which satisfies:

$$
T h^{*}=<h^{*}, \lambda>T, \forall h^{*} \in H^{*} .
$$

There is a right coaction of $C \rtimes H$ on C as follows:

$$
\begin{equation*}
\rho^{r}(c)=\sum c_{(1)<0>} \otimes\left(c_{(2)<0>} \rtimes S^{-1}\left(c_{(1)<-1>} c_{(2)<-1>}\right) \lambda\right) \tag{2}
\end{equation*}
$$

With the above right $C \rtimes H$-coaction and the natural left R-coaction C becomes an $(R-C \rtimes H)$-bicomodule. The Morita-Takeuchi context arising from C is

$$
\begin{equation*}
\left(C \rtimes H, R, C \rtimes H \text { C } C_{R},{ }_{R} C_{C \rtimes H}, F, G\right) \tag{3}
\end{equation*}
$$

where the bicolinear maps F, G are given by
$F: C \rtimes H \longrightarrow C \square_{R} C, c \rtimes h \mapsto \sum c_{(1)} \square c_{(2)<0>}<T, c_{(2)<-1>} h>$, and $G: R \longrightarrow C \square_{C \rtimes H} C, \bar{c} \mapsto \sum c_{(1)<0>} \square c_{(2)<0>}<T, c_{(1)<-1>} c_{(2)<-1>}>$.

In [2] we use the above M-T context to show the duality theorem for crossed coproducts. Moreover, the bicolinear map F in (3) can be used to describe the Galois coextension, that is, C / R is H^{*}-Galois if and only if F is injective cf.[2, Th.1.2].

2 The Hopf comodule category

Let H be a Hopf algebra. If C is a left H-comodule coalgebra, we have the smash coproduct coalgebra $C \rtimes H$. Denote by ${ }^{C \rtimes H} \mathbf{M}$ the category of left $C \rtimes H$ comodules and morphisms.
Lemma 2.1. A comodule M is in ${ }^{C \rtimes H} \mathbf{M}$ if and only if M is a left C-comodule and a left H-comodule satisfying the compatibility condition: $\forall m \in M$,

$$
\begin{equation*}
\sum m_{<0>(-1)} \otimes m_{<-1>} \otimes m_{<0>(0)}=\sum m_{<-1><0>} \otimes m_{(-1)<-1>} m_{(0)<-1>} \otimes m_{(0)<0>} \tag{4}
\end{equation*}
$$

Proof. Straightforward.
A left C-comodule M is called a Hopf comodule if it is a left H-comodule and satisfies the compatibility condition (4). Write ${ }^{(C, H)} \mathbf{M}$ for the category of Hopf comodules and morphisms. Lemma 2.1 states that ${ }^{C \rtimes H} \mathbf{M} \sim{ }^{(C, H)} \mathbf{M}$. A left C-comodule M is
said to be a Hopf bimodule if M is a right H-module and satisfies the compatibility condition:

$$
\begin{equation*}
\rho(m \leftharpoonup h)=\sum m_{(-1)} \leftharpoonup h_{(1)} \otimes m_{(0)} \leftharpoonup h_{(2)}, m \in M, h \in H \tag{5}
\end{equation*}
$$

The category of Hopf bimodules and morphisms is denoted by ${ }^{C} \mathbf{M}_{H}$. If H is finite dimensional, then we have that ${ }^{(C, H)} \mathbf{M} \sim{ }^{C} \mathbf{M}_{H^{*}}$. In the sequel, H is a finite dimensional Hopf algebra, C is a left H-comodule coalgebra. We identify ${ }^{(C, H)} \mathbf{M}$, ${ }^{C \rtimes H} \mathbf{M}$ with ${ }^{C} \mathbf{M}_{H^{*}}$. Let H^{*+} be the augmentation ideal $\operatorname{ker}\left(\varepsilon_{H^{*}}: H^{*} \longrightarrow k\right)$. Let R be the quotient coalgebra $C / C H^{*+}$. To a Hopf comodule $M \in{ }^{(C, H)} \mathbf{M}$ we associate an R-comodule $\bar{M}=M / M H^{*+}$. The functor $\overline{(-)}:{ }^{(C, H)} \mathbf{M} \longrightarrow{ }^{R} \mathbf{M}$ has a right adjoint functor $C \square_{R}-:{ }^{R} \mathbf{M} \longrightarrow{ }^{(C, H)} \mathbf{M}$ cf.[7]. On the other hand, C is a $(C \rtimes H, R)$-bicomodule, and as a left $C \rtimes H$-comodule is quasi-finite. So the cohom functor $h_{C \rtimes H-}(C,-): \quad{ }^{(C, H)} \mathbf{M}={ }^{C \rtimes H} \mathbf{M} \longrightarrow{ }^{R} \mathbf{M}$ exists and it is a left adjoint functor of the functor $C \square_{R^{-}}$. By the uniqueness of adjointness, $h_{C \rtimes H-}(C,-)$ is equivalent to $\overline{(-)}$. Let η be the natural (isomorphic) transformation from $\overline{(-)}$ to $h_{C \rtimes H-}(C-)$. For a Hopf comodule $M \in{ }^{(C, H)} \mathbf{M}$, we have the following commutative diagram:

where θ is the canonical (adjoint) map mentioned in Section 1 and ν_{M} is the adjoint map:

$$
M \longrightarrow C \square_{R} \bar{M}: m \mapsto \sum m_{(-1)} \otimes \overline{m_{(0)}} .
$$

In the sequel, \square means the cotensor product over R.
Lemma 2.2. Let M be a Hopf comodules. The following sequence is exact:

$$
0 \longrightarrow M \leftharpoonup H^{*+} \longrightarrow M^{(\epsilon \otimes 1) \theta_{M}} h_{C \rtimes H-}(C, M) \longrightarrow 0 .
$$

Proof. Follows from the foregoing commutative diagram (6).
We need the following preparation to show Proposition 2.4. It is well-known that a finite dimensional Hopf algebra is a Frobenius algebra. Let Θ be the Frobenius isomorphism:

$$
{ }_{H} H_{H^{*}} \longrightarrow{ }_{H} H_{H^{*}}^{*},
$$

where the actions are canonical, i.e,

$$
h \leftharpoonup p=\sum<p, h_{(1)}>h_{(2)}, h \rightharpoonup p=\sum p_{(1)}<p_{(2)}, h>, h \in H, p \in H^{*} .
$$

Θ^{-1} makes H a right H^{*}-free module with basis $t=\Theta^{-1}(\epsilon)$, which is a left integral of H. Let T be $S^{*}(\Theta(1))$, where S^{*} is the antipode of H^{*}. Then T is a left integral of H^{*} cf. [5, 6]. Define a map

$$
\tilde{T}: H \longrightarrow H, h \mapsto h \leftharpoonup T=\sum<T, h_{(1)}>h_{(2)}=<T, h>\lambda,
$$

where λ is the distinguished group-like element of H satifying

$$
T p=T<p, \lambda>, \forall p \in H^{*}
$$

In fact, \widetilde{T} is a map onto 1-dimensional subspace $k \lambda$ of H because $<T, t>=1$ cf.[6].
Lemma 2.3. Let H be a finite dimensional Hopf algebra and let \widetilde{T}, λ be as above. The following sequence is exact:

$$
0 \longrightarrow H \leftharpoonup H^{*+} \longrightarrow H \xrightarrow{\widetilde{T}} k \lambda \longrightarrow 0 .
$$

Proof. It is enough to show that $H \leftharpoonup H^{*+}$ is the kernel of \widetilde{T}. The inclusion $H \leftharpoonup H^{*+} \subseteq k e r \widetilde{T}$ is easily seen. We show the anti-inclusion. For $h \in H$, there is some $p \in H^{*}$ such that $h=t \leftharpoonup p$. If $\widetilde{T}(h)=0$, then $0=\widetilde{T}(t \leftharpoonup p)=t \leftharpoonup p T$. Since t is the basis of H, we have that $p T=0$. But T is a left integral of H^{*}. It follows that $\langle p, 1\rangle=0$, i.e, $p \in H^{*+}$. So we have that $\operatorname{ker} \widetilde{T} \subseteq H \leftharpoonup H^{*+}$.

Proposition 2.4. Let C be a left H-comodule coalgebra, R the quotient coalgebra C/CH ${ }^{*+}$. Then
1). $\eta_{C}: R \longrightarrow h_{C \rtimes H-}(C, C)=e_{C \rtimes H-}(C)$ is a coalgebra isomorphism.
2). $C \simeq h_{C \rtimes H-}(C, C \rtimes H)$ as $(R, C \rtimes H)$-bicomodules.

Proof. 1). It is clear that η_{C} is a left R-colinear isomorphism. It remains to check that η_{C} is a coalgebra map. Note that the adjoint map $\theta_{C}: C \longrightarrow C \square e_{C \rtimes H-}(C)$ makes C into an $e_{C \rtimes H-}(C)$-comodule cf.[10]. That is, $\left(1 \otimes \Delta_{e}\right) \theta_{C}=\left(\theta_{C} \otimes 1\right) \theta_{C}$, where Δ_{e} is the comultiplication of $e_{C \rtimes H-}(C)$. It follows from the diagram (6) that $\theta_{C}=\left(1 \otimes \eta_{C}\right) \nu_{C}$. The above two equalities arrive at the identity for $c \in C$:

$$
\sum c_{(1)} \square \Delta_{e} \eta_{C}\left(\overline{c_{(2)}}\right)=\sum c_{(1)} \square \eta_{C}\left(\overline{c_{(2)}}\right) \square \eta_{C}\left(\overline{c_{(3)}}\right) .
$$

This implies that η_{C} is a coalgebra map.
2). Let M be $C \rtimes H$ in the diagram (6).

Then $\eta_{C \rtimes H}: \overline{C \rtimes H} \longrightarrow h_{C \rtimes H-}(C, C \rtimes H)$ is an R-colinear isomorphism. We have to show that $\eta_{C \rtimes H}$ is right $C \rtimes H$-colinear and $\overline{C \rtimes H} \simeq C$ as $(R-C \rtimes H)$ bicomodules. Observe that the canonical adjoint map

$$
\theta_{C \rtimes H}: C \rtimes H \longrightarrow C \square h_{C \rtimes H-}(C, C \rtimes H)
$$

is a $C \rtimes H$-bicolinear map. It follows that the map $\eta_{C \rtimes H}=(\epsilon \otimes 1) \theta_{C \rtimes H}$ is an $(R, C \rtimes H)$-bicolinear map. To show that $\overline{C \rtimes H} \simeq C$ as $(R, C \rtimes H)$ bicomodules, we define a map ψ as follows:

$$
\psi: C \rtimes H \longrightarrow C \otimes k \lambda: c \rtimes h \mapsto \sum c_{<0>} \otimes<T, c_{<-1>} h>\lambda .
$$

It is clear that ψ is a left R-colinear. Moreover, ψ is a right $C \rtimes H$-colinear map. In fact, for $c \rtimes h \in C \rtimes H$, we have

$$
\begin{aligned}
& \rho_{C}(\psi(c \rtimes h)) \\
= & \sum c_{<0>(1)} \otimes\left[c_{<0>(2)} \rtimes S^{-1}\left(c_{<-1>}\right)<T, c_{<-2>} h>\lambda\right] \\
= & \sum c_{<0>(1)} \otimes\left[c_{<0>(2)} \rtimes S^{-1}\left(c_{<-1>}\right) c_{<-2>} h_{(2)}<T, c_{<-3>} h_{(1)}>\right] \\
= & \sum c_{<0>(1)} \otimes\left[c_{<0>(2)} \rtimes h_{(2)}<T, c_{<-1>} h_{(1)}>\right] \\
= & \sum c_{(1)<0>}<T, c_{(1)<-1>} c_{(2)<-1>} h_{(1)}>\otimes c_{(2)<0>} \rtimes h_{(2)} \\
= & \sum \psi\left(c_{(1)} \rtimes c_{(2)<-1>} h_{(1)}\right) \otimes c_{(2)<0>} \rtimes h_{(2)} \\
= & (\psi \otimes 1) \Delta(c \rtimes h) .
\end{aligned}
$$

Now ψ is surjective because:

$$
\psi\left(\sum c_{<0>} \rtimes S^{-1}\left(c_{<-1>}\right)<T, c_{<-2>} h>\lambda\right)=c \otimes<T, t>\lambda=c \otimes \lambda, c \in C
$$

Let $(C \rtimes H)^{+}$be $(C \rtimes H) \leftharpoonup H^{*+}$, where the right H^{*}-module structure of $C \rtimes H$ is given by

$$
(c \rtimes h) \leftharpoonup p=\sum c_{<0>} \rtimes c_{<-1>} h_{(2)}<T, c_{<-2>} h_{(1)}>, \quad p \in H^{*}, c \rtimes h \in C \rtimes H .
$$

We show that ker $\psi=(C \rtimes H)^{+}$. The inclusion $(C \rtimes H)^{+} \subseteq k e r \psi$ is clear. To show the other inclusion, we need to show that $C \rtimes H$ is a free H^{*}-module. Let $C \otimes H$ be the free H^{*}-module with H^{*}-structure stemming from H. Define a map

$$
\zeta: C \rtimes H \longrightarrow C \otimes H, c \rtimes h \mapsto \sum c_{<0>} \otimes c_{<-1>} h .
$$

For $p \in H^{*}$, we have:

$$
\begin{aligned}
\zeta((c \rtimes h) \leftharpoonup p) & =\sum \zeta\left(c_{<0>} \rtimes h_{(2)}<p, c_{<-1>} h_{(1)}>\right) \\
& =\sum c_{<0>} \otimes c_{<-1>} h_{(2)}<p, c_{<-2>} h_{(1)}> \\
& =\sum c_{<0>} \otimes\left(c_{<-1>} h_{(2)}\right) \leftharpoonup p \\
& =\sum \zeta(c \rtimes h) \leftharpoonup p .
\end{aligned}
$$

It is obvious that ζ is an isomorphism. It follows from the fact that $C \otimes H$ is a free H^{*}-module that $C \rtimes H$ is H^{*}-free. Now if $x=\sum c_{i} \rtimes h_{i} \in \operatorname{ker} \psi$, then

$$
\begin{aligned}
\psi(x) & =\sum c_{i<0>} \otimes<T, c_{i<-1>} h>\lambda \\
& =\sum c_{i<0>} \otimes c_{i<-1>} h_{(2)}<T, c_{i<-2>} h_{(1)}> \\
& =0
\end{aligned}
$$

This means that $x \leftharpoonup T=0$ in $C \rtimes H$. Let $\left\{x_{i}\right\}$ be a basis of the free H^{*}-module $C \rtimes H$. Suppose that $x=\sum x_{i} \leftharpoonup p_{i}$. That $0=x \leftharpoonup T=\sum x_{i} \leftharpoonup p_{i} T$ implies that $p_{i} T=0, \forall i$. It follows that $p_{i} \in H^{*+}$ for all i, and hence $x \in(C \rtimes H) \leftharpoonup H^{*+}$. Therefore $\overline{C \rtimes H} \simeq C \otimes k \lambda \simeq C$.

Theorem 2.5. The Morita-Takeuchi context ($C \searrow H, R, C, C, F, G$) in (3) is generated by the comodule $C \rtimes H C$.

Proof. A M-T context generated by a quasi-finite comodule was constructed by Takeuchi in [10]. The M-T context generated by the quasi-finite comodule $C \rtimes H C$ is

$$
\left(C \rtimes H, e_{C \rtimes H-}(C), C \rtimes H C_{e_{C \rtimes H-}(C)}, h_{C \rtimes H-}(C, C \rtimes H), f, g\right),
$$

where, f is the canonical map $\theta_{C \rtimes H}: C \rtimes H \longrightarrow C \square h_{C \rtimes H-}(C, C \rtimes H)$, and g is the composite map:

$$
e_{C \rtimes H-}(C) \longrightarrow h_{C \rtimes H-}\left(C, C \rtimes H \square_{C \rtimes H} C\right) \longrightarrow h_{C \rtimes H-}(C, C \rtimes H) \square_{C \rtimes H} C \text {. }
$$

By Proposition 2.4, we have that $R \cong e_{C \rtimes H-}(C)$ and $h_{C \rtimes H-}(C, C \rtimes H) \simeq$ ${ }_{R} C_{C \rtimes H}$. It remains to be shown that the following two diagrams are commutative.

and

where μ is the composite isomorphism

$$
h_{C \rtimes H-}(C, C \rtimes H) \xrightarrow{\eta_{C>H}^{-1}} \overline{C \rtimes H} \xrightarrow{\bar{\psi}} C,
$$

and $\bar{\psi}$ is induced by the map ψ in the proof of Proposition 2.4. To show the diagram (7), it is enough to verify that the following diagram commutes because we have the commutative diagram (6).

In fact, for $c \rtimes h \in C \rtimes H$,

$$
\begin{aligned}
(1 \square \bar{\psi}) f(c \rtimes h) & =\sum c_{(1)} \square \bar{\psi}\left(\overline{c_{(2)} \rtimes h}\right) \\
& =\sum c_{(1)} \square c_{(2)<0>}<T, c_{(2)<-1>} h> \\
& =F(c \rtimes h)
\end{aligned}
$$

Now we establish the diagram (8). Note that we have a relation between f and g expressed by commutativity of the following diagram:

Explicitly, for $c \in C$, we have the identity:

$$
\sum c_{(1)} \square g\left(\overline{c_{(2)}}\right)=\sum f\left(c_{(1)} \rtimes c_{(2)<-1>}\right) \square c_{(2)<0>} .
$$

This implies that the map g is determined by f, i.e,

$$
g(\bar{c})=\sum(\epsilon \otimes 1) f\left(c_{(1)} \rtimes c_{(2)<-1>}\right) \square c_{(2)<0>}, \forall \bar{c} \in R .
$$

Now we compute

$$
\begin{aligned}
(\mu \otimes 1) g(\bar{c}) & =\sum(\mu \otimes 1)\left[(\epsilon \otimes 1) f\left(c_{(1)} \rtimes c_{(2)<-1>}\right) \square c_{(2)<0>}\right] \\
& =\sum(\epsilon \otimes 1 \otimes 1)(1 \otimes \mu \otimes 1)\left[f\left(c_{(1)} \rtimes c_{(2)<-1>}\right) \square c_{(2)<0>}\right] \\
& =\sum(\epsilon \otimes 1 \otimes 1)\left[F\left(c_{(1)} \rtimes c_{(2)<-1>}\right) \square c_{(2)<0>}\right] \\
& =\sum(\epsilon \otimes 1 \otimes 1)\left[c_{(1)} \square c_{(2)<0>}<T, c_{(2)<-1>} c_{(3)<-1>}>\square c_{(3)<0>}\right] \\
& =\sum c_{(1)<0>} \square c_{(2)<0>}<T, c_{(1)<-1>} c_{(2)<-1>}> \\
& =G(\bar{c})
\end{aligned}
$$

where we omitted the subscript $C \rtimes H$ and R of the cotensor product, and we use the commutativity of diagram (7) in the third equality. The proof is complete.

Now we can prove:
Corollary 2.6. Let C / R be an H^{*}-coextension. Then C / R is H^{*}-Galois if and only if $C \rtimes H C$ is a cogenerator.

Proof. It follows from [2, Th.1.2] that C / R is H^{*}-Galois if and only if the canonical map F is injective. Since The above M-T context is generated by comodule $C \rtimes H C, F$ is injective if and only if $C \rtimes H C$ is a cogenerator cf.[10, 3.2].

Note that the kernel of the canonical map F is a subcoalgebra of the smash coproduct $C \rtimes H$. If $C \rtimes H$ is a simple coalgebra, then F is injective, and hence $C \rtimes H C$ is a cogenerator.

Corollary 2.7. If C / R is an H^{*}-Galois coextension, then the functor $C \square_{R}$ - is equivalent to the cohom functor $h_{R-}(C,-)$.

Proof. Let $S=C \square_{R^{-}}, T=C \square_{C \rtimes H}$. Then the bicolinear maps F and G may be identified with the natural transformations $F: I \longrightarrow S T$ and $G: I \longrightarrow T S$ cf. [10, 2.4]. If C / R is H^{*}-Galois then F is an isomorphism, and then the pair $\left(F^{-1}: S T \longrightarrow I, G: I \longrightarrow T S\right)$ yields an adjoint relation $S \dashv T$, i.e, S is a left adjoint functor of T. On the other hand, $h_{R-}(C,-)$ is a left adjoint functor of T because ${ }_{R} C$ is quasi-finite cf.[2, 1.3]. By the uniquess of adjointness the statement holds.

The above result is dual to [11, Th.3.2]. If we call $C \square_{R}$ - the induction functor and call $h_{R_{-}}(C$,$) the coinduction functor, then induction functor and coinduction$ functors coincides when the coextension is Galois. To end this section, we give a dualization of the so-called weak structure theorem for Hopf modules in [4].
Theorem 2.8. Let C / R be an H^{*}-coextension. Then C / R is H^{*}-Galois if and only if the canonical map $\nu_{M}: M \longrightarrow C \square \bar{M}$ is an isomorphism for every $C \rtimes H$ comodule M.

Proof. Let $M=C \rtimes H$. Then the composite map

$$
C \rtimes H^{\nu_{C>H}} C \square \overline{C \rtimes H} \xrightarrow{1 \square \bar{\psi}} C \square C
$$

is exactly the canonical map F in the M-T context. If $\nu_{C \rtimes H}$ is an isomorphism, then F is injective and C / R is H^{*}-Galois by [2, Th.1.2].

Conversely, suppose that C / R is H^{*}-Galois. We dualize the diagram in [4, 2.13]. Let β^{\prime} be the Galois isomorphism:

$$
C \otimes H^{*} \longrightarrow C \square C, c \otimes p \mapsto \sum c_{(1)} \leftharpoonup p \square c_{(2)} .
$$

Given a $C \rtimes H$-comodule M, β^{\prime} induces an isomorphism

$$
\beta_{M}: M \otimes H^{*} \longrightarrow C \square M, m \otimes p \mapsto \sum m_{(-1)} \leftharpoonup p \otimes m_{(0)} .
$$

Denote by δ the following composite isomorphism:

$$
M \otimes H^{*} \otimes H^{*} \xrightarrow{\sigma} M \otimes H^{*} \otimes H^{*} \xrightarrow{\beta_{M} \otimes 1} C \square M \otimes H^{*}
$$

where $\sigma(m \otimes p \otimes q)=\sum m \otimes p_{(1)} q \otimes p_{(2)}$. Now it is straightfroward to verify that the following diagram is commutative:
where the uper sequence is exact since C as an R-comodule is coflat (or equivalently injective), and the bottom one is exact because: if $\sum m_{i} p=0$ in M, then

$$
(\leftharpoonup \otimes 1-1 \otimes \leftharpoonup)\left(\sum m_{i} \leftharpoonup p_{i(1)} \otimes S^{*}\left(p_{i(2)}\right) \otimes p_{i(3)}=\sum m_{i} \otimes p_{i} .\right.
$$

As β_{M} and δ are isomorphisms, ν_{M} is an isomorphism too.

3 The cotrace map

Throughtout this section H is a finite dimensional Hopf algebra, and C is a left H-comodule coalgebra. Let T be the left integral of H^{*} as in the previous section. We define a map from $R=C / C \leftharpoonup H^{*+}$ to C by passage to the quotient:

$$
\tilde{T}: R \longrightarrow C, \bar{c} \mapsto \sum c_{<0\rangle}<T, c_{<-1>}>.
$$

If $c=x \leftharpoonup p, x \in C, p \in H^{*}$, then $\widetilde{T}(\bar{c})=\epsilon(p) \widetilde{T}(\bar{x})$. This means that \widetilde{T} is welldefined. It is clear that \widetilde{T} is both left and right R-colinear. The map \widetilde{T} is called the cotrace map of C. Let G be the canonical map $R \longrightarrow C \square_{C \rtimes H} C$ in the M-T context (3). Let D be the image $\widetilde{T}(R)$ of \widetilde{T}. One may easily calculate that the following diagram is commutative:

Note that in general the comultiplication map Δ can not extend from D to C. Since Δ is injective G is injective if and only if \widetilde{T} is injective.
Proposition 3.1. Let C / R be an H^{*}-coextension. The following are equivalent:
1). The cotrace map \widetilde{T} is injective.
2). The canonical map G is injective.
3). $C \rtimes H$ (or $C_{C \rtimes H}$) is an injective comodule.
4). The functor $\overline{(-)}$ is exact.

If one of the above conditions holds, then R as a (left or right) R-comodule is a direct summand of C.

Proof. It is sufficient to show that 2$) \Longleftrightarrow 3$) and this follows from Theorem 2.5 and $[10,3.2]$. If \widetilde{T} is injective, then \widetilde{T} splits because R as an R-comodule is injective.

Corollary 3.2. Let C / R be an H^{*}-coextension. If \widetilde{T} is injective, then for any R-comodule N the adjoint map

$$
\partial_{N}: \overline{C \square N} \longrightarrow N, \overline{\sum c_{i} \square n_{i}} \mapsto \sum \epsilon\left(c_{i}\right) n_{i}
$$

is an isomorphism.
Proof. Let ∂ be the canonical map cf.[10, 1.13]

$$
h_{C \rtimes H-}(C, C \square N) \longrightarrow h_{C \rtimes H-}(C, C) \square N .
$$

We have the following commutative diagram:

Since ${ }_{C \rtimes H} C$ is injective, ∂ is an isomorphism cf. [10, 1.14]. It follows that ∂_{N} is an isomorphism.

Corollary 3.3. Let C / R be an H^{*}-coextension. The following are equivalent:
1). C / R is H^{*}-Galois and the cotrace map is injective.
2). $C \square-$ defines an M-T equivalence between ${ }^{R} \mathbf{M}$ and ${ }^{C \rtimes H} \mathbf{M}$.

If R is cocommutative, then the cotrace map is injective when C / R is H^{*}-Galois cf.[11]. In this case condition 1) in Cor.3.3 may be weakened. In [7], Schneider showed that 2) of Cor.3.3 is equivalent to C / R being Galois and the existence of a 'total integral', i.e, an augmental H^{*}-linear map from C to H^{*}. In fact, we have:
Proposition 3.4. Let C / R be an H^{*}-coextension. The following are equivalent:
1). \widetilde{T} is injective.
2). There exists an H^{*}-linear map $\phi: C \longrightarrow H^{*}$ such that $\epsilon_{H^{*}} \phi=\epsilon_{C}$.

Proof. Suppose that \widetilde{T} is injective. Let π be the section of \widetilde{T} such that $\pi \widetilde{T}=1_{R}$. Define a map ϕ as follows:

$$
\phi C \longrightarrow H^{*}, c \mapsto \sum \epsilon \pi\left(c \leftharpoonup T_{(2)}\right) S^{*-1}\left(T_{(1)}\right),
$$

where T is the left integral of H^{*} as before. ϕ is augmental because

$$
\epsilon \phi(c)=\epsilon \pi(c \leftharpoonup T)=\epsilon \pi \widetilde{T}(c)=\epsilon(c), \forall c \in C .
$$

Observe that we have the identity:

$$
\begin{equation*}
\sum p T_{(2)} \otimes S^{*-1}\left(T_{(1)}\right)=\sum T_{(2)} \otimes S^{*-1}\left(T_{(1)}\right) p, \forall p \in H^{*} \tag{11}
\end{equation*}
$$

This yields

$$
\begin{aligned}
\phi(c \leftharpoonup p) & =\sum \epsilon \pi\left(c \leftharpoonup p T_{(2)}\right) S^{*-1}\left(T_{(1)}\right) \\
& =\sum \epsilon \pi\left(c T_{(2)}\right) S^{*-1}\left(T_{(1)}\right) p \\
& =\phi(c) p
\end{aligned}
$$

and hence ϕ is H^{*}-linear.
Conversely, if there is augmental H^{*}-linear map $\phi: C \longrightarrow H^{*}$, we define a map π as follows:

$$
\pi: C \longrightarrow R, c \mapsto \sum \overline{c_{(1)}}<\phi\left(c_{(2)}\right), t>
$$

where t is the left integral of H in the previous section. Note that $\langle T, t\rangle=1$. We have

$$
\begin{aligned}
\pi \widetilde{T}(\bar{c}) & =\sum \sum \pi\left(c_{<0>}<T, c_{<-1>}>\right) \\
& =\sum \overline{c_{<0>(1)}}<\phi\left(c_{<0>(2)}\right), t><T, c_{<-1>}> \\
& =\sum \overline{c_{(1)<0>}}<\phi\left(c_{(2)<0>}\right), t><T, c_{(1)<-1>} c_{(2)<-1>}> \\
& =\sum \overline{c_{(1)} \leftharpoonup T_{(1)}}<\phi\left(c_{(2)} \leftharpoonup T_{(2)}\right), t> \\
& =\sum \overline{c_{(1)}}<\phi\left(c_{(2)}\right) T, t> \\
& =\sum \overline{c_{(1)} \epsilon \phi\left(c_{(2)}\right)}<T, t> \\
& =\bar{c}
\end{aligned}
$$

We have shown that \widetilde{T} is injective.
To end this section we give a functorial characterization of the cotrace map which is dual to [11, Th.2.1].
Theorem 3.5. Let C / R be an H^{*}-coextension. The cotrace map is injective if and only if the functor $\overline{(-)}$ (cohom functor) is equivalent to the the functor $C \square_{C \rtimes H}-$ (cotensor functor) via the natural transformation

$$
\tau_{M}: \bar{M} \longrightarrow C \square_{C \rtimes H} M, \bar{m} \mapsto \sum m_{(-1)} \leftharpoonup T_{(1)} \square m_{(0)} \leftharpoonup T_{(2)}=\rho(m \leftharpoonup T) .
$$

Proof. Suppose that τ_{M} is an isomorphism for any left $C \rtimes H$ - comodule M. Let $M=C$. Then τ_{C} is exactly the canonical map G, and hence the cotrace map is injective by Proposition 3.1.

Conversely, suppose that \widetilde{T} is injective. For a left $C \rtimes H$-comodule M, we first verify that τ_{M} is well-defined. To show $\rho_{C}(m \leftharpoonup T) \in C \square_{C \rtimes H} M$, it is equivalent to show that $\rho_{C}(m \leftharpoonup T) \in C \square_{C} M$ and

$$
\sum p \rightharpoonup\left(m_{(-1)} \leftharpoonup T_{(1)}\right) \otimes m_{(0)} \leftharpoonup T_{(2)}=\sum m_{(-1)} \leftharpoonup T_{(1)} \otimes m_{(0)} \leftharpoonup T_{(2)} p
$$

for any $p \in H^{*}$, where

$$
\begin{equation*}
p \rightharpoonup c=c \leftharpoonup S^{*-1}\left(p^{\lambda}\right)=\sum c \leftharpoonup S^{*-1}\left(p_{(1)}\right)<p_{(2)}, \lambda> \tag{*}
\end{equation*}
$$

and λ is the group-like element of H mentioned in Section 1. That $\rho_{C}(m \leftharpoonup T)$ is in $C \square_{C} M$ is clear. The equation (*) holds if the following equation holds.

$$
\sum T_{(1)} S^{*-1}\left(p^{\lambda}\right) \otimes T_{(2)}=\sum T_{(1)} \otimes T_{(2)} p, p \in H^{*}
$$

This is true because

$$
\begin{aligned}
\sum T_{(1)} S^{*-1}\left(p^{\lambda}\right) \otimes T_{(2)} & =\sum T_{(1)}<p_{(2)}, \lambda>S^{*-1}\left(p_{(1)}\right) \otimes T_{(2)} \\
& =\sum T_{(1)} p_{(2)} S^{*-1}\left(p_{(1)}\right) \otimes p_{(3)} \\
& =\sum T_{(1)} \otimes T_{(2)} p .
\end{aligned}
$$

It is clear that τ_{M} is R-colinear. To show that τ_{M} is an isomorphism, we define a map as follows:

$$
\xi_{M}: C \square_{C \rtimes H} M \longrightarrow \bar{M}, \xi_{M}(c \rtimes m)=\epsilon \pi(c) \bar{m},
$$

where the map $\pi: C \longrightarrow R$ is the section of the cotrace map \widetilde{T}. For simplicity, we write $c \square m$ for an element $\sum c_{i} \square m_{i} \in C \square_{C \rtimes H} M . c \square m$ has to satisfy the following identity in $C \otimes C \rtimes H \otimes M$:

$$
\begin{aligned}
\left.\sum c_{<0>(1)} \otimes c_{<0>(2)} \rtimes S^{-1}\left(c_{<-1>}\right) \lambda\right) \otimes m & =c \otimes \rho_{C \rtimes H}(m) \\
& =\sum c \otimes m_{(-1)} \rtimes m_{(0)<-1>} \otimes m_{(0)<0>}
\end{aligned}
$$

This yields the equation;

$$
\sum c_{<0>(1)} \otimes c_{<0>(2)}<p, S^{-1}\left(c_{<-1>}\right) \lambda>\otimes m=\sum c \otimes m_{(-1)} \otimes m_{(0)} \leftharpoonup p .
$$

Now we have

$$
\begin{aligned}
& \sum c \otimes m_{(-1)} \leftharpoonup T_{(1)} \otimes m_{(0)} \leftharpoonup T_{(2)} \\
= & \sum c_{<0>(1)} \otimes c_{<0>(2)} \leftharpoonup T_{(1)}<T_{(2)}, S^{-1}\left(c_{<-1>}\right) \lambda>\otimes m \\
= & \sum c_{(1)<0>} \otimes c_{(2)<0>}<T, c_{(2)<-1>} S^{-1}\left(c_{(1)<-1>} c_{(2)<-2>}\right) \lambda>\otimes m \\
= & \sum c_{(1)<0>} \otimes c_{(2)}<T, S^{-1}\left(c_{(1)<-1>}\right) \lambda>\otimes m \\
= & \sum c_{(1)<0>}<T, c_{(1)<-1>}>\otimes c_{(2)} \otimes m \\
= & \sum c_{(1)} \leftharpoonup T \otimes c_{(2)} \otimes m
\end{aligned}
$$

where we use the identity $<T, S^{-1}(h) \lambda>=<T, h>c f .[2]$. It follows from the above equation that we have

$$
\begin{aligned}
\xi \tau_{M}(c \square m) & =\sum \epsilon \pi(c) \rho_{C}(m \leftharpoonup T) \\
& =\sum \epsilon \pi(c) m_{(-1)} \leftharpoonup T_{(1)} \otimes m_{(0)} \leftharpoonup T_{(2)} \\
& =\sum \epsilon \pi\left(c_{(1)} \leftharpoonup T\right) c_{(2)} \otimes m \\
& =\sum \epsilon\left(c_{(1)}\right) c_{(2)} \otimes m \\
& =c \otimes m
\end{aligned}
$$

that is, $\xi \tau_{M}=I$. To show that $\tau_{M} \xi=I$ is easy.

References

[1] M.Cohen, D.Fischmann and S.Montgomery, Hopf Galois Extensions, Smash Products and Morita Equivalences, J.Alg.133(1992),251-372.
[2] S.Dascalescu, S.Raianu and Y.H.Zhang, Finite Hopf Galois Coextensions, Crossed Coproducts and Duality, J.Alg. 178(1995), 400-413.
[3] Y.Doi, Unifying Hopf Modules, J.Alg.153(1994),
[4] Y.Doi and M.Takeuchi, Hopf Galois extensions of Algebras, the MiyashitaUlbrich Action, and Azumaya algebras, J.Alg.121(1989), 485-516.
[5] B.Pareigis, When Hopf algebras are Frobenius algebras, J.Alg. 18(1971), 588-596.
[6] D.E.Radford, The Oder of the Antipode of Finite Dimensional Hopf Algebra is Finite, Amer.J.Math.98(1976), 333-355.
[7] H-J Schneider, Principal Homogeneous Spaces, Isreal J. Math. 72(1990), 167-231.
[8] H-J, Schneider, Some Remarks on Exact Sequences of Quantum Groups, Comm.Alg.21(9), 3337-3357(1993).
[9] M.E.Sweedler, Hopf Algebras, Benjamin New York, 1969.
[10] M.Takeuchi, Morita Theorems for Categories of Comodules, J. Fuc. of Sci. Univ. Tokyo, 24(1977), 629-644.
[11] F.Van Oystaeyen, Y.H. Xu and Y.H. Zahng, Inductions and Coinductions for Hopf Extensions, Science in China Ser A 39(3) (1996), 246-263.
[12] F. Van Oystaeyen and Y.H.Zhang, Crossed Coproduct Theorem and Galois Cohomology, Israel J. Math., 96(1996), 579-607.
[13] Y.H.Zhang, Hopf Frobenius Extensions of Algebras, Comm. in Alg. 20(1992), 1907-1915.

Department of Mathematics
University of Antwerp (UIA)
B-2610, Belgium

[^0]: Communicated by A. Verschoren.

