# Endomorphism from Galois antiautomorphism

Christian Pierre

### Introduction

The aim of this paper is to introduce an endomorphism based upon the Eisenstein homology. The Galois homology was previously well worked out and the Eisenstein cohomology was extensively studied, but it seems that the Eisenstein homology was never taken up.

Considering that the Galois homology results from a Galois antiautomorphism, it is proved that every endomorphism, generated from a Galois antiautomorphism, can be decomposed into the direct sum of a Galois homology and of its complementary Galois cohomology.

All developments are initiated from a polynomial ring  $A[x_1, ..., x_m]$  in m indeterminates whose specialization is compelled to generate a sequential and graded sheaf of rings  $\theta^m$ .

Part I gives algebraic basic notions necessary to generating a graded sheaf of rings from a Galois extension, i.e. essentially a specialization, called emergent, from a ring of polynomials  $A[x_1, ..., x_m]$  giving rise to a set of compact connected algebraic subgroups which correspond to the different sections of the sheaf of rings  $\theta^m$ . Part II refers to the introduction of the Eisenstein homology based upon a Galois antiautomorphism.

Bull. Belg. Math. Soc. 2 (1995), 435-445

Received by the editors March 1994

Communicated by A. Verschoren

Part III gives the conditions of an endomorphism generated from a Galois antiautomorphism.

### 1 Graded sheaf of rings from Galois extension

#### Preliminaries.

Let  $A[x_1, ..., x_m]$  be a ring of polynomials  $f_{\mu}[x_1, ..., x_m]$  in m indeterminates over a field K of characteristic zero. The polynomials  $f_{\mu} \in A[x_1, ..., x_m]$  are supposed to have the same general form :  $f_{\mu} = \sum_{i=0}^{r} a_i x_1^{k_1} ... x_m^{k_m}$ , where  $k_j \in \mathbb{N}$ ,  $1 \leq j \leq m$ , with the same set of  $k_j$ , i.e. with the same degree over each variable  $x_j^{k_j}$  of the monomials  $a_i x_1^{k_1} ... x_m^{k_m}$ . They thus only differ by the set of coefficients  $\{a_i\}$ . Note that this hypothesis is only required at first stage from proposition 9 in order to define a homogeneous sequential valuation.

If  $f_{\mu}(\alpha_1, ..., \alpha_m) = 0$ , then  $(\alpha_1, ..., \alpha_m)$  is said to be a root of the polynomial  $f_{\mu}$  and is algebraic over K.

**Definition 1.** Let  $\alpha = (\alpha_1, ..., \alpha_m)$  be a root of a polynomial  $f_{\mu} \in A[x_1, ..., x_m]$  supposed to be irreducible.

The specialization of the ring A is a homomorphism  $A_0$  of A into some ring from the ring  $A[x_1, ..., x_m]$  with values in a field L which is a finite extension of the field K such that the specialization of the ring A is completely determined by its kernel  $p = A_0^{-1}(0)$  which is a prime ideal of A [1] or a subring of A.

**Definition 2.** The Galois group  $\Gamma$  can be defined [1] by means of a homomorphism  $\nu$  of the group  $K^*$  (i.e. the group of non-zero elements of K) into a totally ordered group  $\Gamma$ . Such a homomorphism  $\nu$  is called a valuation of  $K^*$  if it satisfies

$$\nu(\alpha + \beta) \ge \inf[\nu(\alpha), \nu(\beta)], \quad \forall \alpha, \beta \in K^*.$$

Let  $b_1 \subset ... \subset b_n$  be a chain of distinct prime ideals of the discrete valuation ring *B* obtained under the action of the Galois group  $\Gamma$ .

If  $b_i$ ,  $1 \le i \le n$ , is a non-zero prime ideal of B and if  $p = b_i \cap A$ ,  $b_i$  is said to divide p or to be above p, written  $b_i|p$ . Then, B is the integral closure of A in L and is a free A-module of rank n = [L:K].

**Definition 3.** Let  $f_{\mu} \in A[x_1, ..., x_m]$  be a polynomial over a field K. An extension field  $L_{\mu}$  of K is said to be a splitting field over K if  $L_{\mu}$  is generated by all the roots of  $f_{\mu}$ . The Galois group  $\Gamma_{\mu}$  of a polynomial  $f_{\mu}$  is the group  $\operatorname{Aut}_{K}L_{\mu}$ . So, we consider the specialization  $A_{0\mu}$  of the subring  $A_{\mu}$  of the ring A from the subring  $f_{\mu} \in A[x_1, ..., x_m]$ . We denote by  $B_{\mu}$  the integral closure of  $A_{\mu}$  into  $L_{\mu}$  (i.e. the set of elements of  $L_{\mu}$  which are integral over  $A_{\mu}$ ). Then, the field of fractions of  $B_{\mu}$  is  $L_{\mu}$  and the subring  $B_{\mu}$  is a finitely generated  $A_{\mu}$ -module.

The subring  $A_{\mu}$  is a discrete valuation ring because it has a unique non-zero prime ideal  $p_{\mu}$  taking its values in  $L_{\mu}$ . Then, the subring  $B_{\mu}/p_{\mu}B_{\mu}$  is an  $A_{\mu}/p_{\mu}$ -algebra of degree  $n_{\mu} = [L_{\mu} : K]$ . **Remark 4.** If we consider the specialization of the subring  $A_{\mu}$ , the resulting prime ideal  $p_{\mu}$  is not necessarily compact in  $L^m$ . For this reason, the specialization  $A_{T_{\mu}}$ , called emergent, is introduced.

**Definition 5.** The emergent specialization  $A_{T_{\mu}}$  is a specialization such that the prime ideal  $p_{\mu}^{T}$  be generated by the emergent morphism  $\gamma_{\mu}$  into the two step sequence :

- a) The geometric points corresponding to the roots of the splitting field  $L_{\mu}$  are mapped onto the origin of  $L^{m}$ .
- b) These geometric points are then projected symmetrically from the origin of  $L^m$  in an affine connected compact algebraic variety  $p_{\mu}^T$  which is a *m*-dimensional torus  $T^m$  [4].

This emergent morphism  $\gamma_{\mu}$  is completely determined by its representatives  $h_{\mu_a} = \{P_a, r(P_a), \gamma_a\}$  defining an abstract compact variety in the sense of A. Weil [2]. A representative  $h_{\mu_a}$ , where  $a \in \mathbb{N}$  labels the set of geometric points, is then defined by :

- 1)  $P_a$  is a point of the connected algebraic variety  $p_{\mu}^T$
- 2)  $r(P_a)$  is the radius of "exjection" of a point  $P_a$  from the origin of  $L^m$ , called the emergence point of the emergent morphism  $\gamma_{\mu}$  (compare with the injectivity radius of  $\Gamma \backslash G/K$  introduced by De George and N. Wallach [3]).
- 3)  $\gamma_a$  is a one-to-one correspondence between each point corresponding to a root and its geometrical localization on  $p_{\mu}^T$ .

**Lemma 6.** Let  $G_{\mu}$  be the affine algebraic group generated from all the automorphisms of the splitting field  $L_{\mu}$  and  $H_{\mu}$  a subgroup such that  $X_{\mu}^{m} = G_{\mu}/H_{\mu}$  be the symmetric space generated by emergent specialization.

If  $P_{\mu}$  is a maximal connected resoluble subgroup of the algebraic group  $G_{\mu}$ , then the space  $S_{R_{\mu}} = P_{\mu} \backslash G_{\mu} / H_{\mu}$  is a compact projective variety.

To the space  $S_{R_{\mu}}$  is associated a valuation which corresponds bijectively to the radius of exjection r(P) of a point  $P \in S_{R_{\mu}}$ .

<u>Proof</u>: Let K be a field of characteristic zero on which a discrete valuation  $\nu$  is defined having valuation ring  $A_{\mu}$ . Let  $Z^0_{\mu}$  be the centralizer of  $G^0_{\mu}$  (the maximal connected compact subgroup of  $G_{\mu}$ ) given by diagonal matrices.

Then,  $G_{\mu}(K) = \prod GL_m(L_{\mu\nu})$  if  $L_{\mu}$  is a finite extension of the field K.

For the algebraic subgroup  $H_{\mu}$  of  $G_{\mu}$ , we get :  $H_{\mu} = \prod_{\nu} H_{\nu}$  with :

$$H_{\nu} = SO(m, R) \cdot Z_0(\mathbb{R}) = SO(m, \mathbb{R}) \cdot \mathbb{R}^* \text{ if } L_{\nu} = \mathbb{R}$$
  
$$H_{\nu} = U(m) \cdot Z_0(\mathbb{C}) = U(m) \cdot \mathbb{C}^* \text{ if } L_{\nu} \simeq \mathbb{C}$$

and  $X^m_{\mu} = G_{\mu}/H_{\mu} = \prod_{\nu} GL_m(L_{\nu})/H_{\nu}.$ 

Let  $Z^0_{\mu}(L_{\mu})$  be the centralizer of  $L_{\mu}$  in  $G^0_{\mu}$  such that  $L_{\mu}$  be the maximal K-split torus

of the radical of  $Z^0_{\mu}(L_{\mu})$ .

Let  $U_{\mu}$  be the unipotent radical of the parabolic subgroup  $P^{0}_{\mu}$  given by the unitrigonal group  $UT_{m}(L_{\mu})$ . Then, we have the Levi decomposition  $P^{0}_{\mu} = Z^{0}_{\mu}(L_{\mu}) \cdot U_{\mu}$  [5].

If  $G_{\mu}$  is an algebraic group formed by unipotent matrices,  $G_{\mu}$  is nilpotent and can be triangularized. Furthermore, a connected resoluble group is direct product of a maximal torus by the subgroup of its unipotent matrices, its maximal tori being conjugated by interior automorphism. Consequently,  $P_{\mu}$  is a resoluble subgroup of  $G_{\mu}$ .

Let  $(z_1, ..., z_m)$  be the set of coordinates of a point  $P \in S_{R_{\mu}}$  and  $||z||_{\nu} = |z|_{\nu}^{N_{\nu}}$ where  $N_{\nu}$  is the order of valuation. Then, the height of a point P, H(P), given by the formula  $H(P) = \prod_{\nu} \sup_{i} ||z_i||_{\nu}$  [6], corresponds bijectively to the radius of exjection r(P) of this point P. Indeed, the height H(P) and the radius of exjection r(P) result directly from the emergent specialization  $A_{T_{\mu}}$  and from the automorphism group  $\Gamma_{\mu}$ . Let us note that the symmetric space  $S_{R_{\mu}}$  is also generated by an emergent specialization since a valuation ring is always a specialization ring according to the theorem on the extension of specializations in algebraic geometry [1].

**Definition 7.** Under the emergent specialization  $A_{T_{\mu}}$ , each polynomial  $f_{\mu}$  of the ring  $A[x_1, ..., x_m]$  generates a section  $s_{\mu}$  of a sheaf of ring  $\theta^m$  on the space  $S_{R_{\mu}} = P_{\mu}(A_{L_{\mu}}) \backslash G_{\mu}(A_{L_{\mu}}) / H_{\mu}$  where  $A_{L_{\mu}}$  is the ring of adeles.

As the subrings  $A_{\mu}$  are discrete valuation rings, the sheaf of rings  $\theta^m$  is quasi-compact [7] and finitely generated according to the Mordell-Weil theorem [6].

 $\theta^m$  is then called spec[A] and the locally ringed space  $(D_{T^m}, \theta^m)$  with domain  $D_{T^m}$  is a variety scheme or a group scheme.

**Remark 8.** It is possible to define a graded algebra on the set of sections  $s_{\mu}$  of the sheaf of rings  $\theta^m$  under the action of the Galois group  $\Gamma$ . Indeed, consider that the valuation refers sequentially and gradually to each section  $s_{\mu}$  as follows :

**Proposition 9.** Let  $\{s_1, ..., s_{\mu}, ..., s_q\}, 1 \le \mu \le q$ , be the set of sections of the sheaf of rings  $\theta^m$  on which a sequential valuation will be introduced.

Let  $b^1_{\mu} \subset ... \subset b^n_{\mu}$  be a chain of distinct ideals dividing the prime ideal  $p^T_{\mu}$  and denoted  $b_{\mu} | p^T_{\mu}$ .

Let  $n_{b_{\mu}} \in \mathbb{N}$  be the residue degree of  $b_{\mu}$  under the Galois extension :  $n_{b_{\mu}} = [B_{\mu}/b_{\mu}; A_{\mu}/p_{\mu}^{T}]$ . In the unramified case, i.e. when the ramification index  $e_{b_{\mu}} = 1$ ,  $B_{\mu}/b_{\mu}$  is separable over  $A_{\mu}/p_{\mu}^{T}$  and the degree  $n_{\mu} = [L_{\mu} : K]$  of the  $A_{\mu}/p_{\mu}^{T}$  algebra is :

$$n_{\mu} = \prod_{b_{\mu} \mid p_{\mu}^{T}} B_{\mu} / b_{\mu}^{e^{b_{\mu}}} = \sum_{b_{\mu} \mid p_{\mu}^{T}} n_{b_{\mu}}.$$

Consider that the valuation operates sequentially and gradually on each section of the sheaf of rings  $\theta^m$  in such a way that :

1) There is a graduation on the residue degrees  $n_{b_{\mu}}$  of each section  $s_{\mu}$  such that if  $n_{b_{\mu}}$  is the residue degree of the section  $s_{\mu}$  and  $n_{b_{\mu+1}}$  is the residue degree of the section

 $s_{\mu+1}$ , then :

$$n_{b_{\mu+1}} > n_{b_{\mu}}.$$

2) There is topological embedding between sequential sections, i.e. that  $s_1 \subset s_2 \subset \ldots \subset s_\mu \subset \ldots \subset s_q$ .

<u>Sketch of proof</u>: If one has that  $n_{b_{\mu+1}} > n_{b_{\mu}}$ , then  $s_{\mu+1} \supset s_{\mu}$ . Indeed, if  $r(P_{\mu+1})$  denotes the radius of exjection of a point  $P \in s_{\mu+1}$  and if  $r(P_{\mu})$  denotes the radius of exjection of the same point  $P \in s_{\mu}$ , it is evident that  $r(P_{\mu+1}) > r(P_{\mu})$  with respect to the sequential valuation given by the residue degrees  $n_{b_{\mu+1}}$  and  $n_{b_{\mu}}$  corresponding respectively to the sections  $s_{\mu+1}$  and  $s_{\mu}$ .

**Corollary 10.** Let  $\{s_1, ..., s_{\mu}, ..., s_q\}, 1 \le \mu \le q$ , be the set of sections of the sheaf of rings  $\theta^m$  on which a sequential valuation has been defined. Then, the q sections of the sheaf of rings  $\theta^m$  are generated by emergent specialization  $A_{T^m}$  if and only if  $n_{b_q} > 0$ .

**Corollary 11.** Let  $n_{b_{\mu}}$  be the residue degree of a section  $s_{\mu} \in \theta^m$ . Then, the sequential residue degree of the graded sequence  $\{s_1, ..., s_q\}$  of sections of the sheaf of rings  $\theta^m$  is given by the set  $n_{\theta^m} = \{n_{b_1}..., n_{b_{\mu}}..., n_{b_q}\}$  of residue degrees  $n_{b_{\mu}}$  referring to the sections  $s_{\mu} \in \theta^m$ .

 $\theta^m$  can then be considered as a free module with graded rank  $n_{\theta^m} = \{n_{b_1}, ..., n_{b_q}\}$ .

### 2 Eisenstein homology

**Definition 12.** Let P(A) be the set of parabolic subgroups  $P(A) = \{P_1(A_{L_1}), ..., P_\mu(A_{L_\mu}), ..., P_q(A_{L_q})\}$  corresponding to the q sections of the sheaf of rings  $\theta^m$ . Let  $G(A) = \{G_1(A_{L_1}), ..., G_q(A_{L_q})\}$  be the set of q algebraic groups corresponding to the q sections of  $\theta^m$  and  $H = \{H_1(A_{L_1}), ..., H_q(A_{L_q})\}$  the set of q subgroups of G as introduced in lemma 6.

The cohomology group  $H^*(S_R, \theta^m)$  is the direct sum of the cohomology groups of its connected components [8] given by  $H^*(\Gamma \setminus X^m)$  where  $X^m = G(A)/H$  is the symmetric space,  $S_R = P(A) \setminus G(A)/H$  and  $\Gamma = {\Gamma_1, ..., \Gamma_\mu, ..., \Gamma_q}$  is a set of qarithmetic subgroups given by P(A).

The boundary  $\partial \bar{S}_R$  of the Borel-Serre compactification [9]  $i: S_R \to \bar{S}_R$  is stratified by proper parabolic subgroups P(A) such that  $\partial_p S_R$  be a sequential module defined over K and that  $\partial \bar{S}_R = \bigcup_P \partial_p S_R$ . As developed by G. Harder in [10], let  $\Xi_{H_f}$  be the finite set of double cosets  $P(A_f) \setminus G(A_f) / H_f$  for any place f in the adele ring A. Then, we have the following decomposition for the Eisenstein Cohomology [11]:

$$H^*(\partial_p S_R, \theta^m) = H^*(P(A) \setminus G(A) / H_f, \theta^m) = \bigoplus_{\xi \in \Xi_{H_f}} H^*\left(S_{H(\xi)}^{\theta^m}, H^*(\tilde{u}_p, \theta^m)\right)$$

where  $H^*(\tilde{u}_p, \theta^m)$  is the Lie algebra cohomology referring to unipotent algebraic group U/K with U given as usual by the set  $U = \{U_1, ..., U_\mu, ..., U_q\}$ . Considering that the sheaf of rings  $\theta^m$  is a module for the algebraic group  $Gx_KL$ , after passing to the limit, it becomes a  $\pi_0(G_\infty)xG(A_f)$  module, and we get :

$$H^*(\partial_P S, \theta^m) = \operatorname{Ind}_{\pi_0(P_\infty)xP(A_f)}^{\pi_0(G_\infty)xG(A_f)} H^*(S^{\theta^m}, H^*(\tilde{u}_p, \theta^m))$$

for all induced representations of the cohomology.

**Definition 13.** Let  $\lambda_{\mu\nu} = (\lambda_{\mu1}, ..., \lambda_{\mu n})_{\nu:K \to L}$  be an element in  $X(T^m_{\mu}) =$ Hom $(T^m_{\mu} x_K L, GL1) = \bigoplus_{\nu:K \to L} X(T^m_{0\mu})$  referring to the section  $s_{\mu}$  of  $\theta^m$  which is a *m*-dimensional torus  $T^m_{\mu}$ .

Similarly, let  $\lambda_{\nu} = \{\lambda_{1\nu}, ..., \lambda_{\mu\nu}, ..., \lambda_{q\nu}\}$  be an element in  $X(\theta^m)$ .

Considering the irreducible representation  $Gx_KL = \prod_{\nu:K\to L} GL_m xL = \prod_{\nu:K\to L} GL_m$ , the sheaf of rings  $\theta^m$  is a tensor product  $\theta^m = \bigotimes_{\nu:K\to L} \theta^m_\nu = \theta^m(\lambda_\nu)$  where  $\theta^m_\nu$  is determinated by the sequential weight  $\lambda_\nu$ .

Let  $\omega_{\nu} = \{\omega_{1\nu}, ..., \omega_{\mu\nu}, ..., \omega_{q\nu}\}$  be the action of the Weylgroup on  $\lambda_{\nu} \in X(\theta^m)$ and  $\Phi_{\nu} = \omega_{\nu}\lambda_{\nu}$  be the corresponding algebraic Hecke character [12] on  $\theta^m$ . Then, the Eisenstein cohomology  $H^*(\partial_P S, \theta^m)$  decomposes into one dimensional eigenspaces according to a theorem of Kostant [10] :

$$H^*(\partial_P S, \theta^m) = \bigoplus_{\omega_\nu} \bigoplus_{\Phi_\nu} \operatorname{Ind}_{\pi_0(P_\infty)XP(A_f)}^{\pi_0(G_\infty)XG(A_f)} H^*(S^{\theta^m}, H^*(\tilde{u}_P, \theta^m)(\omega_\nu \cdot \lambda_\nu)).$$

**Definition 14.** Let K be a field of characteristic zero, L an algebraic extension of K and G(L/K) the corresponding Galois group. This group  $G(L/K) = \operatorname{Aut}_K L$ acts transitively on the right on the set of prime ideals b of B dividing a given prime ideal p of the discrete valuation ring A (see definitions 2 and 3, [13] and [14]). The ring B/pB is an A/p-algebra of degree n = [L:K].

From the Galois automorphic group G(L/K), it is possible to define a Galois antiautomorphic group  $G^*(L/K) = \widetilde{\operatorname{Aut}}_K L$  acting transitively on the left on the set of prime ideals b of B. A subring  $B' \subset B$  is then characterized by a descending chain of distinct prime ideals :

$$b_n \supset b_{n-1} \supset \dots \supset b_{n-\rho}, \qquad \rho < n$$

such that  $(n - \rho)$  be the retro-valuation degree corresponding to the considered Galois antiautomorphism, noted antiaut.

**Proposition 15.** Let *L* be an algebraic extension of a field *K* of characteristic zero and  $G^*(L/K)$  a Galois antiautomorphic group. Then, the space  $\partial S^*_R$ , associated to this Galois antiaut., is given by  $\partial S^*_R = P^* \backslash G^* / H^*$  where  $G^*$  is the algebraic group submitted to a Galois antiaut.,  $P^*$  is a connected resoluble subgroup and  $H^*$  is a subgroup of  $G^*$  referring to a decreasing valuation.

<u>Proof</u>: The antiautomorphism given by the Galois antiaut.  $G^*(L/K)$  leads to consider a descending chain of ideals  $b_n \supset b_{n-1} \supset ... \supset b_{\eta-\rho}$  as described in definition 14.

This implies that inverse elements of the connected resoluble subgroup P have to be considered such that  $P^{0*} = Z^{0*}(L) \cdot U^*$  where  $Z^{0*}(L)$  is the centralizer of L in  $G^{0*}$  given by the diagonal group D(L) and where  $U^*$  is the inverse of the unipotent radical U of the Galois extension L/K and is represented by the unitrigonal group  $UT(M)^{-1}$ .

According to lemma 6, one has furthermore that :

$$H^* = SO(m; \mathbb{R}) \cdot Z^{0*}(\mathbb{R}_{\nu-\nu^*}) \quad \text{if } L = \mathbb{R}_{\nu-\nu^*}$$
$$H^* = U(m) \cdot Z^{0*}(\mathbb{C}_{\nu-\nu^*}) \qquad \text{if } L = \mathbb{C}_{\nu-\nu^*}$$

where  $(\nu - \nu^*)$  refers to a decreasing valuation associated to a Galois antiaut.

**Definition 16.** Consider that the retro-valuation, corresponding to a Galois antiaut., operates sequentially and gradually on the sheaf of rings  $\theta^m$  such that if  $(n-\rho)_{\mu}$ is the residue degree of the Galois antiaut. of the section  $s_{\mu}$  and if  $(n-\rho)_{\mu+1}$  is the residue degree of Galois antiaut. of the sections  $s_{\mu+1}$  of  $\theta^m$ , then  $(n-\rho)_{\mu+1} > (n-\rho)_{\mu}$ . The sheaf of rings  $\theta^{*m}$  is then characterized under a Galois group  $G^*(L/K)$  by the set  $(n-\rho)_{\theta^m} = (n_1 - \rho_1), ..., (n_{\mu} - \rho_{\mu}), ..., (n_q - \rho_q)$  of q difference of residue degrees corresponding to the q sections of  $\theta^m$ , where  $n_{\mu}$  refers to the residue degree of the section  $s_{\mu} \in \theta^m$  under a Galois extension G(L/K).

**Proposition 17.** Let  $G^*(A)$  be the algebraic group generated by a Galois group  $G^*(L/K)$  and given by the set of algebraic subgroups :  $G^*(A) = \{G_1^*(A), ..., G_{\mu}^*(A), ..., G_a^*(A)\}$  corresponding to the q sections of the sheaf of rings  $\theta^{*m}$ .

Let  $P^* = \{P_1^*, ..., P_{\mu}^*, ..., P_q^*\}$  be the set of q connected resoluble subgroups of the q sections of  $\theta^{*m}$  corresponding to a Galois antiaut. and defined in proposition 15. Let  $\partial S_R^*$  be given by :  $\partial S_R^* = P^*(A) \setminus G^*(A) / H^*$ .

Then, the homology group  $H_*(\partial S_R^*, \theta^{*m})$  is the direct sum of the homology groups of its connected components given by  $H_*(\Gamma^* \setminus X^{*m})$ .

Let  $\Xi_{H^*f}^*$  be the finite set of double cosets  $P^*(A_f) \setminus G^*(A_f) / H_f^*$  where  $P^*(A_f)$  is a parabolic subgroup corresponding to a Galois antiaut.

Then, the Eisenstein homology, corresponding to a Galois antiaut., is given by (in analogy with the Eisenstein cohomology) :

$$H_{*}(\partial_{P^{*}}S_{R}^{*},\theta^{*m}) = H_{*}(P^{*}(A)\backslash G^{*}(A)/H_{f}^{*},\theta^{*m})$$
$$= \bigoplus_{\xi \in \Xi_{H_{*}}^{*}} H_{*}(S_{H^{*}(\xi)}^{\theta^{*m}},H_{*}(\tilde{u}_{P^{*}},\theta^{*m}))$$

where  $H_*(\tilde{u}_{P^*}, \theta^{*m})$  is the Lie algebra homology referring to unipotent algebraic group  $U^*/K$ .

<u>Proof</u> : The proof is obvious by considering preceeding sections.

**Corollary 18.** Let  $\lambda^*_{\mu(\nu-\nu^*)} = (\lambda^*_{\mu n}, ..., \lambda^*_{\mu(n-\rho)})_{\nu-\nu^*:K\to L}$  be an element in  $X^*(T^m_{\mu}) =$ Hom $(T^m_{\mu}x_KL, GL1) = \bigoplus_{\nu-\nu^*:K\to L} X^*(T^m_{0\mu})$  referring to the section  $s_{\mu}$  of  $\theta^{*m}$ . Let  $\lambda^*_{(\nu-\nu^*)} = \{\lambda^*_{1(\nu_1-\nu^*_1)}, ..., \lambda^*_{\mu(\nu_{\mu}-\nu^*_{\mu})}, ..., \lambda^*_{q(\nu_q-\nu^*_q)}\}$  be an element in  $X^*(\theta^{*m})$ . The sheaf of rings  $\theta^{*m}$  is then a tensor product :  $\theta^{*m} = \bigotimes_{\nu-\nu^*:K\to L} \theta^{*m}_{\nu-\nu^*} = \theta^{*m}(\lambda^*_{(\nu-\nu^*)}),$ where  $\lambda^*_{(\nu-\nu^*)}$  is a decreasing sequential weight.

Let  $\omega_{(\nu-\nu^*)}^* = \{\omega_{1(\nu_1-\nu_1^*)}^*, ..., \omega_{\mu(\nu_{\mu}-\nu_{\mu}^*)}^*, ..., \omega_{q(\nu_q-\nu_q^*)}^*\}$  be the action of the Weylgroup on  $\lambda_{(\nu-\nu^*)}^* \in X^*(\theta^{*m})$  defining the corresponding algebraic Hecke character  $\Phi_{(\nu-\nu^*)}^* = \omega_{(\nu-\nu^*)}^* \cdot \lambda_{(\nu-\nu^*)}^*$  on  $\theta^{*m}$ . Then, the Eisenstein homology  $H_*(\partial_{P^*}S^*, \theta^{*m})$  decomposes into one dimensional eigenspaces :

$$H_{*}(\partial_{P^{*}}S^{*},\theta^{*m}) = \bigoplus_{\omega_{(\nu-\nu^{*})}^{*}} \bigoplus_{\Phi_{(\nu-\nu^{*})}^{*}} \operatorname{Ind}_{\pi_{0}(P_{\infty}^{*})XP^{*}(A_{f})}^{\pi_{0}(G_{\infty}^{*})XG^{*}(A_{f})} H_{*}(S^{*\theta^{*m}},H_{*}(\tilde{u}_{P^{*}},\theta^{*m})..$$
$$...(\omega_{(\nu-\nu^{*})}^{*}\cdot\lambda_{(\nu-\nu^{*})}^{*})).$$

## 3 Endomorphism from Galois antiautomorphism group

**Definition 19.** Let  $\partial S_R^* = P^*(A) \backslash G^*(A) / H^*$  be the space generated by the Galois group  $G^*(L/K)$  with retrovaluation residue degree  $(n-\rho)_{\theta^{*m}}$  applied to the sheaf of rings  $\theta^{*m}$  generated from an initial sheaf of rings  $\theta^m$  of residue degree  $n_{\theta^m}$ . The subspace  $H^*$  of  $G^*(A)$  will be defined for  $L = \mathbb{R}_{(\nu-\nu^*)}$  by  $H^* = SO(m, \mathbb{R}) \cdot Z^{0*}(\mathbb{R}_{(\nu-\nu^*)})$ . The corresponding Eisenstein homology  $H_*(\partial_{P^*}S^*, \theta^{*m})$  decomposes into one dimensional eigenspaces as described in corollary 18 from algebraic Hecke characters  $\Phi^*_{(n-\rho)} = \omega^*_{(n-\rho)} \cdot \lambda^*_{(n-\rho)}$ .

Let  $\partial S_{R(I)} = P_I(A) \backslash G_I(A) / H_I$  be the space complementary of  $\partial S_R^*$  and corresponding to a Galois group  $G_I(K/L)$  conjugated to the Galois group  $G^*(L/K)$ , as resulting from the definition 14 of a Galois antiautomorphism.

The complementary automorphic space  $\partial S_{R(I)}$  will be characterized by a sequential residue degree  $\rho_I$  counted from the sequential retrovaluation residue degree  $(n - \rho)$ . The subspace  $H_I$  of  $G_I(A)$  will parallely be defined for  $L = \mathbb{R}$  by  $H_I = SO(m, \mathbb{R}) \cdot Z_I^0(\mathbb{R})$ .

The Eisenstein cohomology  $H^*(\partial_P S_I, \theta_I^m)$  corresponding to the generation of this complementary space  $\partial S_{R(I)}$  will also decompose into one dimensional eigenspaces as described in definition 13 and will be characterized by complementary algebraic Hecke characters  $\Phi_{\rho_I} = \omega_{\rho_I} \cdot \lambda_{\rho_I}$ .

**Proposition 20.** Every smooth endomorphism of an algebraic group G(A) on an automorphic space  $\partial S_R$  of Galois group G(L/K) with residue degree *n* can be generated by means of a Galois antiautomorphism and can decompose into the direct sum of two connected algebraic groups  $G^*(A)$ , corresponding to a Galois antiaut. of group  $G^*(L/K)$ , and  $G_I(A)$ , which is a complementary algebraic group of  $G^*(A)$  and subgroup of G(A) given by a Galois extension of group  $G_I(L/K)$ .

We then have the following decomposition for the smooth endomorphism  $E_t[G(A)]$ :

$$E_t[G(A)] = G^*(A) \oplus G_I(A)_t$$

satisfying the conditions:

1) The subgroups  $H^* \subset G^*(A)$  and  $H_I \subset G_I(A)$  are such that the groups  $SO(m, \mathbb{R})$ , from which they are defined, must have the same witt index (i.e., the same rank) but different orders.

2) The Eisenstein homology  $H_*(\partial_{P^*}S^*, \theta^{*m})$  and cohomology  $H^*(\partial_P S_I, \theta_I^m)$ , associated respectively to  $G^*(A)$  and  $G_I(A)$ , are varying oppositely in such a way that  $H_*(\partial_{P^*}S^*, \theta^{*m})$  "generates"  $H^*(\partial_P S_I, \theta_I^m)$  according to the following equality on algebraic Hecke characters :

$$\Phi_{(n-\rho)}^* = C_H(\rho) \cdot \Phi_{\rho_I}$$

where  $C_H(\rho)$  is a set of q parameters  $C_H(\rho) = \{C_{H1}(\rho_1), ..., C_{H\mu}(\rho_{\mu})...$  $C_{Hq}(\rho_q)\}$  depending on the proper valuation  $\rho$  and measuring the variation in sequential degrees of  $\Phi_{\rho_I}$ , related to  $H^*(\partial_P S_I, \theta_I^m)$ , in function of  $\Phi^*_{(n-\rho)}$ , related to  $H_*(\partial_P S^*, \theta^{*m})$ .

 $\underline{\text{Proof}}$  :

1) The fact that every endomorphism  $E_t[G(A)]$  (compare with the standard definitions of endomorphisms [15]) of an algebraic group G(A) can decompose into the direct sum of an algebraic group  $G^*(A)$ , corresponding to a Galois antiaut.  $G^*(L/K)$ and of its complementary algebraic group  $G_I(A)_t$ , which is a subgroup of G(A) and thus an ideal of the affine variety given by G(A), results from the definition of a Galois antiaut. given in definition 14.

2) The groups  $SO(2p, \mathbb{R}) \in H^* \subset G^*(A)$  and  $SO(2p+1, \mathbb{R}) \in H_I \subset G_I(A)_t$  have the same rank p but different orders given by m = 2p or m = 2p + 1 respectively. Indeed, if the groups  $SO(m, \mathbb{R})$  had the same order, this should mean that the map  $E_t[G(A)]$  would be the identity map and that  $(G^*(A) \oplus G_I(A)_t)$  would not be more the direct sum of two distinct connected algebraic groups  $G^*(A)$  and  $G_I(A)_t$  but would define a unique connected algebraic group G(A).

3) The fact that the spaces  $\partial S_R^*$  and  $\partial S_R(I)$  are defined respectively by means of the groups  $SO(2p, \mathbb{R}) \in H^*$  and  $SO(2p+1, \mathbb{R}) \in H_I$  with different orders results directly from the reduction steps of Hilbert irreducibility theorem [16] applied to the ring of polynomials  $A[x_1, ..., x_m]$ . Indeed, via the Kronecker's specialization, this theorem tells us that a ring of irreducible polynomials in m variables can be reduced to a ring of irreducible polynomials in n variables where n < m.

4) According to the Hilbert's irreducibility theorem, it is obvious that the groups  $SO(2p, \mathbb{R}) \in H^*$  and  $SO(2p+1, \mathbb{R}) \in H_I$  need not have peremptorily the same rank but this is a prerequisite in order that there is not a breakdown of the endormophism  $E_t$  which is then called "smooth".

5) The equality  $\Phi_{(n-\rho)}^* = C_H(\rho) \cdot \Phi_{\rho_I}$  results directly from the definition of the algebraic Hecke characters  $\Phi_{(n-\rho)}^*$  and  $\Phi_{\rho_I}$  and from the definition of the endomorphism  $E_t[G(A)]$ .

Note that the set of parameters  $C_H(\rho)$  is the most closed to the unity  $\{1, ..., 1, ..., 1\}$ when the degree of retrovaluation on the sheaf of rings  $\theta_m^*$  is equal to the degree of valuation of its complementary sheaf  $\theta_I^m$ . **Corollary 21.** If the reduced algebraic group  $G^*(A)$  and its complementary algebraic group  $G_I(A)$ , obtained from the algebraic group G(A) by smooth endomorphism, are not connected, the smooth endomorphism E[G(A)] will be introduced :

$$E[G(A)] = G^*(A) \oplus G_I(A)$$

such that the subgroups  $SO(m, \mathbb{R}) \in H^* \subset G^*(A)$  and  $SO(m, \mathbb{R}) \in H_I \subset G_I(A)$ have the same ranks and the same orders. Then, there exists a unique emergent morphism  $\gamma$  which maps the sheaf of rings  $\theta_I^m$  from the space  $\delta S_{R(I)} = P_I(A) \setminus G_I(A) / H_I$ into its orthogonal complement  $\delta S_{R(I)}^{\perp}$  on which is defined the resulting complementary orthogonal sheaf  $\theta_I^{m\perp}$ .

<u>Proof</u>: As the origin  $O_S$  is the unique point of intersection between the space  $\Sigma_R^* = \partial S_R^* \cup O_S$  and its orthogonal complement  $\Sigma_R^{\perp} = \partial S_R^{\perp} \cup O_S$ , i.e. that  $O_S = \Sigma_R^* \cap \Sigma_R^{\perp}$ , the envisaged morphism  $\gamma$  from  $\partial S_{R(I)}$  to  $\partial S_{R(I)}^{\perp}$  may be decomposed in the two step sequence :

1) mapping of the sheaf of rings  $\theta_I^m$  onto  $O_S$ , called the emergence point of the morphism  $\gamma$ .

2) Projection of  $\theta_I^m$  from  $O_S$  into  $\partial S_{R(I)}^{\perp}$  such that  $\rho_{\theta_I^{m\perp}} = \{\rho_1, ..., \rho_{\mu}, ..., \rho_q\}$  of the *q* sections of the complementary orthogonal sheaf  $\theta_I^{m\perp}$  be conserved, i.e. that  $\rho_{\theta_I^{m\perp}} = \rho_{\theta_I^m}$ . This morphism  $\gamma$  is an emergent morphism according to definition 5, and thus, is unique.

### References

- [1] A. Weil, Arithmetic on algebraic varieties, Ann. of Math. 53 (1951) 412-444.
- [2] A. Weil, Foundations of algebraic geometry, Amer. Math. Soc., Colloq. Publ. 29 (1946).
- [3] D. De George, N. Wallach, Limit formulas for multiplicities in L<sup>2</sup>(Γ\G), Ann. of Math. 107 (1978) 133-150.
  N. Wallach, Limit multiplicities in L<sup>2</sup>(Γ\G), Lect. Not. Math. 1447 (1990) 31-56.
- [4] A. Borel, J. Tits, Groupes réductifs, Publ. Math. IHES 27 (1965) 54-151.
- [5] R. Langlands, On the functional equations satisfied by Eisenstein series, Lect. Not. Math. 544 (1976) 1-320.
  Harish-Chandra, Automorphic forms on semi-simple Lie groups, Lect. Not. Math. 62 (1968) 1-130.
- [6] S. Lang, A. Néron, Rational points of abelian varieties over function fields, Amer. J. Math. 81 (1959) 95-118.
- [7] J.P. Serre, Faisceaux algébriques cohérents, Ann. of Math. 61 (1955) 197-278.

- [8] A. Borel, Stable real cohomology of arithmetic groups, Ann. Scient. écol. norm. sup. 7 (1974) 235-272.
- [9] A. Borel, J.P. Serre, Corners and arithmetic groups, Comment. Math. Helv. 48 (1973) 436-491.
- [10] G. Harder, Eisenstein cohomology of arithmetic groups, the case GL<sub>2</sub>, Invent. Math. 89 (1987) 37-118.
  G. Harder, Some results on the Eisenstein cohomology of arithmetic subgroups of GL<sub>n</sub>, Lect. Not. Math. 1447 (1990) 85-153.
- [11] J. Schwermer, Cohomology of arithmetic groups, automorphic forms and Lfunctions, Lect. Not. Math. 1447 (1990) 1-29.
- [12] L. Clozel, Représentations Galoisiennes associées aux représentations automorphes autoduales de GL(n), Publ. Math. IHES **73** (1991) 97-145.
- [13] A. Douady, Cohomologie des groupes compacts totalement discontinus, Sém. Bourbaki 189 (1959-60) 1-12.
- [14] J.P. Serre, Local fields, Grad. texts in Math. 67 (1979) 1-237.
- [15] A. Corner, On endomorphism rings of primary abelian groups, Quart. J. Math. Oxford 20 (1969) 277-296.
  M. Dugas, R. Göbel, On endomorphism rings of primary abelian groups, Math. Annal. 261 (1982) 359-382.
- [16] D. Hilbert, Über die Irreduzibilität ganzer rationaler Funktionen mit ganzähligen Koefficienten, J. Reine Angew. Math. 110 (1892) 104-129.

Christian PIERRE Clos des Gaulois 15 B1340 OTTIGNIES