
Subspace operations in affine
Klingenberg spaces

T. Bisztriczky J.W. (Michael) Lorimer

In two previous papers we introduced the notion of an Affine Klingenberg space
A and presented a geometric description of its free subspaces. Presently, we consider

the operations of join, intersection and parallelism on the free subspaces of A.
As in the case of ordinary affine spaces, we obtain the Parallel Postulate. The

situation with join and intersection is not that straightforward. In particular, the
central problem is whether the join of two free subspaces is free?

We show that if A is not an ordinary affine space and dim A ≥ 4 then A has a
subspace which is both not free and the join of two free subspaces. Thus, join and
intersection do not possess the usual closure properties. We determine necessary
and sufficient conditions under which the join of two free subspaces is free, and in

such a case we verify the Dimension Formula.

The subspace operations are essential tools for establishing when A is desargue-
sian and when it can be embedded in a projective Klingenberg space.

1 Preliminaries

Let P = {P,Q, ...} be a set of points, L = {`,m, ...} be a set of lines and A =
{P,L, I, ‖} be an incidence structure with parallelism; that is, ‖ is an equivalence
relation on L such that for each (P, `) ∈ P× L, there is a unique line L(P, `) with

P I L(P, `)‖` .

We call A an affine Klingenberg space (AK-space) if there is an equivalence
relation ∼ on P (neighbour relation) such that A = < P,L, I , ‖,∼> satisfies the
axioms (A1) to (A7) below:

Received by the editors February 1994
Communicated by J.Thas
AMS Mathematics Subject Classification : 51C05, 51D10, 51D15.
Keywords : affine Klingenberg spaces, subspaces.

Bull. Belg. Math. Soc. 2 (1995), 99–108



100 T. Bisztriczky – J.W. Lorimer

(A1) Any P 6∼ Q are incident with a unique line P ∨ Q, and any line is incident
with at least two non-neighbouring points.

We note from [1] that (A1) permits us to assume that the incidence is inclusion
and so, lines are subsets of P.
A subset Q ⊆ P is a subspace of A if ` ∪ {P,Q} ⊆ Q and P 6∼ Q imply that
P ∨ Q ⊆ Q and L(P, `) ⊆ Q. Clearly, any point and any line is a subspace

of A and s(A), the set of all subpaces of A, is closed under intersections. Let
{Q,R} ⊂ s(A). Then Q is a neighbour of R(Q ≈ R) if each point of Q is a
neighbour to some point of R.
Let Π ⊆ P. Then < Π > : = ∩Q, Π ⊆ Q ∈ s(A), is the subspace generated
by Π. Next, Π is independent if P 6≈ < Π\{P} > for each P ∈ Π, otherwise,
Π is dependent. Finally, Π is a basis of a subspace Q if Π is independent and
Q = < Π > . If Π is a basis of Q ∈ s(A) then Q is called a free subspace of A.
Let f(A) be the set of all free subspaces of A. Then Q ∈ f(A) is a plane if
it has a basis of cardinality three, and H ∈ f(A) is a hyperplane if there is a
maximal independent subset {Pλ}Λ of A such that

H = < {Pλ}λ∈Λ\{λ0} > for some λ0 ∈ Λ.

We note from [1] that maximal independent subsets of A exist.

(A2) If H is a hyperplane of A, ` ∈ L and ` 6≈ H then |` ∩ H| ≤ 1.

(A3) If {P,Q,R} ⊂ P and P ∼ Q 6∼ R then P ∨R ≈ Q ∨R.
We recall that for {p, q, r} ⊂ L, (p, q 6≈ r) means that p, q and r are distinct

and mutually intersecting, q 6≈ r and there exist Q ∈ r ∩ p and R ∈ q ∩ p
such that Q /∈ q and R /∈ r.

(A4) If {p, p′, q, q′, r, r′} ⊂ L such that p‖p′, q‖q′, r‖r′, (p, q 6≈ r) and q′ ∩ p′ 6= ∅ 6=
r′ ∩ p′ then q′ 6≈ r′ and q′ ∩ r′ 6= ∅.

(A5) P contains an independent set of cardinality three.

(A6) Every line contains three mutually non-neighbouring points.

For Π ⊂ P, we call Π := {P ∈ P|P ∼ X for some X ∈ Π}, the saturate of Π.

(A7) If {Q,R} ⊂ f(A) and Q ⊆ R ⊆ Q then Q = R.

Henceforth, let A = < P,L,∈, ‖,∼> be a fixed AK-space. We list some essential

properties of A.

1.1 ([1], 3.3) ≈ is an equivalence relation of L. (We write ∼ for ≈ restricted
to L.)

1.2 ([1], 3.7) Let p‖q. Then p ∼ q if and only if P ∼ Q for some P ∈ p and Q ∈ q.
For points P1, ..., Pn, we set {Pt}n0 = {P1 , ..., Pn}, {P̂i}n0 = {Pt}n0 \{Pi},
< Pt >

n

0 =< {Pt}n
0
> and < P̂i >

n

0
=< {P̂i}n

0
> .
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1.3 ([1],3.13) Let{Pt}n
0

be independent, n ≥ 1. Then < Pt >
n

0
has the following

properties:

(B)n For each X ∈< Pt >
n

0
, L(X,Pi ∨ Pj ) intersects < P̂i >

n

0 and < P̂j >
n

0 ,
0 ≤ i 6= j ≤ n.

(E)n If {Qt}n0 is independent and Pt ∼ Qt for 0 ≤ t ≤ n then

< Pt >
n

0
≈ < Qt >

n

0
≈ < Pt >

n

0 .

(F )n−1 If Q 6≈ < P̂i >
n

0 then {P̂i}n0 ∪ {Q} is independent.

(I)n If {Qt}m
0
⊆< Pt >

n

0
is independent then m ≤ n and there are Qm+1, ..., Qn

such that < Qt >
n

0
=< Pt >

n

0
.

1.4 ([1],3.15 and 3.17) Let A∗ =< P∗,L∗, I∗, ‖∗ > be the incidence structure with
parallelism where P ∗ : = {Q ∈ P|Q ∼ P}, `∗ : = {m ∈ L{m ≈ `} and

P∗ : = P/ ∼ = {P ∗|P ∈ P},
L∗ : = L/ ∼ = {`∗ ∈ L},
P ∗I∗`∗ ⇐⇒ there exist Q ∼ P and m ∼ ` such that P ∈ m and Q ∈ ` ,

`∗‖∗m∗ ⇐⇒ there exist `1 ∼ ` and m1 ∼ m such that `1‖m1.

Then

a) A∗ is an affine space,

b) ∗ : A→ A∗ is an incidence preserving epimorphism,

c) if {Pλ}Λ is independent then < Pλ >
∗
Λ = < P ∗λ >Λ,

d) {Pλ}Λ is independent if and only if the following two conditions hold: (i)
{P ∗λ}Λ is independent and (ii) Pα 6= Pβ implies P ∗α 6= P ∗β .

e) the cardinality of every maximal independent subset of A with one point
removed is equal to the dimension of A∗.

We call A∗, the underlying affine space of A. We note that P ∗ = Q∗ if and
only if P = Q, and Π∗ = (Π)∗ for any Π ⊆ P.
For {Q,R} ⊂ s(A), we set Q∨R =< Q∪R > and call it the join of Q and R.

1.5 ([2],1.8) Let {Pλ}Λ be independent and X, Y 6≈ < Pλ >Λ. Then {X} ∪{Pλ}Λ

and {Y }∪{Pλ}Λ are independent, and if Y ∈ X∨ < Pλ >Λ then Y ∨ < Pλ >Λ

= X∨ < Pλ >Λ .

In [1] and [2], we determined that all maximal independent subsets of Q ∈ s(A)
have the same cardinality. Accordingly, the dimension of Q, dim(Q), is the
cardinality of a maximal independent subset of Q with one point removed.

1.6 ([2],1.11) If Q ∈ s(A) then Q ∈ s(A) and dim(Q) = dim(Q).

1.7 ([2],1.12) Let P ∈ ` . Then |` ∩ P | is independent of the choice of P and ` .
(We call d(A) = |` ∩ P |, the degree of A.)

1.8 ([2].2.5) Let R ∈ f(A).



102 T. Bisztriczky – J.W. Lorimer

a) If R contains a plane then it is an AK-space with the induced parallel
and neighbour relations.

b) If ` 6≈ R then |` ∩R| ≤ 1.

We set fn(A) = {Q ∈ f(A)| dim(Q) = n}, n ≥ 0, and observe that the un-
derlying affine space A∗, with equality as the neighbour relation on P∗, is also an
AK-space.

1.9 Proposition. If Q ∈ fn(A) then Q∗ ∈ fn(A∗).

Proof. Let {Qt}n
0

be a basis of Q. Then Q∗ = (< Qt >
n

0
)∗ =< Q∗t >

n

0
by 1.4 c),

and {Q∗t}n
0

is independent by 1.4 d). Since A∗ is an affine space, it and its subspaces
are free. Thus Q∗ ∈ fn(A∗). �

A partial AK-space is an incidence structure A ′ =< P′,L′, I ′, ‖′,∼′> with

parallelism ‖′ and neighbour relation ∼′ which satisfies axioms (A1) to (A6). In
[1] and [2], we called an AK-space a partial AK-space with a weakened axiom (A2)
where a hyperplaneH was replaced by a line h. We note that all the results preceding
1.8 are valid in such a weakened partial AK-space, and that 1.8 and the results in

the next section are valid in a partial AK-space A′.
The significance of (A7), as 1.10 below shows, is to ensure that any free subspace

is generated by any of its maximal independent subsets.

1.10 ([2],2.4). Let A′ be a partial AK-space. Then the following statements are

equivalent.

(a) A′ satisfies (A7); that is, A′ is an AK-space.

(b) Every maximal independent subset of a free subspace R is a basis of R.
(c) IfH is a hyperplane of a free subspace R, X ∈ R and X 6≈ H then R = H∨X.
Let A′ be a partial AK-space. If A′ has finite dimension n ≥ 2 then (I)n (see 1.3)

and 1.10 imply that A′ is an AK-space. However, if A′ has infinite dimension then
A′ need not be an AK-space. Indeed, utilizing a module described by A. Kreuzer in

[4], we can construct an infinite dimensional A′, via the procedure delineated in [2],
whose every infinite dimensional free subspace possesses a non-generating maximal
independent subset.

2 Parallelism

Let {Q, R} ⊂ fn(A), n ≥ 2. Then Q and R are parallel (Q‖R) if there exist bases,
{Qt}n

0
of Q and {Rt}n

0
of R, such that Q0 ∨Qi‖R0 ∨Ri for i = 1, ..., n.

Our aim is to show that this definition of parallelism for free n-spaces satisfies
the Parallel Postulate. As a first step, we note some results from [2].

2.1 ([2],1.15 and 1.16) Let {Q,R} ⊂ fn(A) and Q‖R, n ≥ 1.

a) For each line q ⊆ Q, there is a line r ⊆ R such that q‖r.
b) Let Q ∈ Q, X 6≈ Q and `‖Q ∨X. Then ` 6≈ R.
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2.2 Proposition. Let {Qt}n
0

be independent, n ≥ 2. For any point R0, there exist
points Rj ∈ rj = L(R0 , Q0 ∨ Qj), 1 ≤ j ≤ n, such that {Rt}n

0
is independent and

Ri ∨Rj‖Qi ∨ Qj for 0 ≤ i 6= j ≤ n. In particular, < Qt >
n

0
‖ < Rt >

n

0
.

Proof. Let qij = Qi ∨Qj for 0 ≤ i 6= j ≤ n.
Let n = 2. Then < Q0, Q1, Q2 > is a plane and the qij are mutually non-

neighbouring. By (A1), there is a point R1 ∈ r1, such that R1 6∼ R0 . Next, (A4)

yields that r2 ∩ L(R1, q12) is a point R2 such that R2 ≈ R0 ∨ R1. Then {Rt}2
0

is
independent by 1.5, and Ri ∨Rj‖qij for 0 ≤ i 6= j ≤ 2.

Let n ≥ 3 and proceed by induction. Thus there exist points Rj ∈ rj , i ≤ j ≤
n− 1, such that {Rt}n−1

0
is independent and

(1) Ri ∨ Rj‖qij for 0 ≤ i 6= j ≤ n− 1.

Since < Q0, Qj , Qn > is a plane for 1 ≤ j ≤ n− 1, it follows from the preceding
that rn ∩ L(Rj , qjn) is a point R

j

n such that {R0, Rj , R
j

n} is independent and

(2) R0 ∨ Rj

n‖q0n and Rj ∨Rj

n‖qjn for 1 ≤ j ≤ n− 1.

We claim that R
1

n = R
j

n for j = 2, ..., n− 1. Since < Q1, Qj , Qn > is a plane,
(qij , q1n 6∼ qjn) and q1j‖R1∨Rj , it follows from (2) and (A4) that (R1∨R1

n)∩(Rj∨Rj

n)

is a point Y such that (R1 , Rj , Y ) is independent. We observe that < Q1, Qj , Qn >
‖ < R1 , Rj , Y > and Q0 6≈ < Q1, Qj , Qn > . Thus rn‖Q0 ∨ Qn and 2.1 b) yield
that rn 6≈ < R1, Rj , Y >, and 1.8 b) implies that |rn∩ < R1 , Rj , Y > | ≤ 1. Since

{R1

n , R
j

n} ⊆ rn∩ < R1 , Rj , Y >,R
1

n = R
j

n.

Let Rn = R
1

n. Then Ri ∨ Rj‖qij for 0 ≤ i 6= j ≤ n by (1) and (2) and we need
only to show that {Rt}n0 is independent. We recall that {Rt}n−1

0 is independent,

< Qt >
n−1
0 ‖ < Rt >

n−1
0 and rn‖Q0 ∨ Qn. Hence, as above, rn 6≈ < Rt >n−1

0
.

Since rn = R0 ∨ Rn and R0 ∈< Rt >
n−1
0 , it follows readily from 1.4 c) and d) that

Rn 6≈ < Rt >
n−1
0 . Thus {Rt}n0 is independent by 1.5. �

2.3 Proposition. Let {Q,R} ⊂ fn(A), n ≥ 1. Then Q‖R if and only if for each
line q ⊆ Q, there is a line r ⊆ R such that q‖r.

Proof. The necessity follows from 2.1 a). For the sufficiency, let {Qt}n
0

be a basis

for Q and choose a point R0 ∈ R. Then for j = 1, ..., n, rj = L(R0, Q0 ∨ Qj) ⊆ R.
By 2.2, there is a point Rj ∈ rj such that {Rt}n

0
is independent and < Rt >

n

0
‖Q.

By (I)n, R =< Rt >
n

0
. �

2.4 Proposition. Parallelism is an equivalence relation on fn(A), n ≥ 1.

Proof. The reflexivity and symmetry follow from the definition. The transitivity
follows from 1.1 and 2.3. �

2.5 The Parallel Postulate for fn(A), n ≥ 1. Let Q ∈ fn(A) and R ∈ P. Then

there exists a unique R ∈ fn(A) such that R ∈ R‖Q.

Proof. As the assertion is true by assumption for n = 1, let n ≥ 2. Then the
existence of an R ∈ fn(A) such that R ∈ R‖Q follows from 2.2.

Let {R,R′} ⊂ fn(A) such that R ∈ R ∩ R′ and R‖R′. Let R = R0 and {Rt}n
0

be a basis of R. Then R0 ∈ R′, R‖R′ and 2.3 yield that L(R0, R0 ∨ Rj) ⊂ R′ for
j = 1, ..., n. Since R0 ∨ Rj = L(R0 , R0 ∨ Rj), we have that R′ =< Rt >

n

0
= R by

(I)n. �
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2.5.1 Corollary. Let Q and R be parallel free n-spaces, n ≥ 1. Then either Q = R
or Q ∩ R = ∅.

2.6 Proposition. Let Q and R be parallel free n-spaces, n ≥ 1. Then Q ≈ R if
and only if Q ∼ R for some Q ∈ Q and R ∈ R.

Proof. As the assertion is true for n = 1 by 1.2, we assume that n ≥ 2 and
proceed by induction. Clearly, we need to verify only the sufficiency.

Let Q0 ∈ Q, R0 ∈ R and Q0 ∼ R0 . By (I)n and Q‖R, there exist bases, {Qt}n
0

of Q and {Rt}n
0

of R, such that Q0 ∨ Qj‖R0 ∨ Rj for j = 1, ..., n. For each such j,

< Q̂j >
n

0
‖ < R̂j >

n

0
and the induction hypothesis yield that < Q̂j >

n

0
≈ < R̂j >

n

0
.

Let Q ∈ Q. By (B)n, L(Q,Q0∨Q1) intersects < Q̂1 >
n

0
at a point X. As X ∼ Y

for some Y ∈< R̂1 >
n

0
, it follows from 1.2 that

L(Q,Q0 ∨Q1) = L(X,Q0 ∨ Q1) ∼ L(Y,Q0 ∨Q1) = L(Y,R0 ∨ R1).

Since R is a subspace, L(Y , R0 ∨ R1) ⊂ R. Thus there is a point R ∈ R such
that Q ∼ R and Q ≈ R. �

Finally, we extend parallelism to s(A). Let {C, F} ⊂ s(A). Then C is parallel to
F(C‖F) if for any line s ⊆ C, there is a line u ⊆ F such that s||u. We note also that

if Q εfm(A), R ∈ fn(A), m < n, and Q||R then it readily follows that Q is parallel
to some free m-space in R.

3 Free meets, free joins, and the dimension for-
mula.

We recall that if the underlying affine space A∗ of A has dimension at least three
then A∗ and all of its subspaces are free, it is desarguesian and can be coordinatized

by a vector space over a skew field. Let Q∗ and R∗ be finite dimensional subspaces
of A∗ and Q∗ ∩ R∗ 6= ∅. Then Q∗ ∨ R∗ is finite dimensional and with vector space
techniques (cf. [3], pp. 15-19), one obtains the dimension formula:

(DF) dim(Q∗ ∨ R∗) + dim(Q∗ ∩R∗) = dim(Q∗) + dim(R∗).
With regard to the AK-space A , we do not know if A is free or even if it is

desarguesian when it has dimension at least three. Hence, before considering any
generalization of (DF), we examine when Q ∈ fm(A) and R ∈ fn(A) imply that
Q ∨R and Q ∩R are free.

First, we need to assume that Q 6≈ R. For if Q 6⊆ R and Q ≈ R then
R 6= Q ∨ R, R ⊆ Q ∨R ⊆ R and (A7) yield that Q ∨R is not free.

Second, it is not sufficient to assume only that Q 6≈ R and Q ∩R 6= ∅.
3.1 Example. Let A be an AK-space with dimension at least four and degree at

least two.

Let {P , Q1, R1, R2, S} ⊆ P be independent.

Then F = 〈P , Q1, R1, R2〉ε f3(A) and S 6≈ F. Let ` = R2 ∨ S. Then
|`∩F| = 1 by 1.8 a), and |`∩R2| = d(A) ≥ 2. Hence, there is a point Q2 ∈ R2\F.
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Since Q2 ∼ R2, it follows that {P , Q1, Q2, R1, S} is independent, and

Q = 〈P , Q1, Q2〉 and R = 〈P , R1, R2〉

are planes such that Q 6≈ R and Q ∩R 6= ∅. We note that

F ⊆ Q ∨R = 〈P , Q1, Q2, R1, R2〉 = F ∨Q2 ⊆ F,

R2 ∈ (Q ∨R)\F and (A7) yield that Q ∨R is not free. �
Let Q ∈ fm(A) and R ∈ fn(A) such that Q 6≈ R and Q ∩ R 6= ∅, 1 ≤ m ≤ n.

In view of 3.1, our initial problem is to determine when Q∨R is free. In fact, as we
shall see, that is the main difficulty in determining a dimension formula for A .

To solve the initial problem, we return to A∗. From 1.9, Q∗ ∈ fm(A∗) and
R∗ ∈ fn(A∗). Thus Q∗ ∩R∗ 6= ∅ and (DF) yield that

dim(Q∗ ∨ R∗) + dim(Q∗ ∩R∗) = n+m.

Of interest now is the relation between (Q∨R)∗ and Q∗∨R∗, and the one between

(Q ∩R)∗ and Q∗ ∩R∗. Clearly,

(Q ∩R)∗ ⊆ Q∗ ∩R∗ and Q∗ ∨ R∗ ⊆ (Q ∨R)∗.

In order to determine these relations, we need to describe Q∗ ∨ R∗. But, as A∗
is also an AK-space, we accomplish this by describing Q ∨R when Q ∨R is free.

Thus, in order to determine when Q ∨ R is free, we need to examine the conse-

quences of Q ∨R being free. We have already one such result.
3.2 ([2], 2.7) Let Q ∈ fm(A) and R ∈ fn(A) such that Q 6≈ R, Q ∩ R 6= ∅ and

Q ∨R ∈ fn+1(A), 1 ≤ m ≤ n. Then Q ∩R ∈ fm−1(A).
We show that the converse of 3.2 is also valid, and then examine the general

case.

3.3 Proposition. Let {C, F} ⊂ f(A), C 6≈ F. If H = C ∩ F is a hyperplane of

C then C ∨ F ∈ f(A) and F is a hyperplane of C ∨ F.
Proof. Since C 6≈ F , there is a point S0 ∈ C such that S0 6≈ F. If H is a

hyperplane of C then S0 6≈ F and 1.10 c) imply that C = H ∨ S0 . Hence,

F ∨ S0 ⊆ F ∨ C = F ∨ [H ∨ S0 ]
= [F ∨H] ∨ S0 = F ∨ S0.

Since S0 6≈ F, F ∨ C = F ∨ S0 is free by 1.5. Clearly, F is a hyperplane of
F ∨ S0. �
3.3.1 Corollary. Let Q ∈ fm(A) and R ∈ fn(A) such that Q 6≈ R and Q∩R 6= ∅,
1 ≤ m ≤ n. Then Q ∨R ∈ fn+1(A) if and only if Q ∩ R ∈ fm−1(A).

3.4 Proposition. Let Q ∈ fm(A) and R ∈ fn(A) such that Q 6≈ R and Q∩R 6= ∅,
1 ≤ m ≤ n. Then there is an independent subset {Qt}k1 of Q, 1 ≤ k ≤ m, such that
Q1 6≈ R, Qi 6≈ R ∨ 〈Qt〉i−1

1 for 2 ≤ i ≤ k and R ∨ Q ⊆ R ∨ 〈Qt〉k1; moreover, if
R ∨ Q is free then R ∨Q = R ∨ 〈Qt〉k1 and dim(R ∨Q) = n+ k.

Proof. Let R0 ∈ Q∩R. Then by (I)n ,there is a basis {Rt}n0 of R. We note that
if such a set {Qt}k1 exists then {Rt}n0 ∪ {Qt}k1 is independent by 1.5. Thus if R ∨Q
is free then
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〈Rt〉n0 ∨ 〈Qt〉k1 ⊆ R ∨Q ⊆ 〈Rt〉n0 ∨ 〈Qt〉k1
and (A7) yield that R ∨Q = 〈Rt〉n0 ∨ 〈Qt〉k1 .

Next, we determine the existence of {Qt}k1 ⊆ Q. Since Q 6≈ R, there is a
Q1 ∈ Q such that Q1 6≈ R = 〈Rt〉n0 . By 1.5, {Rt}n0 ∪ {Q1} is independent and

R ∨ Q1 = 〈Rt〉n0 ∨ Q1 . If Q ⊆ R ∨Q1 then the assertion is true with k = 1. If
Q 6⊆ R ∨Q1 then there is a Q2 ∈ Q such that Q2 6≈ R ∨ Q1 = {Rt}n0 ∪ {Q1},
{Rt}n0 ∪ {Qt}2

1 is independent and R ∨ 〈Qt〉21 = 〈Rt〉n0 ∨ 〈Qt〉21 . Again, either
Q ⊆ R ∨ 〈Qt〉21 or Q 6⊆ R ∨ 〈Qt〉21. Since Q ∈ fm(A), it follows that there is a

smallest k ≤ m such that {R0} ∪ {Qt}k1 ⊆ Q is independent and {Qt}k1 has the
required property. �
3.5 The Dimension Formula for AK-spaces. Let Q ∈ fm(A) and R ∈ fn(A)
such that Q 6≈ R, Q ∩R 6= ∅ and Q ∨R ∈ f(A), m ≤ n. Then for some integer k,
1 ≤ k ≤ m,

3.5.1 Q ∨ R ∈ fn+k(A) and Q ∩ R ∈ fm−k(A), and

3.5.2 dim(Q ∨R) + dim(Q ∩R) = dim(Q) + dim(R).

Proof. We note that 3.5.2 is an immediate consequence of 3.5.1, and that 3.5.1
has been verified for k = 1 in 3.3.1. Next, 3.4 yields that there is an independent

subset {Qt}k1 ⊆ Q such that Q1 6≈ R, Qi 6≈ R ∨ 〈Qt〉i−1
1 for 2 ≤ i ≤ k and

R ∨Q = R ∨ 〈Qt〉k1 ∈ fn+k(A). It follows that

Ri : = R ∨ 〈Qt〉k−i1 ∈ fn+k−i(A) for i = 1, ..., k− 1.

We set Rk = R and R0 = R ∨ Q. Then Rj+1 is a hyperplane of Rj for
j = 0, ..., k − 1.

Let us consider Q and R1. Clearly, Q∩R1 6= ∅ and from Qk ∈ Q, it follows that
Q 6≈ R1 . We note that

R0 = R ∨ 〈Qt〉k1 = R1 ∨ Qk ⊆ R1 ∨Q ⊆ R0 .

Since Q ∈ fm(A) and R1 is a hyperplane of R1 ∨Q , it follows by 3.3.1 that

Q1 : = Q ∩ R1 ∈ fm−1(A) .

Since Qk−1 ∈ Q1 and Q ∩ R ⊆ Q ∩R2 = Q ∩R2 ∩ R1 = Q1 ∩ R2 , we obtain
that Q1 ∩ R2 6= ∅, Q1 6≈ R2 and

R1 = R ∨ 〈Qt〉k−1
1 = R2 ∨Qk−1 ⊆ R2 ∨Q1 ⊆ R1 .

Since Q1 ∈ fm−1(A) and R2 is a hyperplane of R2 ∨Q1 , it follows that

Q2 = Q1 ∩R2 = (Q ∩R1) ∩R2 = Q ∩R2 ∈ fm−2(A) .

Repeating this argument k − 2 more times yields that

Qk = Q ∩Rk = Q ∩ R ∈ fm−k(A) .

�
Finally, we present a solution to the problem of when Q ∨ R is free.
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3.6 Theorem. Let Q ∈ fm(A) and R ∈ fn(A) such that Q 6≈ R and Q ∩R 6= ∅ ,
1 ≤ m ≤ n.

3.6.1 If Q ∨R ∈ f(A) then Q∗ ∨ R∗ = (Q ∨R)∗.
3.6.2 Q ∨R ∈ fn+k(A) if and only if Q ∩R ∈ fm−k(A) and (Q ∩R)∗ = Q∗ ∩ R∗,
1 ≤ k ≤ m.

Proof. Let Q ∨ R ∈ f(A). Then by 3.4, Q ∨ R ∈ fn+k(A) for some 1 ≤ k ≤ m

and there is a basis {Rt}n0 ∪ {Qt}k1 of R ∨Q such that R = 〈Rt〉n0 and 〈Qt〉k1 ⊆ Q.
From 1.4 c), 1.9 and (DF), we obtain that
R∗ ∨Q∗ ⊆ (R ∨ Q)∗ = 〈{Rt}n0 ∪ {Qt}k1〉∗
= 〈R∗t 〉n0 ∨ 〈Q∗t 〉k1 ⊆ R∗ ∨Q∗ ,

Q∗ ∨ R∗ = (Q ∨ R)∗ ∈ fn+k(A∗) and Q∗ ∩ R∗ ∈ fm−k(A∗). By 3.5 and 1.9,
(Q ∩ R)∗ ∈ fm−k(A∗). Since (Q ∩ R)∗ ⊆ Q∗ ∩ R∗ and the two spaces are of equal
dimension, (Q ∩R)∗ = Q∗ ∩R∗ by (I)m−k .

Conversely, let Q ∩ R ∈ fm−k(A) and (Q ∩ R)∗ = Q∗ ∩ R∗. Then Q∗ ∩ R∗ ∈
fm−k(A∗) and Q∗ ∨ R∗ ∈ fn+k(A∗) by 1.9 and (DF). Let {Rt}n0 be a basis of R. By
(I)n , we may assume that {Rt}m−k0 is a basis of Q∩R. We now apply 3.4 to A∗ and
R∗ ∨ Q∗. Thus there exist an independent subset {Q∗t}k1 ⊆ Q∗ such that Q∗1 /∈ R∗,
Q∗i /∈ R∗ ∨ 〈Q∗t 〉i−1

0 for 2 ≤ i ≤ k and R∗ ∨ Q∗ = R∗ ∨ 〈Q∗t 〉k1 .
Clearly, we may choose Q1, ..., Qk in Q. Then Q∗1 /∈ R∗ = (〈Rt〉n0 )∗ implies that

Q1 6≈ 〈Rt〉n0 . Hence {Rt}n0 ∪ {Q1} is independent by 1.5, and 〈{Rt}n0 ∪ {Q1}〉∗ =
R∗ ∨ Q∗1 by 1.4 c). Similarly, Q∗i /∈ R∗ ∨ 〈Q∗t 〉i−1

0 yields that {Rt}n0 ∪ {Qt}i1 is

independent and 〈{Rt}n0 ∪ {Qt}i1〉∗ = R∗ ∨ 〈Q∗t 〉i1 , 2 ≤ i ≤ k. Since Q ∈ fm(A)
and {Rt}m−k0 ∪ {Qt}k1 ⊆ Q is independent, it follows that Q = 〈Rt〉m−k0 ∨ 〈Qt〉k1 by
(I)m. Finally,
R ∨ 〈Qt〉k1 ⊆ R ∨Q = 〈Rt〉n0 ∨ (〈Rt〉m−k0 ∨ 〈Qt〉k1)

= 〈Rt〉n0 ∨ 〈Qt〉k1
= R ∨ 〈Qt〉k1

implies that R ∨Q = 〈Rt〉n0 ∨ 〈Qt〉k1 ∈ fn+k(A). �
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