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Abstract

We introduce the concept of parallelism in diagram geometry, we apply it
to a new gluing concept that provides geometries of higher rank, we combine
it with another recent extension procedure for geometries and collect many
examples solving existence questions for geometries over specified diagrams.

1 Introduction

An extensive survey and history of parallelism in incidence geometry is missing in
the literature. In particular, the forthcoming Handbook of Incidence Geometry [7] is
giving only a brief sketch of the subject with some references. The central part of the

subject, namely affine geometry is of course better known. However the apparently
stable affine geometry has undergone several important evolutions as we can see for
instance from the work of Schmidt [38] where a deep synthesis of various approaches

to affine ring geometry is covered, and in the work of André (see for instance [1]).

The present work arose from existence questions about geometries with specified
diagrams and properties in the spirit of [7] (chapter 22 by Buekenhout and Pasini).
Such questions lead us to a rather general construction that we call gluing. The
natural context for gluing appears to be the concept of a diagram incidence geometry

endowed with a convenient parallelism.

Starting with two such geometries Γ and Γ′ whose “geometries at infinity” are
isomorphic, we show that Γ and Γ′ can be “glued” along their geometry at infinity,
providing a geometry of higher rank in which Γ and Γ′ appear as proper residues.
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The first observations of this procedure were made by the third author who glued
affine planes of the same order, getting a geometry of type Af.Af∗.

Parallelism in affine spaces has an old tradition of “expansions”: if S is a set
of points at infinity of the affine space A together with some subspaces at infinity,
then the set of points of A equipped with those affine subspaces whose subspace at

infinity “belongs” to S, provides an affine expansion of S. This goes back at least
to the space-time of special relativity. In the context of incidence geometry, it is
described in Pasini [30]. Recently, Buekenhout, Dehon and Deschutter [8] gave a
broad setting to affine expansion, providing many new examples of geometries with

a specific diagram. We observe that their expansions bear a parallelism and so they
can be submitted further to gluing. We observe further that their procedure can be
generalized from affine spaces to geometries with a parallelism and we produce new
interesting examples from this.

2 Geometry with parallelism

2.1 Preliminaries

We shall recall some basic facts on incidence geometries taken for instance from

Buekenhout [7] or Pasini [30].

Let I be a set whose elements (and subsets) are called types. An incidence
geometry or more simply, a geometry Γ over I , is a triple (X, ∗, t) where X is a

set whose members are called elements of Γ, where ∗ is a binary reflexive relation
defined on X, called the incidence relation, and t is a mapping of X onto I , called
the type function; these data are submitted to the conditions:

(1) x ∗ y and t(x) = t(y) implies x = y;

(2) any maximal flag is of type I , where a flag is a set of pairwise incident
elements of Γ and its type is its image by t.

The cardinality of I is called the rank of Γ. The pair (X, ∗) is a graph, called

the incidence graph of Γ. We call i-elements the elements of Γ of type i. The set of
i-elements is denoted by Xi. The set of i-elements incident with a flag F is denoted
by σi(F ); it is called the i-shadow of F .

2.1.1 Subgeometries, residues and truncations

Let Γ = (X, ∗, t) be a geometry over I . Given a nonempty subset X ′ of X, let ∗′ and
t′ be the restrictions of ∗ to X ′ × X ′ and of t to X ′ respectively. If Γ′ = (X ′, ∗′, t′)
is a geometry over I ′ = t′(X ′), then we call Γ′ a subgeometry of Γ.

Let F be a non-maximal flag of Γ. The residue of F , denoted by ΓF , is the

subgeometry of Γ over I\t(F ) whose elements are the elements of Γ\F that are
incident with all the elements of F . We say that Γ is residually connected if for any
flag F whose residue is of rank at least two, the incidence graph of ΓF is connected.
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Let J be a nonempty subset of the type set I of Γ. The J-truncation of Γ is the
subgeometry JΓ = (t−1(J), ∗′, t′) of Γ over J .

2.1.2 Diagrams

Let I be a set of types. A diagram ∆ over I consists of a map ∆ defined from
{{i, j}}i,j∈I,i6=j which assigns to every pair {i, j} some class ∆(i, j) = ∆(j, i) of rank
2 geometries over {i, j}. A geometry Γ over I belongs to the diagram ∆ over I if for
every pair of distinct types i, j ∈ I and every flag F of Γ such that ΓF is of type

{i, j} one has ΓF ∈ ∆(i, j).

A diagram ∆ = (∆(i, j))i,j∈I,i6=j is usually depicted as a graph on I , drawing an
edge between two types i, j if and only if ∆(i, j) is not a class of generalized digons,
and labelling an edge {i, j} by some symbol denoting the class ∆(i, j), with some

additional conventions to make the picture easier to draw; for instance, putting no
label on {i, j} if ∆(i, j) is the class of projective planes, or putting two strokes with
no label between i and j if ∆(i, j) is the class of generalized quadrangles. Some
symbols have come to form a small “vocabulary” of labels for edges of diagrams (see

[7], chapters 3 and 22; also [30], chapter 3). We will freely use them in this paper.

Since a diagram can be viewed as a graph, we can speak of paths in it, of its
connected components, and so on. Thus, we can state the following definitions.

Let ∆ be a diagram over a finite set of types I , let 0 ∈ I and let X, Y ⊆ I .

Following Tits [39], we shall say that X separates 0 from Y in ∆ if there is no path
in ∆\X joining 0 to some element of Y .

Let ∆′ be a diagram over J ∪ {0}, let K ⊆ J and let ∆ be the diagram over
J obtained by removing 0 from ∆′. We say that ∆′ is a (0, K,∆)-diagram if K

separates 0 from J\{K} in ∆′.

We freely use the direct sum theorem whose statement is as follows. Let Γ be a
residually connected geometry of finite rank over I. Let i, j be elements of I which

are contained in distinct connected components of the diagram of Γ. Then every
i-element of Γ is incident with every j-element of Γ.

2.1.3 Isomorphisms and automorphisms

Let Γ = (X, ∗, t) and Γ′ = (X ′, ∗′, t′) be geometries over I . An isomorphism of
Γ onto Γ′ is a bijection α of X onto X ′ such that for all x, y in X, x ∗ y implies
α(x)∗′α(y′) and t(x) = t(y) implies t′(α(x)) = t′(α(y)). In the particular case where

Γ = Γ′, α is called an automorphism of Γ. An isomorphism (resp. automorphism)
is said to be type-preserving if t(x) = t′(α(x)) for any x ∈ X. We denote by Aut(Γ)
the group of all type-preserving automorphisms of a geometry Γ. A duality is a non

type-preserving automorphism of Γ such that t(α2(x)) = t(x) for all x ∈ Γ. In this
case, we call α(Γ) the dual of Γ and we denote it by Γ∗.

From now on, except in §3.5, isomorphisms and automorphisms are always as-
sumed to be type-preserving.
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2.1.4 Orders, thinness, firmness and thickness

Let Γ be a geometry over I and let i, j ∈ I with i 6= j. We denote by Ni the
cardinality of Xi. If the number of j-elements in the residue of x is independent of
the choice of x in Xi, then we denote this number by Ni,j. If there is a number qi
such that each flag F of type I\{i} is incident with qi + 1 elements of type i, then
qi is called the i-order of Γ. If qi exists for any i ∈ I , then we say that Γ has orders
(qi)i∈I. If qi = 1 for every i ∈ I , then Γ is said to be thin.

Γ is said to be firm (resp. thick) if any non-maximal flag of Γ is contained in at
least two (resp. three) maximal flags.

2.2 Parallelism

2.2.1 Definition

Let Γ = (X, ∗, t) be a geometry over the type set I , with |I |≥ 2. We need to

distinguish an element 0 ∈ I and we decide to call points the 0-elements of Γ. Next
we require a binary equivalence relation ‖ on X\X0 with the following properties:

(P1) x ‖ y implies t(x) = t(y) for all x, y ∈ X\X0;

(P2) for any points p, p′ and elements x, y, x′, y′ ∈ X\X0, if p ∗ x ∗ y ∗ p,
x′ ∗ p′ ∗ y′, x ‖ x′ and y ‖ y′, then x′ ∗ y′.

We call ‖ a partial parallelism. Note that for every element x ∈ X\X0 and every
point p, there is at most one element y ∈ Γp such that x ‖ y. Indeed, if y ‖ x ‖ y′ for

y, y′ ∈ Γp, then y ∗ y′ by (P2) (with x′ = x), hence y = y′ by (P1) and (1) of §2.1.

We call ‖ a parallelism if, for every element x ∈ X\X0 and every point p, there
is one element y ∈ Γp such that x ‖ y. Then we call (Γ, 0, ‖) a geometry with
parallelism. We also say that Γ is a geometry with a 0-parallelism.

2.2.2 Examples and comments

1. A classical affine geometry is obviously a geometry with parallelism.

2. Another well developed general context for parallelism goes as follows. Let

(P,B) be a block space (also called hypergraph) namely a set of points P together
with a family B of proper subsets of P called blocks, We define a parallelism on it
as an equivalence relation ‖ on B such that each equivalence class partitions P .

This subject is briefly surveyed in Buekenhout [7], chapter 3, §5.1 where ref-
erences can be found. A block space with parallelism can be seen as a rank 2
geometry with parallelism. The converse holds true provided that the rank 2 geom-
etry of points and blocks is such that no two blocks are incident with the same set

of points and each block is incident with fewer than two points.

3. The block spaces with all blocks of size 2 are precisely graphs. A partial par-
allelism of a graph is called an edge colouring in graph theory. Similarly, parallelisms
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of graphs correspond to 1-factorizations in graph theory. A rich literature exists on
this topic and some important results are known, some since a long time.

4. Given any geometry Γ over the set of types I and 0 ∈ I , we may wonder
whether it admits a 0-parallelism. In §2.4 we give some necessary conditions in
order that Γ admits a 0-parallelism and we show that they are not always satisfied.

On the other hand, in section 5 we observe that there are many geometries with
parallelism. There are also some cases where we do not know whether Γ admits a
parallelism (see §5.4 for instance).

5. We have defined partial parallelism mainly with a thought for affine polar

spaces (see Pasini [32]) but we shall not work further with partial parallelisms.
We do not seriously try to integrate buildings of affine type to the present context

but it may be worth the effort in some future work.

2.2.3 The geometry at infinity

Let (Γ, 0, ‖) be a geometry with parallelism over the type set I , with Γ = (X, ∗, t).
Let x be an element of some type i 6= 0. The equivalence class of ‖ containing x is
denoted by ∞(x) and we call it the direction of x or the element at infinity of x.

We also call it an i-direction.
We define the geometry at infinity Γ∞ of (Γ, 0, ‖) as follows. The set of types

is I\{0}. For i ∈ I\{0}, the elements of type i are the i-directions. Incidence is
defined by the following rule: if x ∗ y, then ∞(x) ∗∞(y).

Theorem 2.1 If (Γ, 0, ‖) is a geometry with parallelism over the type set I, then
for any point p of Γ, the residue Γp is isomorphic to the geometry at infinity Γ∞. In
particular, Γ∞ is a geometry.

Proof. Straightforward. 2

It will be clear from section 4 that every firm geometry can be viewed as the
geometry at infinity of some geometry with parallelism. This is also implicit in a
construction of Buekenhout, Dehon and De Schutter ([8], §3 example 2).

2.2.4 Trivial parallelism

Given a geometry Γ with 0-parallelism ‖ and a type i 6= 0, we say that ‖ is trivial
at i if for any two elements x, y of type i, we have x ‖ y only if x = y. A parallelism
‖ is said to be trivial if it is trivial at every type i 6= 0.

Let ∆0 be the connected component of 0 in a diagram ∆ of Γ. Then for any
i 6∈ ∆0, ‖ is trivial at i. The same holds if every i-element of Γ is incident with every
0-element of Γ. In particular, if Γ is a geometry over the diagram ∆ and if 0 is an
isolated node of ∆, then Γ admits a unique 0-parallelism which is the trivial one.

On the other hand, if Γ is a residually connected geometry over a finite diagram ∆,
with a 0-parallelism which is trivial at i, then the types i and 0 are not joined in ∆.
In particular, if ‖ is the trivial parallelism on Γ, then 0 is an isolated node of ∆.
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2.3 Truncations, residues and subgeometries

Let (Γ, 0, ‖) be a geometry with parallelism over the set of types I . The following
lemmas are straightforward.

Lemma 2.2 For any subset J of I with 0 ∈ J and |J |≥ 2, the J-truncation JΓ of

Γ is a geometry with parallelism for the parallelism inherited from ‖.

Lemma 2.3 For a flag F of Γ, with 0 6∈ t(F ) and |I\t(F )|≥ 2, the residue ΓF of

F is a geometry with parallelism for the parallelism inherited from ‖.

Lemma 2.4 Let Γ′ = (X ′, ∗′, t′) be a subgeometry of Γ of rank ≥ 2 with 0 ∈ I ′ =
t′(X ′). Assume that for every choice of p, x ∈ X ′ with t′(p) = 0 and every y ∈ Γp,
if y ‖ x then y ∈ X ′. Then Γ′ is a geometry with parallelism.

2.4 Some conditions for the existence of parallelisms

Let Γ be a geometry over I . In this section we introduce a few conditions that Γ
must verify in order to admit a 0-parallelism.

First Γp ∼= Γq for any two points p, q. This is an obvious consequence of Theorem
2.1. Assume now that Γ is a finite geometry having orders. In this case, the number
Ni,0 divides N0 for any i ∈ I\{0}, because the members of an i-direction partition

the pointset of Γ. From this easy remark we deduce that a linear space Γ of orders
(s, t) where s is the 0-order and s+1 does not divide t, cannot admit a 0-parallelism.
This is the case for the linear spaces of orders (1, q) with q odd and for every even
dimensional projective geometry.

Another easy observation is that for any i ∈ I\{0}, there must exist Ni/N0,i

pairwise disjoint i-elements of Γ. For instance, let Γ belong to the following diagram

(Ln) • • • ..... • •
L L L

Then Γ can admit a parallelism only if 0 is the left end node of the diagram.

By Lemma 2.2, the above properties must be verified in every residue containing
0-elements. Consequently, any geometry with a residual projective plane over {0, i}
for some i cannot admit a 0-parallelism, and so the An-, Dn-, En-, Ãn-geometries

cannot admit any parallelism, as well as the truncations of rank n projective geome-
tries on the subspaces of dimension ≤ j, with 2 ≤ j < n.

2.5 Parallel-preserving isomorphisms

We recall that, according to the convention of §2.1.3, all isomorphisms and auto-
morphisms are assumed to be type-preserving.

Let (Γ, 0, ‖) and (Γ′, 0, ‖′) be two geometries with 0-parallelism and with the same

geometry at infinity. Each isomorphism α from Γ to Γ′ maps ‖ onto a 0-parallelism
of Γ′. Indeed the relation ‖α defined on the elements of X ′\X ′0 by x′ ‖α y′ if and
only if α−1(x′) ‖ α−1(y′), is a 0-parallelism of Γ′.
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An isomorphism α : Γ −→ Γ′ is said to be parallel-preserving if the relations ‖α
and ‖′ coincide. In particular, an automorphism α of Γ is parallel-preserving if ‖
and ‖α coincide.

It is straightforward to see that an isomorphism α : Γ −→ Γ′ is parallel-preserving
if and only if x ‖ y implies α(x) ‖ α(y). If α is parallel preserving, we also say that
α is an isomorphism of (Γ, 0, ‖) onto (Γ′, 0, ‖′).

We denote by Aut(Γ, ‖) the group of all parallel-preserving automorphisms of Γ.

A fundamental observation is that ‖ may be sometimes built-in Γ already, a fact
that we formalize by the property that Aut(Γ) = Aut(Γ, ‖). In this case we call

(Γ, 0, ‖) a geometry with rigid parallelism. This is of course the case for every geom-
etry admitting a unique parallelism, and so in particular for any affine geometry.

The group A = Aut(Γ, ‖) acts as an automorphism group on Γ∞ where it induces
a group A∞ which can be the full automorphism group Aut(Γ∞). In the latter case

Γ∞ is called complete.

For instance, if Γ is an affine geometry of dimension d ≥ 3, then Γ∞ is complete.
A typical situation where Γ∞ is not complete is provided by the case where Γ is an
affine plane and more generally, by the case where Γ is of rank 2. However, there

are also non-complete geometries of higher rank (see §7.4.1).

The action on Γ∞ of a parallel-preserving automorphism α will be denoted by
α∞. The kernel K∞ of the homomorphism of A onto A∞ is the group of dilatations,

namely those parallel-preserving automorphisms that fix each element at infinity.

Clearly, each orbit of K∞ on the set of elements of Γ not of type 0 is contained
in one class of ‖.

Theorem 2.5 If K∞ is transitive on the set of points of Γ, then its orbits on the

set of elements of Γ not of type 0 are just the classes of ‖.

Proof. Given elements x, y of Γ with x ‖ y, let p, q be points incident with x and
y respectively. If K∞ is point-transitive, then there is an element β of K∞ mapping
p onto q. We have β(x) ‖ x. Hence β(x) = y, since both β(x) and y are incident

with the point q. 2

The following is an easy consequence of Theorem 2.5:

Corollary 2.6 Let K∞ be point-transitive on Γ. Then A is the normalizer of K∞

in Aut(Γ).

Given a point p of Γ, let Ap be its stabilizer in A and let A∞p be the image of Ap

by the homomorphism of A onto A∞.

Lemma 2.7 If K∞ is point-transitive on Γ, then A∞p = A∞.

Proof. Let K∞ be point-transitive on Γ. Then, given any α ∈ A, we can always
find an element β of K∞ such that βα ∈ Ap. Clearly, (βα)∞ = α∞. Hence A∞p =
A∞. 2
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2.6 J-parallelism

In this section, we introduce the concept of J -parallelism that will be useful in
section 3. To define a J -parallelism, we replace 0-elements by flags of a fixed type
J in the definition of 0-parallelism. More precisely, let Γ = (X, ∗, t) be a geometry

over the type set I = J ∪ K, where J and K are disjoint and nonempty. The
J-pointed geometry associated to Γ is the geometry Γ′ over {0} ∪ K constructed
from Γ by taking as 0-elements the flags of type J of Γ and as k-elements, k ∈ K,

the k-elements of Γ, with the incidence inherited from Γ. Denote by XK the set
of elements of Γ whose type is in K. A J-parallelism on Γ is a binary equivalence
relation ‖ on XK that defines a 0-parallelism of Γ′. The concepts of J -parallelism and
0-parallelism are very close, the only difference being about the objects we decide

to take as points. Thus, we use the same notation and the same terminology for
J -parallelism as for 0-parallelism (the symbol (Γ, J, ‖), the expressions “geometry
at infinity”, “parallel-preserving”, etc. ...).

3 Gluing

As mentioned in the introduction, the idea of gluing is to start with a family of
at least two geometries with parallelism whose geometries at infinity have been
isomorphically identified and to construct a new geometry from these data.

3.1 The construction

Let I be a set of types of size at least 2 and let 0 ∈ I . Let G be a family of

geometries over I with a 0-parallelism, say G = {(Γj , 0, ‖j)}j∈J where J is a finite set
of n elements, 2 ≤ n. We assume that all geometries at infinity Γ∞j are isomorphic
to some given geometry Γ∞ and we fix a family A = {αj}j∈J of isomorphisms

αj : Γ∞j −→ Γ∞, which we call matching isomorphisms.

We now define a glued geometry or gluing Γ = Γ(G,A) over the set of types

(I\{0}) ∪ OJ , where OJ = {0j}j∈J . For j ∈ J , the elements of Γ of type 0j are
the elements of Γj of type 0. As elements of type i ∈ I\{0}, we take the n-tuples
(xj)j∈J , where xj is an element of Γj of type i and αj(∞(xj)) = αh(∞(xh)) for
any j, h ∈ J . We decide that any two elements x, y of respective types 0j , 0k with

j 6= k, are incident. Also, we decide that an element (xj)j∈J of type i ∈ I\{0} and
an element y of type 0j are incident precisely when y ∗ xj in Γj . Finally, we put
(xj)j∈J ∗ (yj)j∈J if and only if xj ∗ yj in Γj , for all j ∈ J .

For the rest of this section we develope a theory of gluings, postponing the
discussion of examples to section 6.

3.2 A natural parallelism in glued geometries

Let Γ be a glued geometry, with set of types (I\{0}) ∪ OJ . Given i ∈ I\{0}, let
x = (xj)j∈J be an i-element of Γ. We have αj(∞(xj)) = αk(∞((xk)) for j, k ∈ J by
the definition of glued geometries. Thus, we set ∞(x) = αj(∞(xj)).
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This observation allows us to define a OJ-parallelism ‖J on Γ by stating that, for
any two elements x, y of Γ of the same type i ∈ I\{0}, we have x ‖J y if and only if

∞(x) =∞(y). Clearly, the geometry at infinity of (Γ, OJ , ‖J) is isomorphic to Γ∞.
From now on, we will use the expression “parallel-preserving” when dealing with

the geometries (Γj , 0, ‖j). When speaking of (Γ, OJ , ‖J), we will use the expression
“‖J -preserving”.

3.3 Residues and diagrams

Given G and A as in 3.1 and j ∈ J , we set Gj = G\{Γj} and Aj = A\{αj}. Provided
that n > 2, there is an obvious gluing Γ(Gj,Aj). We extend this notation to the
case n = 2 by the convention that Γ(Gj,Aj) is Gj. The following is straightforward

Theorem 3.1 Let Γ = Γ(G,A) be a glued geometry and let p be an element of type
0j in Γ. Then Γp ∼= Γ(Gj,Aj).

We shall now describe residues of elements of type i 6∈ OJ in a glued geometry

Γ = Γ(G,A). If |I |= 2, then the residues of the elements of Γ of the unique type of
I\{0} are just direct sums of geometries of rank 1.

Assume |I |> 2. For every j ∈ J , let Γj,x be the residue of xj in Γj with the

parallelism inherited from ‖j (Lemma 2.3) and let αj,x : Γj,x −→ Γ∞∞(x) be the
restriction of αj to Γj,x. Put Gx = {Γj,x}j∈J and Ax = {αj,x}j∈J . Clearly, there is a
gluing Γ(Gx,Ax). It is straightforward to prove that Γx ∼= Γ(Gx,Ax).

Theorem 3.1 and the construction of the glued geometry Γ allow to derive a

diagram for Γ, from diagrams ∆j for the Γj , j ∈ J in which the same diagram is
induced on I\{0}. Applying Theorem 3.1 inductively over j ∈ J , we see that a
diagram for Γ is obtained by pasting the diagrams ∆j, j ∈ J , over I\{0}.

3.4 Isomorphisms and automorphisms

We recall that, according to the convention of §2.1.3, all isomorphisms and auto-

morphisms are assumed to be type-preserving.

3.4.1 Gluing families of isomorphisms

Let G = {(Γj , 0, ‖j)}j∈J and G ′ = {(Γ′j, 0, ‖′j)}j∈J be two families of geometries with
parallelism, over the same set of types I , with the same selected type 0 and the same
geometry at infinity Γ∞. Let A = {αj}j∈J and A′ = {α′j}j∈J be families of matching
isomorphisms αj : Γ∞j −→ Γ∞ and α′j : (Γ′j)

∞ −→ Γ∞, and let F = {ϕj}j∈J be a

family of parallel-preserving isomorphisms

ϕj : (Γj , 0, ‖j) −→ (Γ′j , 0, ‖′j).

For every j ∈ J , ϕj induces an isomorphism ϕ∞j from Γ∞j to (Γ′j)
∞, uniquely deter-

mined by the following clause: ∞(ϕj(x)) = ϕ∞j (∞(x)) for every element x of Γj of

type i 6= 0.
If α′jϕ

∞
j α
−1
j is independent on the choice of j ∈ J , we put ϕ = α′jϕ

∞
j α
−1
j and we

say that F has a unique action on Γ∞. In this case we can define an isomorphism
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ΦF from the glued geometry Γ = Γ(G,A) to the glued geometry Γ′ = Γ(G ′,A′) as
follows. If x is an element of Γ of type 0j, then we put ΦF (x) = ϕj(x). Given

an element x = (xj)j∈J of Γ of type i 6∈ OJ , we set ΦF (x) = (ϕj(xj))j∈J . It is
straightforward to check that ΦF is indeed an isomorphism. We call it the gluing of
F , also a glued isomorphism.

Notice that starting from a glued isomorphism Φ : Γ −→ Γ′ we can uniquely
reconstruct the family F of which Φ is the gluing. Furthermore, if Φ : Γ −→ Γ′ is
a glued isomorphism, then ∞(x) = ∞(y) implies ∞(Φ(x)) = ∞(Φ(y)) for any two

elements x, y of Γ of type i 6∈ OJ , in other words, Φ is ‖J-preserving.

Lemma 3.2 An isomorphism Φ from Γ to Γ′ is a glued isomorphism if and only if

it is ‖J-preserving.

Proof. We have already observed that the “only if” claim is true. Let us prove

the “if” statement. Let Φ : Γ −→ Γ′ be a ‖J-preserving isomorphism. We shall
define a family F = {ϕj}j∈J of parallel-preserving isomorphisms

ϕj : (Γj, 0, ‖j) −→ (Γ′j, 0, ‖′j)

such that Φ = ΦF . Every element x of Γj of type 0 can be viewed as an element of
Γ of type 0j . We set ϕj(x) = Φ(x) for every such element.

Given k ∈ J and an element z of Γk of type i ∈ I\{0}, we choose an element
x = (xj)j∈J of Γ such that xk = z. Let (x′j)j∈J = Φ(x). We set ϕk(z) = x′k. This
clause defines a function. Indeed, let y = (yj)j∈J be another element of Γ of type i

with yk = z and let (y′j)j∈J = Φ(y). As Φ is ‖J-preserving and xk = yk = z, we have
∞(x′k) =∞(y′k). On the other hand, if p is an element of Γk of type 0 incident with
z, then x ∗ p ∗ y in Γ. Hence Φ(x) ∗ Φ(p) ∗ Φ(y). That is, x′k ∗ ϕk(p) ∗ y′k. Therefore
x′k = y′k, since these elements are parallel and incident with the same point of Γ′k.

Thus ϕk is well-defined.
It is not difficult to check that ϕk is in fact an isomorphism from (Γk, 0, ‖k) to

(Γ′k, 0, ‖′k). Moreover, α′jϕ
∞
j α
−1
j (∞(x)) = ∞(Φ(x)) for any i-element x with i ∈

I\{0}. Consequently, we can define the glued isomorphism ΦF where F = {ϕj}j∈J .
It is easy to see that Φ = ΦF . 2

3.4.2 Isomorphisms and the property (O)

Let (O) denote the following axiom:

(O) distinct elements of the same type have different 0-shadows.

Let Γ = Γ(G,A) and Γ′ = Γ(G ′,A′) as in the previous paragraph §3.4.1.

Theorem 3.3 If all members of G ′ verify axiom (O), then all isomorphisms from

Γ to Γ′ are glued isomorphisms.

Proof. Let (O) hold in Γ′j for every j ∈ J and let Φ be an isomorphism from
Γ to Γ′. We shall show that Φ is ‖J -preserving. Then the conclusion will follow
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from Lemma 3.2. Given x = (xj)j∈J and y = (yj)j∈J with ∞(y) = ∞(x), let
(x′j)j∈J = Φ(x) and (y′j)j∈J = Φ(y). We firstly suppose xk = yk for some k ∈ J . We

have σ0(x′k) = Φ(σ0(xk)) and σ0(y′k) = Φ(σ0(yk)) because Φ is an isomorphism and
the elements of Γk and Γ′k of type 0 can be viewed as elements of type 0k of Γ and Γ′

respectively. Hence x′k and y′k have the same 0-shadow. Therefore x′k = y′k by (O).
Thus, ∞(Φ(x)) = α′k(∞(x′k)) = α′k(∞(y′k)) =∞(Φ(y)).

Let now xj 6= yj for every j ∈ J . Choose k ∈ J and set zj = xj if j 6= k and
zk = yk. Then z = (zj)j∈J is an element of Γ, because αj(∞(xj)) = αk(∞(yk)) =
∞(x) = ∞(y). Clearly, ∞(z) = ∞(x) = ∞(y). The previous argument applied to

x and z and to z and y now yields∞(Φ(x)) =∞(Φ(z)) =∞(Φ(y)). 2

3.4.3 Isomorphism classes of gluings

In this paragraph we consider one family G = {(Γj , 0, ‖j)}j∈J of geometries with
parallelism and two families A = {αj}j∈J and B = {βj}j∈J of matching isomor-

phisms. Thus Γ = Γ(G,A) and Γ′ = Γ(G,B) are two gluings of the same family of
geometries. As in §2.5, we denote by A∞j the action at infinity of Aj = Aut(Γj, ‖j).
We set αj(A

∞
j ) = {αjβα−1

j | β ∈ A∞j }. Clearly, αj(Aj) is a subgroup of the group

Aut(Γ∞) of automorphisms of Γ∞.

Observe that for each automorphism ε of Γ∞, Γ = Γ(G,A) ∼= Γ′ = Γ(G,A′),
where A′ = {εαj}j∈J . Indeed, it is straightforward to construct a glued isomorphism
from Γ onto Γ′ (intuitively, the construction of Γ(G,A) is independent of the choice

of a geometry in the isomorphism class of Γ∞).

Lemma 3.4 Let all members of G satisfy property (O). Then Γ ∼= Γ′ if and only if
αjβ

−1
j βkα

−1
k ∈ αj(A∞j )αk(A

∞
k ) for any two distinct indices j, k ∈ J .

Proof. By (O) and Theorem 3.3, Γ ∼= Γ′ if and only if there are automorphisms
ϕ∞j ∈ A∞j (for j ∈ J) such that βkϕ

∞
k α
−1
k = βjϕ

∞
j α
−1
j for a given k ∈ J and for each

j ∈ J . These conditions are equivalent to the following: β−1
j βk ∈ A∞j α−1

j αkA
∞
k for

every j ∈ J . The statement is now evident. 2

We say that G admits a unique gluing if, for any to families A, B of matching

isomorphisms, there is an isomorphism between Γ(G,A) and Γ(G,B).

We say that a group G admits factorization over a family {Gj}j∈J of its subgroups
if G = Gk.

⋂
j∈J\{k}Gj for every k ∈ J .

Theorem 3.5 Let (O) hold in all members of G. Then the following are equivalent:

(i) G admits a unique gluing;

(ii) the group Aut(Γ∞) admits factorization over {αj(A∞j )}j∈J for some family
{αj}j∈J of matching isomorphisms;

(iii) the group Aut(Γ∞) admits factorization over {αj(A∞j )}j∈J for every family
{αj}j∈J of matching isomorphisms.

Proof. Clearly, (iii) implies (ii). Let us prove that (ii) implies (i). We use induction
on n =|J |. If n = 1 there is nothing to prove.
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Let n > 1 and let A = {αj}j∈J be as in (ii). Let B = {βj}j∈J be any other family
of matching isomorphisms and choose k ∈ J . We shall prove that Γ(G,A) ∼= Γ(G,B).

By induction, Gk = G\{Γk} admits a unique gluing. By Theorem 3.3, there are
elements ϕj of Aj (for j ∈ J\{k}) and ϕ ∈ Aut(Γ∞) such that

(1) βjϕ
∞
j = ϕαj

for every j ∈ J\{k}. Put γ = βkα
−1ϕ−1. As Aut(Γ∞) admits factorization over A,

there are elements ψj of Aj and θ ∈ Aut(Γ∞) such that

(2) ϕαjψ
∞
j α
−1
j ϕ−1 = θ

for every j ∈ J\{k} and
(3) θϕαkϕ

∞
k α
−1
k ϕ−1 = γ.

By (1) and (2) we get
(4) θϕαj = βjϕ

∞
j ψ

∞
j

whereas (3) gives us

(5) θϕαk = γϕαk(ψ
∞
k )−1 = βk(ψ

∞
k )−1.

(4) and (5) show that we can glue the automorphisms ψ−1
k and ϕjψj (with j ∈ J\{k})

thus obtaining a glued isomorphism Φ : Γ(G,A) −→ Γ(G,B) with θϕ as its “action
at infinity”. Thus, (i) is proved.

Finally, let G admit a unique gluing. Let A = {αj}j∈J be any family of matching
isomorphisms. Given an automorphism ψ of Γ∞ and an index k ∈ J , we consider
the family Ak = {ψαk} ∪ {αj}j∈J\{k}. Since G admits a unique gluing, Γ(G,A) ∼=
Γ(G,Ak). By Theorem 3.3 there are elements ϕj ∈ Aj and an automorphism ϕ of Γ∞

such that ϕαj = αjϕ
∞
j for j ∈ J\{k} and ϕψαk = αkϕ

∞
k . Therefore ϕ = αjϕ

∞
j α
−1
j

for every j ∈ J\{k}. Furthermore ψ = ϕ−1αkϕ
∞
k α
−1
k . Hence ϕ ∈ ⋂j∈J\{k} αj(A∞j ).

Therefore

ψ ∈ (
⋂

j∈J\{k}
αj(A

∞
j )) · αk(A∞k ).

Since ψ and k are arbitrary elements of Aut(Γ∞) and J , Aut(Γ∞) admits factoriza-

tion over {αj(A∞j )}j∈J . 2

3.4.4 Automorphism groups of glued geometries

Again, let G = {(Γj, 0, ‖j)}j∈J be a family of geometries with parallelism, A =
{αj}j∈J a family of matching isomorphisms and let Γ = Γ(G,A).

Note that, by Theorem 3.3, if (O) holds in all members of G, then Γ has a rigid
parallelism (i.e. Aut(Γ, ‖J) = Aut(Γ)).

Let A∞j and αj(A
∞
j ) be as in §3.4.4 and let K∞j be the group of dilatations of

(Γj , 0, ‖j) (see §2.5). We set A∗ =
⋂
j∈J αj(A

∞
j ). The following is a straightforward

consequence of Lemma 3.2

Theorem 3.6 Aut(Γ, ‖J ) = (
∏
j∈J K

∞
j ).A∗, where A∗ acts on the direct product∏

j∈J K
∞
j stabilizing each of its factors. Furthermore, A∗ acts as α−1

j (A∗) on K∞j ,
for every j ∈ J .
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Corollary 3.7 Assume that, for some k ∈ J , the subgroup K∞k .α
−1
k (A∗) of Ak is

flag-transitive on Γj for some k ∈ J and K∞j is point-transitive on Γj for every
j ∈ J\{k}. Then Aut(Γ, ‖J ) is flag-transitive on Γ.

Proof. Easy, by Theorem 3.8. 2

Corollary 3.8 Let K∞j be transitive on the set of points of Γj for every j ∈ J .

Then Aut(Γ, ‖J) is flag-transitive on Γ if and only if A∗ is flag-transitive on Γ∞.

Proof. Easy, by Lemma 2.7. 2

3.4.5 Gluing two copies of a geometry with parallelism

In this section, we consider the particular case where G = {(Γj, 0, ‖j)j=1,2 and where
(Γ1, 0, ‖1) and (Γ2, 0, ‖2) are two copies of a geometry with parallelism (Γ, 0, ‖).
Clearly, we can assume without loss of generality that Γ∞1 = Γ∞2 = Γ∞ and A∞1 =
A∞2 = A∞, where A∞ is the action of Aut(Γ, ‖) on Γ∞, as in §2.5. Thus, the
matching isomorphisms αj are just automorphisms of Γ∞. Consequently, using an
observation made at the beginning of §3.4.3, every gluing Γ(G,A) is isomorphic to

a gluing Γα = Γ(G, {id, α}) where id is the identity automorphism of Γ∞ and α is
an automorphism of Γ∞.

Theorem 3.9 The isomorphism classes of gluings of two copies of (Γ, 0, ‖) bijec-
tively correspond to the double cosets A∞αA∞, α ∈ Aut(Γ∞).

Proof. Let Γα and Γβ be two gluings. By Lemma 3.4, Γα ∼= Γβ if and only if

β ∈ A∞αA∞. 2

Corollary 3.10 Assume that (O) holds in Γ. There is a unique way to glue two

copies of (Γ, 0, ‖) if and only if Γ∞ is complete.

Proof. Easy, by Theorem 3.9. 2

By Theorem 3.6 we have Aut(Γα, ‖J) = (K∞ × K∞).(A∞ ∩ α(A∞)). Thus,
Aut(Γα, ‖J) is “maximal” (that is, as large as possible) precisely when α normalizes
A∞. In particular, if α ∈ A∞, then Aut(Γα, ‖J ) is “maximal”.

It follows from Theorem 3.9 that α ∈ A∞ if and only if Γα ∼= Γid. We call Γid
the canonical gluing of two copies of (Γ, 0, ‖).

3.5 Twisted gluings

We have assumed that matching isomorphisms are type-preserving in the previous
sections. However, we can also drop that requirement in the definition of gluings.

Thus, given I , 0, G and Γ∞ as in §3.1, we consider a family A = {αj}j∈J of

possibly non type-preserving isomorphisms αj : Γ∞j −→ Γ∞, which we still call
matching isomorphisms. Denoting by τj the permutation induced by αj on I\{0},
we set T = {τj}j∈J and we call T the set of type-permutations induced by A.
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We generalize the definition of §3.1 as follows. When defining an element x =
(xj)j∈J of type i ∈ I\{0}, we assume that τj(t(xj)) = i for every j ∈ J instead of

t(xj) = i. All the rest is as in §3.1.
We still use the symbol Γ(G,A) for the geometry obtained by this construction.

We call Γ(G,A) a T -glued geometry. Gluings as defined in §3.1 will be called plain,
when the context will not suffice to make it clear that we are speaking of them.

Clearly, we can turn every non-plain gluing Γ(G,A) into a plain one by applying
τj to the type set of Γ∞j , for every j ∈ J . Consequently, as long as we do not
want to identify the members of G, we can always assume that Γ(G,A) is a plain

gluing, and so everything we said on plain gluings in §§3.2-3.4 holds for non-plain
gluings ( modulo some obvious changes), except in §3.4.5, where some identification
is assumed between the geometries to glue. In contexts like this we really need to
distinguish between non-plain and plain gluings.

Let Γ(G,A) be a T -glued geometry. If there are distinct types j, k in J such that
τj 6= τk, then Γ(G,A) is called a twisted gluing.

We now adapt statement 3.9 for twisted gluings. From now on, (Γ, 0, ‖) is a
geometry with parallelism over the type set I . We assume that Γ verifies (O). An

argument as in the proof of Lemma 3.4 yields the following:

Theorem 3.11 If σ and τ are distinct permutations of I\{0} induced by auto-

morphisms of Γ∞, then the isomorphism classes of {σ, τ}-gluings of two copies of
(Γ, 0, ‖) bijectively correspond to the double cosets A∞αA∞, where α ranges over a
right coset ϕ.Aut(Γ∞) of the group Aut(Γ∞) of type-preserving automorphisms of
Γ∞, with ϕ an automorphism of Γ∞ inducing σ−1τ on I\{0}.

Permuting the types in I\{0} if necessary, we can always assume that σ = id.
Namely, every {σ, τ}-gluing with σ 6= id is isomorphic to a {id, σ−1τ}-gluing via

some non type-preserving isomorphism. By this remark and by Theorem 3.11 we
obtain the following generalization of Theorem 3.9 for (possibly twisted) gluings:

Corollary 3.12 The number of non-isomorphic (possibly twisted) ways of gluing
two copies of (Γ, 0, ‖) equals the number of double cosets A∞αA∞ in the group of all
(possibly non type-preserving) automorphisms of Γ∞.

3.6 Parallelisms in glued geometries

In §3.2, we defined a OJ -parallelism in every glued geometry Γ = Γ(G,A) over
(I\{0})∪OJ . By definition, the OJ-pointed geometry associated to Γ is a geometry
over I with a 0-parallelism. Consequently, starting from a family G = {(Γj, 0, ‖j
)}j∈J of geometries over I with a 0-parallelism and whose geometries at infinity are

isomorphic to Γ∞, we can construct a new geometry Γ′ over I with a 0-parallelism
and such that Γ′∞ is isomorphic to Γ∞.

We can also define 0k-parallelisms ‖k on Γ as follows. Let k ∈ J . Given two
elements x = (xj)j∈J and y = (yj)j∈J of Γ of type i ∈ I\{0} we set x ‖k y if xj = yj
for every j ∈ J\{k}. We decide that ‖k is trivial at every type 0j , j ∈ J\{k}
(see §2.6). It is easy to check that the relation ‖k defined in this way is actually a
parallelism of Γ.
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Notice that the geometry at infinity of (Γ, 0k, ‖k) is isomorphic to Γ(Gk,Ak).
(This follows from theorems 2.1 and 3.1.)

4 Parallel expansion

4.1 The setting

In [8] a very general construction of geometries is given, starting from an affine space
A, some geometry Γ and an injective mapping from the set of “points” of Γ into
the set of points at infinity of A. This method provides many interesting diagram

geometries. A classical ancestor of this method is to start rather with a subgeometry
Γ of the projective space at infinity of A. Then the affine expansion of Γ is described
and illustrated in [30] (2.3). The idea of the construction is to consider all affine

subspaces of A whose subspace at infinity is a member of Γ.

In this section we generalize the construction of [8] as we replace A by any
geometry with parallelism. We do also slightly modify the construction of [8] and
so, formally speaking, it is a variation of [8] even in the affine case.

4.2 The initial data

Let (A, 0, ‖) be a firm geometry with parallelism over a set of types I with 0 ∈ I and
1 ∈ I\{0}. This is the geometry in which our process of expansion will occurr. We
shall need its “points at infinity”. This is the reason to distinguish a second type 1

in I .

The next data is the geometry we want to expand in A. Let Γ be a firm geometry
over some set of types J ∪K, with J ∩K = ∅ and K 6= ∅. The k-elements of Γ with
k ∈ K are the elements we shall relate to the 1-elements of A∞. We assume that

0 6∈ J ∪K.

For each k ∈ K, let αk be an injective mapping of the set Xk of k-elements of
Γ into the set of 1-elements of A∞. These are the mappings relating the k-elements
of Γ with k ∈ K to the 1-elements of A∞. We assume that for each k 6= k′ in K,

αk(Xk) ∩ αk′(Xk′) = ∅.
Given a flag F of Γ, we set B∞(F ) =

⋃
k∈K αk(σk(F )).

4.3 Flats and dense sets

The following definitions are needed in view of the construction we shall describe in

§4.4.

Given any set B∞ of elements of A∞, every 0-element a of A determines a cone
with vertex a and basis B∞, say A(a,B∞), consisting of all elements y incident with
a and such that ∞(y) ∈ B∞.

A set S of 0-elements of A is called B∞-closed if, for any a ∈ S and any y ∈
A(a,B∞), all 0-element of A incident with y belong to S. Intersections of B∞-closed
sets are B∞-closed. Hence any set of 0-elements has a B∞-closure. We call the B∞-
closure of a 0-element a B∞-flat. A B∞-flat is the B∞-closure of any of its elements.
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Hence, given a set B∞ of elements of A∞, every 0-element of A belongs to precisely
one B∞-flat. Thus, it is natural to say that the B∞-flats are mutually parallel.

A(a,B∞) is a geometry if and only if B∞ is a geometry. If this is the case, a

B∞-flat S is always connected, in this sense: the set A(S) =
⋃
a∈S A(a,B∞) with

the incidence inherited from A is a connected geometry. Let A(S) be a geometry.
Then the 0-parallelism of A induces a 0-parallelism on A(S) and A(S)∞ = B∞.

B∞ is called dense if the set of all 0-elements of A is one B∞-flat (hence it is the

unique B∞-flat in A).

For example if A is an affine plane, then any subset of A∞ of cardinality ≥ 2 is
dense. If A is the point-line system of AG(n,K), then A∞ is the set of points of
the geometry at infinity PG(n−1, K) of AG(n,K) and the dense subsets of A∞ are
those spanning A∞ in PG(n − 1, K).

4.4 The construction

Starting with the triple ((A, 0, ‖),Γ, {αk}k∈K) as in §4.2, we want to define a geom-
etry with parallelism (Γ, 0, ‖′) over J ∪K ∪ {0}.

We define the 0-elements of Γ as the 0-elements of A. For k ∈ K, the k-elements

of Γ are the αk(xk)-flats where xk is a k-element of Γ. In other words, the k-elements
of Γ are the 1-elements L of A such that ∞(L) ∈ αk(Xk). We denote an αk(xk)-flat
by a(xk) or a′(xk) or ... For j ∈ J the j-elements of Γ are the pairs a(xj) = (b(xj), xj)
where xj is a j-element of Γ and b(xj) is a B∞(xj)-flat. The type function of Γ will

be denoted by t, as the one of Γ.

For h ∈ K (resp. h ∈ J), a h-element a(xh) is declared to be incident with all
its 0-elements (resp. all the 0-elements of b(xh)). Let h, h′ ∈ J ∪ K. We declare
a(xh) and a(yh′) to be incident in Γ if and only if a(xh) and a(yh′) have a common
incident 0-element and xh ∗ yh′ in Γ. We say that a(xh) ‖′ yh′ if and only if xh = yh′.

As in [8] we can have trouble with Γ of rank ≥ 3 in the sense that there might
be maximal flags with no 0-element. Moreover, if K ≥ 2 there could be flags of
type K incident with exactly one 0-element. We restrict the data of §4.2 in order
to avoid these situations and we call (Γ, 0, ‖′) the parallel expansion of Γ in (A, 0, ‖)
via {αk}k∈K provided that

(i) for every flag F of Γ there is a 0-element incident with all members

of F ;

(ii) every flag of Γ of type K is incident with at least two 0-elements.

If |K|= 1, condition (ii) always holds because A is assumed to be firm.

4.5 Some properties of parallel expansions

In [8] a theory is developed in order to ensure that Γ is a parallel expansion un-

der various suitable conditions. Here, we are not trying to extend that theory to
the present construction although it would be a valuable task. We only state the
following.
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Theorem 4.1 Let (Γ, 0, ‖′) be the parallel expansion of a geometry Γ in (A, 0, ‖) via
a family {αk}k∈K) of injections as in 4.4. Then the following hold:

(1) Γ is a geometry over J ∪K ∪ {0} and Γp ∼= Γ for any 0-element p of Γ;
(2) Γ is firm;
(3) (Γ, 0, ‖′) is a geometry with parallelism and Γ

∞ ∼= Γ;

(4) Γ belongs to a (0, K,∆)-diagram, with ∆ a diagram for Γ;

(5) assuming that J ∪K is finite, Γ is residually connected if and only if

the following are realized:
(5.1) Γ is residually connected;
(5.2)

⋃
k∈K αk(Xk) is dense in A∞;

(5.3) for every flag F of Γ such that t(F ) ∩K = ∅ and for every point p
of A, the B∞(F )-flat containing p is the intersection of the B∞(f)-flats
containing p for f ∈ F .

Proof. (1) In view of (i) of §4.4, if M is a maximal flag of Γ, M includes a 0-

element p and so M\{p} is a maximal flag of the residue Γp of p. Therefore M is of
type J ∪K ∪ {0} and Γ is a geometry. Clearly Γp ∼= Γ.

(2) Thanks to (ii) of §4.4 and the fact that Γp ∼= Γ is a firm geometry, Γ is firm.
(3) Thanks to an observation made in §4.3 it is easy to see that ‖′ is a parallelism.

Γ
∞ ∼= Γ follows from the isomorphism Γp ∼= Γ, stated in (2), and from Theorem 2.1.

(4) is straightforward.
(5) Let F be the set of flags F of Γ such that t(F ) ∩ ({0} ∪K) = ∅. First Γ is

residually connected if and only if (5.1) holds and for each F ∈ F , ΓF is connected.

It is easy to show that Γ is connected for each F ∈ F if and only if the ({0}∪K)-
truncation of ΓF is connected for each F ∈ F . Let us denote that truncation by
TF . If F = ∅ then TF is connected if and only if B∞(Xk) is dense in A∞. Assume

that F 6= ∅ and denote by X0 the set of 0-elements of ΓF . Let p ∈ X0 and let I
be the

⋂
f̄∈F B

∞(∞(f̄))-flat containing p. As I is included in X0, we have that TF

is connected if and only if X0 = I. Consequently, Γ is residually connected if and
only if (5.1), (5.2) and (5.3) hold. 2

4.6 Automorphisms

We state a useful set of sufficent conditions in order that Aut(Γ, ‖′) be flag-transitive
in the particular case where K is a singleton, say K = {1}.

Theorem 4.1 Let Γ be the parallel expansion of Γ in (A, 0, ‖) via one injective
mapping α from the set of 1-elements of Γ into the set of 1-elements of A∞. Assume
that the following conditions hold:

(1) the group of dilatations of A is point-transitive;
(2) Aut(Γ) is flag-transitive;
(3) α1 maps Aut(Γ) to a subgroup G∞ of Aut(A∞) restricted to α1(σ1(Γ));

(4) every element of G∞ extends to an automorphism of A.

Then Aut(Γ, ‖′) is flag-transitive.
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Proof. Straightforward. 2

4.7 Parallel expansions and affine expansions

From now on, we use the expression “affine expansion” instead of “parallel ex-
pansion” when the geometry A in which the expansion is made is an affine space
AG(n,K) and when the geometry Γ we want to expand is a subgeometry of A∞ =
PG(n− 1, K).

We insist on the fact that our affine expansions are more general than their
ancestors in [30]. Indeed, our affine expansions use S∞-flats, where S∞ is a set of
points of PG(n−1, K), whereas their ancestors need affine subspaces and these two
notions coincide only if S∞ is a projective subspace of PG(n− 1, K).

5 Examples of geometries with parallelism

5.1 A reminder

Various examples and means to construct more of them were explicitly mentioned
in earlier sections. Let us refer to §2.2.2 (affine geometries, block spaces with par-
allelism, graphs and their factorizations), to §2.3 (truncations, residues, subgeome-

tries) and let us recall that gluing (see §3.6) and affine expansions (previous section)
provide further constructions. In this section we shall expand on some of the pre-
ceding examples and we shall provide further ones.

5.2 Affine geometries

This is the central class of examples. We use the expression for all affine geome-
tries over a division ring, including those whose dimension is infinite, and it covers
also the non-desarguesian affine planes. These spaces can be submitted to rather
different approaches that are essentially equivalent but that provide also channels

for generalizations which are no longer equivalent. Let us underline here the re-
cent comparison and complete coherence of such approaches made at the level of
geometries over general rings by Schmidt [38].

5.2.1 The vector space or coset approach

Here, we start with a vector space V over a division ring. The affine geometry derived
from V consists of points, namely the elements of V , affine subspaces, namely the

cosets of all proper non-trivial vector subspaces of V , together with the obvious
parallelism (to be cosets of the same subspace of V ) and inclusion relation. This
construction extends only partially to non-desarguesian planes.

5.2.2 The projective space or hyperplane approach

Here the initial structure is a projective space P together with a distinguished hy-
perplane H. The affine geometry derived from these data consists of points (those of
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P\H), subspaces (the sets X\(X∩H) with X a proper subspace of P not contained
in H) and the parallelism determined by declaring X\(X ∩H) and Y \(Y ∩H) to

be parallel when X ∩H = Y ∩H.

5.2.3 The permutation group approach

This works for affine spaces over division rings. Here we think of a permutation group
defined on the set of affine points and of the group consisting of all dilatations: the

translations and the homoteties.

5.2.4 The axiomatic approach

We have no need here to enter into the details of this approach.

5.3 Nets and cartesian (or Hamming) spaces

5.3.1 Nets

Consider an affine plane A. Let Π be a nonempty set of parallel classes of lines of
A. Delete all lines that do not belong to a member of Π and keep all points as well
all other lines. What is left is a net. More generally, a net is a rank 2 geometry with

parallelism in which any two lines that are not parallel have exactly one common
point.

The simplest (connected) case of a net has exactly two parallel classes. These
objects are often called grids. They coincide essentially with any cartesian product
X × Y of two sets X and Y . This leads us to another situation.

5.3.2 Cartesian (or Hamming) spaces

Let X1, X2,..., Xn be (non necessarily distinct) nonempty sets and let X be the
cartesian product

∏n
i=1 Xi. We get an obvious rank n geometry Γ(X) with paral-

lelism, called a cartesian (or Hamming) space of dimension n. Its points are the
elements of X. Incidence is symmetrized inclusion. The hyperplanes or “maximal

subspaces” are the sets

X1 ×X2 × ...×Xi−1 × {a} ×Xi+1 × ...×Xn

with a ∈ Xi. All other elements of Γ(X) are intersections of hyperplanes. Γ(X)∞

is the thin projective geometry of rank n − 1 and Γ(X) belongs to the following
diagram

(Cn) •
points

• • ..... • •
hyperplanes

with order 1 at all nodes except possibly the first one. If all Xi have the same

size q + 1, then Γ(X) admits order q at the first node of the above diagram and it
is flag-transitive. In any case, Γ(X) is just the dual of a thin-lined polar space of
rank n (see [30], Chapter 1).
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Cartesian spaces generalize grids. It is conceivable to add further directions of
subspaces to them, as in the case of nets. The typical prototype is an affine space

in which some directions of subspaces are deleted.

5.4 Packings of projective spaces

Historically, projective spaces came as objects extending affine (actually euclidean)
spaces so as to make rid of parallelism. Also, it is obvious that a projective plane

cannot be equipped with a parallelism. It came as a rather surprising fact, first
observed by Clifford in 1882 (see Veblen-Young [41]) that the projective space of
dimension 3 over the reals can be equipped with a parallelism on its lines thus giving

us a rank 2 geometry of points and lines with parallelism. There is a rich literature
on this matter, especially in the finite case (see [14],[4],[2]).

Let P be a projective space of order q and dimension d ≥ 2. Consider the
geometry Γ of points and lines of P . As observed in 2.4, if Γ admits a parallelism

then d is odd. For d = 3, there is always a parallelism (see [14]). The same holds
for d odd if either d = 2i − 1 with i ≥ 2 or q = 2 (see [4],[2], [14]). The other cases
for d odd seem to be unsolved.

5.5 Parallelism in linear spaces

Since affine spaces and projective spaces, namely the main representatives of linear
spaces, go along so well with parallelism it is natural to look for further examples
involving linear spaces. We only consider 0-parallelisms where the 0-elements are
the points of the linear spaces because we noticed in §2.4 that there cannot exist

other parallelisms.

5.5.1 Witt-Bose-Shrikhande spaces

Let O be a hyperoval of a finite projective plane Π of even order q ≥ 4. It is well
known that the lines and the points of Π external to O with the incidence relation
inherited from Π form a linear space W with orders q/2− 1 and q, which is a called

a Witt-Bose-Shrikhande space (the points and the lines of W are respectively lines
and points of Π). Chosen a point p ∈ O, we set a ‖ b for two lines a, b of W if the
points a, b of Π are collinear with p. It is easy to see that ‖ is a parallelism of W.

5.5.2 Hermitian Unitals

Let H be a hermitian unital in Π = PG(2, q2). It is well known that the lines of Π
that are secants of H form a linear space H with orders (q, q2− 1) and H as the set

of points.
Choose a point p ∈ H and let L be the line tangent to H at p. For every line X

of Γ, set ∞(X) = X ∩ L if p 6∈ X and ∞(X) = X⊥ ∈ L if p ∈ X (with ⊥ denoting
the polarity of Π associated to H). Finally, we set X ‖ Y if ∞(X) = ∞(Y ). It is

straightforward to check that ‖ is a parallelism of H.
Note that, if q = 2, then H = AG(2, 3) and ‖ is the unique parallelism of

AG(2, 3).
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5.5.3 Ree Unitals

Let U be a Ree unital with orders q and q2−1 (see Buekenhout-Delandtsheer-Doyen

[9]). A basic property is that each line l of U is the set of fixed points of a unique
involution i(l). As a matter of fact, i(l) has a set of invariant lines other than l
which provide a partition of the set of points not on l. Using this, we can imitate
the construction made for hermitian unitals.

Choose a point p ∈ U . For every line l on p we decide that the parallels to l are
all lines invariant by i(l). Given a line m not on p, how do we find its parallel l on
p ? Well, i(m) maps p onto a point p′ 6= p and l is the line pp′.

5.5.4 Linear spaces from spreads

Let A be an affine space, P its projective space at infinity and S a spread of subspaces
of P , namely a family of projective subspaces, not necessarily of the same dimension,
that partitions the set of points of P . We derive a linear space with parallelism
whose points are those of A and whose lines are all affine subspaces X of A such

that ∞(X) ∈ S. The parallelism is inherited from A.

Famous examples are the translation planes and the two flag-transitive Hering
spaces on 36 points with lines of 32 points.

5.5.5 Projective hyperplanes

Here we apply inspiration from §5.2.2. Let L be a linear space and let H be a
projective (or geometric) hyperplane of it, namely a proper subspace of L such that
every line of L has at least one point in H. Deleting all points and all lines of L
in H we get a linear space with parallelism provided that any line not in H has at

least three points.

Conversely, from any linear space S with parallelism we get on the set of points

S∪S∞ a structure of linear space admitting S∞ as projective hyperplane with many
possible choices as to the lines contained in S∞.

5.5.6 Linear spaces over ternary rings

There are constructions of “affine spaces” over more or less restricted ternary rings
providing linear spaces with parallelism (see Nizette [28]).

5.5.7 Complete graphs

Let L be a finite linear space all of whose lines have exactly two points. That is, L

is a complete graph. A parallelism on L is the same concept as a 1-factorization of
the complete graph (§2.2.2, example 3), a subject extensively studied by Kőnig (see
Harary [15]; also [3]). Now L has at least one parallelism if and only if its number
of points is even. To prove the existence of a parallelism we describe a construction

of Kőnig [22]. Fix an element x of L. Denote by 0, 1,..., 2n − 2 the elements of
L\{x} and provide L\{x} with the addition modulo 2n − 1. For each i ∈ L\{x},
the parallel class of {x, i} is {x, i} ∪ {{i− j, i+ j}}1≤j≤n−1.
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According to a notation popular in graph theory, we denote L by Kn, where n
is the number of points of L.

The 1-factorization of K4 is obviously unique. The 1-factorization ‖ of K6 is
unique up to isomorphisms [23]. Let A = Aut(K6, ‖). It is straightforward to check
that the identity automorphism is the unique dilatation of A, namely A = A∞, and
that A∞ = Sym(5). Therefore the geometry at infinity K∞6 , being a set of size 5, is

complete (see §2.5).

It is quite remarkable that the flag-transitive parallelisms of Kn have been re-
cently classified in [12]. Apart from the point-line system of AG(n, 2) with its natural
parallelism, there are only 3 more examples with Aut(K2, ‖) flag-transitive. These

exceptional examples arise with n = 6, 12 and 28 and can be realized as the 6 points
of a hyperoval of PG(2, 4), as the 12 points of a non-degenerate conic of PG(2, 11)
and the 28 of the smallest Ree unital, respectively.

5.6 Graphs

We could produce many examples of parallelism in semilinear spaces, namely rank

2 geometries in which any two points are incident with at most one line. The nets
(see 5.3.1) are a particular case. The same holds true for graphs. Here all lines have
two points. On a graph, a parallelism is often called a 1-factorization. We provide

some explicit examples.

5.6.1 The octahedron

The octahedron with 6 vertices and 12 edges (namely, the complete 3-partite graph

with classes of size 2) has a parallelism, which is unique up to isomorphisms. This
can be obtained from the parallelism on the complete graph of 6 vertices by deleting
the three lines of some parallel class. That method applies as well to any hype-
roctahedron, viewed as a complete n-partite graph with all classes of size 2. We

warn that this parallelism cannot be extended to the faces of the hyperoctahedron
of dimension ≥ 2, by a remark made in §2.4.

5.6.2 Trees and dual grids

A 1-factorization can be defined on every tree of valency k. Let S be a set of k
colours. Start with a vertex x and give each of the k edges at x a colour of S such
that no two edges have the same colour. Then, do the same thing for every vertex y
adjacent to x, keeping in mind that the edge {x, y} has already got a colour. Repeat

this process for ever. At the end of ever, every edge will have got its own colour,
in such a way that distinct edges attached to the same vertex never share the same
colour. That is, we have defined a 1-factorization of that tree.

A 1-factorization can also be defined on every complete bi-partite graph Γ with

both classes of size n (that is a dual grid of order (1, n − 1)). Denote by {xi}i∈I
and {yi}i∈I the two classes of Γ. We can take any sharply 1-transitive set X of
permutations on I as line at infinity (for instance, X might be a cyclic group of
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order n). If ξ is the unique element of X mapping i onto j, then the line {xi, yj}
will be given ξ as point at infinity.

5.6.3 Cayley graphs

A graph with a parallelism can be seen as follows. It consists of a set S (of vertices
or points) and a family I of involutions of S having no fixed points and such that

any two distinct points are permuted by at most one member of I . The edges of the
graphs are the orbits of those involutions, two edges being parallel if they are orbits
of the same involution.

The Cayley graphs corresponding to a group G generated by a set I of elements

of order 2 constitute an important particular case.

5.7 Parallelism in generalized polygons

Every thin 2n-gon admits an obvious unique parallelism with two points at infinity.

A generalized quadrangle admits a 0-parallelism (resp. 1-parallelism) if and only
if we can partition its set of lines (resp. points) in spreads (resp. ovoids). We saw

in 5.3.1 and 5.6.2 that grids and dual grids with order admit parallelisms. Besides
grids and dual grids, the only known finite examples are the generalized quadrangles
of type T ∗2 (O), their duals and those of type AS(q) ([34] and [35], chapter 3; also
§7.4.2 of this paper).

In spite of this, not so many results are known stating that certain classes of
finite generalized quadrangles do not admit any partition of the set of lines (resp.
points) into spreads (resp. ovoids). The reader can see [35] (1.8.3, 1.8.5, 3.4.1, 3.4.2,
3.4.4) for some negative results of this kind.

How about generalized hexagons and octagons ?

5.8 Affine-like coset geometries

Let us consider a generalization of the vector space approach to affine geometry.

Let Γ = (X, ∗, t) be a geometry over a set of types I . This corresponds to the
projective geometry at infinity in the above case. Next, let G be a group (replacing

the vector space V ) and {Gx}x∈X a collection of subgroups of G (replacing the
subspaces of V ). We assume that I has no element called 0 and we create a new set
of types I = I ∪ {0}.

From the preceding data, we derive an affine coset geometry with parallelism Γ

over I. For i ∈ I , the i-elements of Γ are the cosets gGx with g ∈ G, x ∈ X and
t(x) = i. We put gGx ‖ hGy if and only if x = y. Finally, in a quite natural way, we
decide that g ∗ hGy if and only if g ∈ hGy and that gGx ∗ hGy if and only if x ∗ y
(in Γ) and gGx ∩ hGy 6= ∅.

It is easy to check that Γ is indeed a geometry with parallelism. Moreover
Γ
∞ ∼= Γ. Also, the group G acts as an automorphism group of Γ by left translation

and this action fixes each element at infinity.
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5.8.1 The normal case

The preceding data G, {Gx}x∈X, Γ may be called normal if, for every inner auto-
morphism α of G, there is an automorphism α ∈ Aut(Γ) such that α(Gx) = Gα(x)

for every x ∈ X. The automorphism group of Γ has a point stabilizer containing the

group of inner automorphisms of G (modulo the kernel of this action). In particular,
if this action is flag-transitive in Γ, then Aut(Γ) is also flag-transitive.

5.8.2 The case where Γ is a linear space

Here Γ is a geometry of rank one and we assume that {Gx}x∈X is a partition of the
set of elements of G other than 1.

The subject of group partitions has received much attention (see for instance [7],
Chapter 3, §5.4). Here is a class of examples. Consider a Frobenius group G and its

Frobenius kernel N , consisting of 1 and all elements having no fixed point. Then N
and all point-stabilizers Ga, a any point, constitute a normal partition of G.

5.9 Finite primitive permutation groups

By the theorem of O’Nan-Scott, finite primitive groups fall into five disjoint families
(see [5]), namely:

1) the almost simple type;

2) the affine type;

3) the biregular type;
4) the cartesian semi-simple type;

5) the diagonal type.

Geometries with parallelism are present in several of these families. For a group
of affine type (resp. cartesian type) we get of course an invariant affine geometry

(resp. cartesian, i.e. Hamming geometry). The diagonal case offers special interest.

5.9.1 The diagonal type

Here is a construction of these groups. Let S be a nonabelian finite simple group
and m ≥ 3 an integer.

Consider the group N = S1×S2× ...×Sm where each Si is an isomorphic copy of
S. Let N0 be a diagonal subgroup of N which is isomorphic to S, i.e. the projection

of N0 to each Si is an isomorphism. Consider the action of N on the set E of all
left cosets of N0 by left translation. Then |E|=|Sm−1|. If G is a permutation group
on E normalizing N , then G is called of diagonal type.

Each subgroup Ni = S1 × ...× Si−1 × Si+1 × ...× Sm is transitive on E because
Ni and N0 generate N . Therefore Ni acts regularly on E. Also, Si centralizes Ni

and so it acts semi-regularly on E. Let a line be any orbit of any Si on E and call

two lines parallel if they are orbits of the same Si. This gives us a rank 2 geometry
with parallelism. Moreover, if Π is any class of parallel lines and if these lines are
deleted, the remaining subgeometry is a cartesian (Hamming) space of dimension
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m − 1. In the diagonal space obtained in this way, N fixes each point at infinity.
Note that for m = 3 this geometry is a net.

5.9.2 Example

Take S = Alt(5), m = 3, G = (Alt(5))3:Sym(3), where Sym(3) acts transitively on
the three copies of Alt(5). This gives us a diagonal space with 3600 points, lines of

60 points and each point is on three lines.

5.10 Parallelism in affine grassmannians

All examples of rank ≥ 3 previously described in this section provide geometries
with a string diagram ∆ endowed with a 0-parallelism ‖ where 0 is an end node of
∆. However, this is not always the case as the following example will show (see also
§7.3).

5.10.1 A class of affine grassmannians

Given a subspace S of PG(n,K) (n ≥ 3) of positive dimension d < n − 1, we
can form a geometry ΓS as follows. If 0 ≤ i < n − d, we take as elements of
type i the i-dimensional subspaces of PG(n + 1, K) that do not intersect S. If

n−d−1 < i ≤ n−1, then we take as elements of type i the i-dimensional subspaces
that joined with S span all of PG(n+ 1, K). The incidence relation is symmetrized
inclusion. According to [13], we say that ΓS is an affine grassmannian.

An (n− d− 1)-parallelism ‖ can be defined on ΓS . Let X, Y be elements of ΓS

of type i 6= n − d − 1. If i < n − d − 1, then X ‖ Y means that X ∪ S and Y ∪ S
span the same subspace of PG(n + 1, K). If i > n− d− 1, then X ‖ Y means that
X ∩ S = Y ∩ S.

5.10.2 A subgeometry of two affine grassmannians

Let now K = GF (q), q even. Given a plane S of PG(n, q), let O be a hyperoval of
S and L a line of S external to O. Let ΓO be the subgeometry of ΓS consisting of
all elements of ΓS of type i < n− 2 and all elements X of type n− 2 such that the

point X ∩ S belongs to O. If n = 3 then ΓO is just the generalized quadrangle of
type T ∗2 (O). If n > 3 then ΓO belongs to the following diagram of rank n−1 (where
0, 1,..., n− 2 are the types and q, q,..., q, q − 1, q + 1 are orders):

•
q
0

•
q
1

..... •
q

n− 5
•
q

n− 4
•

q − 1
n− 3

•
q + 1
n− 2

Af∗

By Lemma 2.4, the parallelism of ΓS induces on ΓO an (n − 3)-parallelism.
However, ΓO is also a subgeometry of ΓL. Thus, by Lemma 2.4, ΓO also admits an
(n− 2)-parallelism (compare 7.4.2).
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5.11 Chamber systems

A chamber system of rank n (see [37], [40], [21]) with all panels of size at least two
and no two panels intersecting in more than one chamber, is just the same thing as

a semilinear space with parallelism (see §5.6) with n lines on every point. Chambers
and panels play the role of points and lines respectively, two panels being called
parallel if they have the same type.

We can do more. Given a chamber system C of rank n with the above properties,

the cells of C, with symmetrized inclusion as incidence relation, form a geometry ΓC
of rank n. The relation ”having the same type” between cells of C naturally defines
a parallelism ‖ on ΓC .

The geometry ΓC is in fact the parallel expansion of the thin projective geometry
P of rank n−1 in the semilinear space of chambers and panels of C, via any bijection

of the set of points of P onto the set of types of C, which are the points at infinity
of that semilinear space.

Properties of C can be revisited as properties of ΓC , sometimes with some profit
(see [31], for instance; also §7.5 of this paper).

6 Applications of gluing

A fantastic variety of geometries and diagrams can be produced by the gluing pro-
cedure. We will only discuss a sample of meaningful examples. We are particularly
interested in gluings leading to diagram geometries close to Coxeter diagrams in the

spirit of [7], chapter 22. We shall restrict explicit gluing to two geometries but it
is clear that we can glue any number of geometries provided they can be pairwise
glued.

6.1 Gluing two copies of an affine geometry

The investigation of quotients of bi-affine geometries [17] was the source of the gluing
construction. We recall that a bi-affine geometry (affine-dual-affine geometry in [7],
chapter 22) is the geometry Γ obtained from a projective geometry PG(n + 1, K)

(n ≥ 2) by deleting the residues of a hyperplane S and of a point p. It has the
following diagram:

(Af.An−1.Af
∗) • • • ..... • • •

Af Af∗

In particular, when n = 2 we have

(Af.Af∗) • • •
Af Af∗

We say that Γ is of flag-type if p ∈ S. If K is commutative and Γ is of flag-type,

then Γ can be factorized by the group H of all elations of PG(n+ 1, K) with axis S
and center p. The quotient Γ/H is flag-transitive. It is described in [17]. It is clear
from that description that Γ/H is in fact a twisted gluing of two copies of AG(n,K).
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6.1.1 The case where n > 2

Let n > 2. Then the geometry at infinity PG(n − 1, K) of AG(n,K) is complete.
If K is commutative, then PG(n − 1, K) also admits a correlation, which is unique

modulo multiplication with collineations of PG(n − 1, K). Therefore, when K is
commutative, all twisted gluings of two copies of AG(n,K) are isomorphic to Γ/H,
by Theorem 3.11.

In any case, there is just one plain gluing of two copies of AG(n,K), by Corollary
3.10. This gluing is flag-transitive (by Corollary 3.8) and it belongs to the following

diagram

(2Af.An−2)

•��
�

HHH
•

Af

Af

• • ..... • •

When K is commutative, this glued geometry can also be obtained by the fol-
lowing construction. Let Γ be the building of type Dn+1 over K and let us take +,
−, 0, 1,..., n − 2 as types, as follows

HHH

��
�

•

•

+

−
•
0

•
1

..... •
n − 3

•
n − 2

Let Γ
ε

be the point-line system of Γ with respect to a type ε = + or − (see [7],

chapter 12 by Cohen). For every element x of Γ, let σε(x) be the set of elements of
Γ of type ε incident with x. Let a+, a− be incident elements of Γ of type + and −
respectively. For ε ∈ {+,−}, we define a hyperplane Sε of Γ

ε
([7], chapter 12) as

follows.

If n is even, then S+ is the set of elements of Γ of type + having distance < n/2

from some element of σ+(a−) in the collinearity graph of Γ
+

. If n is odd, then S+ is
the set of elements of type + having distance < (n+1)/2 from a+ in the collinearity
graph of Γ

+
(it is not difficult to prove that S+ is in fact a hyperplane). S− is

defined in the same way, interchanging + with −.

Let Ξ be the set of flags F of Γ such that σε(F ) 6⊆ Sε for ε = + and − and let
X be the set of elements of Γ belonging to Ξ. We can now define a geometry Γ with
X as set of elements by stating that two elements x, y ∈ X are incident in Γ if they
are incident in Γ and {x, y} ∈ Ξ. It is straightforward to check that Γ belongs to

the above diagram 2Af.An−2.

Let G be the stabilizer of a+ and a− in Aut(Γ) and let H be the elementwise
stabilizer of S+ ∪ S− in G. Then H defines a quotient Γ/H of Γ, which is in fact
the (unique) plain gluing of two copies of AG(n,K) (see [29]).

6.1.2 The case where n = 2

We can also assume n = 2 in the above construction. Then Γ = PG(3, K), {a+, a−}
is a point-plane flag of PG(3, K), Γ is a bi-affine geometry of flag-type and Γ/H is
the quotient considered at the beginning of §6.1. It is the canonical gluing of two
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copies of AG(2, K).

If |K|≤ 4, then the canonical gluing is the only gluing of two copies of AG(2, K),
by Corollary 3.10. On the other hand, if |K|> 4, then non-canonical gluings exist
(Theorem 3.9) and some of them are even flag-transitive (an example with K =

GF (7) is given in [17]). However, the canonical gluing is characterized by having
the largest automorphism group [29].

Clearly, any two (or more) affine planes of the same order can be glued, and
the resulting glued geometry might be flag-transitive provided each of these planes
is already flag-transitive. For instance, given any flag-transitive affine plane Π, the
canonical gluing of two copies of Π is flag-transitive.

6.1.3 Gluing two copies of an affine space

Let Γ be the point-line system of AG(n,K) (n ≥ 3), with its natural parallelism
‖. Since Γ has rank 2, its geometry at infinity bears no structure (it is just a
set). By Theorem 3.9, there are non-canonical gluings of two copies of (Γ, 0, ‖).
It is proved in [29] that, when K = GF (q), the canonical gluing of two copies

of (Γ, 0, ‖) is characterized by the property of having the largest automorphism
group (compare §3.4.5). As we have remarked in the previous subsection, the same
property characterizes the canonical gluing of two copies of AG(2, q).

Clearly, the canonical gluing of two copies of (Γ, 0, ‖) is a truncation of the
(unique) plain gluing of two copies of AG(n,K).

6.2 Gluing and quotients of Laguerre-like geometries

6.2.1 Dual-affine expansions

The following construction generalizes Laguerre structures. It is a special case of a
rather more general construction by Huybrechts [20].

Let Π be a rank 2 subgeometry of PG(2, K). Given a point p of PG(3, K), we
identify PG(2, K) with the star of p in PG(3, K). Thus the points and the lines of Π

are lines and planes on p. Let CΠ,1 (respectively CΠ,2) be the set of lines (planes) of
PG(3, K) through p corresponding to points (lines) of Π. A geometry ΓΠ,p of rank
3 can be defined as follows. We take

⋃
L∈CΠ,1 L\{p} as set of points. The lines of

PG(3, K) contained in planes of CΠ,2 but not containing p are the lines of ΓΠ,p. The
planes of ΓΠ,p are the planes of PG(3, q) not through p. The incidence relation of
ΓΠ,p is the natural one, inherited from PG(3, q). The residues of the planes of ΓΠ,p

are isomorphic to Π. It is not difficult to prove that the residues of the points of

ΓΠ,p are nets.
Actually, ΓΠ,p is the dual of a certain affine expansion to be defined in §7.4.1. In

view of this, we call ΓΠ,p the dual-affine expansion of Π at the center p.

6.2.2 Shrinking and gluing

Given p and Π as in the previous paragraph, let S be a plane with p ∈ S 6∈ CΠ,2.
Let HS be the group of all elations of PG(3, K) with axis S and center p. Then HS

defines a quotient of ΓΠ,p. We call it the shrinking of ΓΠ,p at S.
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Let now K = GF (q) and assume that every point of Π (line of CΠ,1) is incident
with precisely s + 1 lines of Π (planes of CΠ,2). We say that S is (Π, p)-regular if

there is a set L of s + 1 lines of S on p such that L ∩ CΠ,1 = ∅ and every plane of
CΠ,2 contains one line of L.

Clearly, if S is (Π, p)-regular and L is a set of s+ 1 lines as above, then for every
line L ∈ CΠ,1 there is just one line M ∈ L such that L∪M spans a plane of PG(3, q)

belonging to CΠ,2. Let us set ∞S(L) = M . For any two lines L,L′ ∈ CΠ,1, we set
L ‖S L′ if and only if ∞S(L) =∞S(L′). It is easily seen that ‖S is a parallelism on
Π with L as its line at infinity.

Furthermore, the elementwise stabilizer KS of S in PGL4(q) acts transitively on
the set of points PG(3, q) not in S. Hence, given any two points x, y of Γ, there
is some element of KS mapping x onto y. That element might not stabilize Π.
However, it maps the residue of x in ΓΠ,p onto the residue of y in ΓΠ,p. Indeed, for

every point z of ΓΠ,p not in S, the planes of CΠ,2 on z are precisely those spanned
by z and by some of the lines of L, because there are precisely s+ 1 planes of CΠ,2

on z and each of them meets S in a line of L. Thus, the residues of the points of
ΓΠ,p are pairwise isomorphic. As they are nets, they are isomorphic to a given net

N . It is clear from the above that L can also be viewed as the line at infinity of N .
The following is now evident.

Theorem 6.1 The shrinking of ΓΠ,p at a (Π, p)-regular plane is a gluing of a net
with Π endowed with the parallelism ‖S.

6.2.3 Examples

1. The affine plane AG(2, K) can be viewed as a subgeometry Π of the star of
a point p of PG(3, K). ΓΠ,p is just the bi-affine geometry of flag type and rank 3,

obtained from PG(3, K) by removing the star of p and the plane S on p correspond-
ing to the line at infinity of AG(2, K). The shrinking of ΓΠ,p at S is the canonical
gluing of two copies of AG(2, K).

2. Let Π be the complete graph on 2n + 2 vertices. We can take a hyperoval
O of PG(2, 2n) as set of points of Π. Viewing PG(2, 2n) as the star of a point p of
PG(3, 2n), we can consider ΓΠ,p, which is a special Laguerre plane (Heise and Karzel
[18]). It belongs to the following diagram:

(c.Af∗) •
1

•
2n

•
2n − 1

c Af∗

According to the above identification of PG(2, 2n) with the star of p, every line

S of PG(2, 2n) external to O is a (Π, p)-regular plane of PG(3, 2n). Furthermore S
determines a 1-factorization ‖S of Π (Korchmaros [23]): two lines of Π correspond
in ‖S if and only if they span lines of PG(2, 2n) intersecting S in the same point. By
Proposition 6.1, the shrinking of ΓΠ,p at S is a gluing of AG(2, 2n) with Π endowed

with ‖S .
Let n = 2. Then all 1-factorizations of Π are isomorphic to ‖S (see §5.5.7) and

Aut(Π, ‖S) induces Sym(5) on the five points of Π∞. Hence the shrinking of ΓΠ,p
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at S is the unique gluing of Π with AG(2, 4) (Theorem 3.5) and it is flag-transitive
(Corollary 3.7) with automorphism group 24:Z3.Sym(5) (Theorem 3.6). Of course,

this information can also be obtained considering that Aut(ΓΠ,p) = 26:Z3.Sym(6)
(see §7.4.1) and that the shrinking of ΓΠ,p at S is the quotient of ΓΠ,p by the group
H of all elations of PG(3, 4) of center p and axis S.

3. Let Π be a Witt-Bose-Shrikhande space realized by choosing a dual hyperoval
O∗ of PG(2, 2n) (n ≥ 3) and taking as points and lines the points of PG(2, 2n) that

do not belong to any of the 2n + 2 lines of O∗ and the lines of PG(2, 2n) that do not
belong to O∗ (compare §5.5.1). Given a point p of PG(3, 2n), we can consider ΓΠ,p.
It belongs to the following diagram:

(L.Af∗) •
2n−1 − 1

•
2n

•
2n − 1

L Af∗

Every line S ∈ O∗ is (Π, p)-regular when viewed as a plane through p. The
parallelism ‖S is as in §5.5.1. By Proposition 6.1, the shrinking of ΓΠ,p at S is a
gluing of AG(2, 2n) with Π endowed with ‖S.

6.2.4 A quotient of a subgeometry of a Laguerre-like geometry

We can sometimes form a subgeometry of a Laguerre-like geometry ΓΠ,p by “inter-
secting” it with an affine expansion. We only give an example of this construction.

Let (p, S) be a (point,plane)-flag of PG(3, 2n), n > 2. The star of p and the
plane S are models of PG(2, 2n). The affine geometry obtained by removing S from
PG(3, 2n) will be denoted by PG(3, 2n)\S. Let O and O′ be hyperovals in the star

of p and in S respectively, such that p ∈ O′ but S does not contain any of the lines
through p forming O. Let Π be the complete graph with O as set of points. The
lines and the points of S external to O′ are respectively the points and the lines of
a Witt-Bose-Shrikhande space W. We denote the dual of W by W∗.

The symbol ΓΠ,p has the meaning stated in the previous paragraph whereas ΓW
will denote the affine expansion of W∗, having the points of PG(3, q)\S as points.

Let Γ be the set-theoretic intersection of ΓΠ,p and ΓW . That is, the elements of Γ
are the points, the lines and the planes of PG(3, 2n) that belong to both ΓΠ,p and
ΓW , with the incidence relation inherited from PG(3, 2n). Then Γ is a geometry

with diagram and orders as follows:

(c.L∗) •
1

•
2n

•
2n−1 − 1

c L∗

Let H be the group of elations of PG(3, 2n) with center p and axis S. Then H
defines a quotient Γ/H of Γ. Let ‖p be the parallelism defined by p onW as in §5.5.1
and let ‖S be the parallelism defined on Π by the plane S as in §5.1.1. Let L be the

bundle of lines of S through p. We can take L as the line at infinity for both ‖p and
‖S. It is clear that Γ/H is a gluing of Π and W endowed with the parallelisms ‖S
and ‖p respectively.
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Let n = 2. Then both Π and W are copies of the complete graph on 6 vertices
and Γ has diagram and orders as follows:

(c.c∗) •
1

•
4

•
1

c c∗

There is just one way to glue two copies of the complete graph Π on 6 points,

by the uniqueness of the one-factorization ‖ of that graph and properties of the
group Aut(Π, ‖) (compare §5.5.7 and Theorem 3.9). Thus, Γ/H is just that gluing.
Aut(Γ/H) = Sym(5), by Theorem 3.6 and properties of Aut(Π, ‖). This group is
not flag-transitive.

6.3 Further examples of type L.L∗

Many of the previous examples belong to special cases of the following diagram

(L.L∗) • • •
L L∗

Using gluing and parallelisms described in section 5 we get a series of other exam-

ples for this diagram, where the linear spaces are projective spaces of odd dimension
(§5.4), unitals (hermitian or Ree) with the same orders (§5.5) or a (hermitian or Ree)
unital of orders (3, 8) and an affine plane of order 7, or a unital of orders (q, q2− 1)

with q odd and a complete graph with q + 1 vertices, or...

6.4 Glued geometries of type L.C2

6.4.1 Finite thick examples

Del Fra [16] has proved that a flag-transitive finite thick geometry belonging to
the diagram L.C2 (depicted below) has classical generalized quadrangles as point-
residues if and only if it is a (possibly improper) “standard” quotient of an affine

polar space [32].

(L.C2) •

points
r

•

lines
s

•

planes
t

L

However, there are flag-transitive geometries belonging to this diagram with
non-classical point-residues. We can build some of them by the gluing construction.

Let Π1 be the generalized quadrangle of type T ∗2 (O) and order (3, 5) and let
Π2 be its dual. Let ‖1 and ‖2 be the (unique) 0-parallelism and a 1-parallelism
of Π1, respectively (see §7.4.2). Of course, ‖2 is a parallelism of Π2. Let us set

Ai = Aut(Πi, ‖i), for i = 1, 2.

We have A1 = Aut(Π1). The stabilizer of a hyperoval O of PG(2, 4) is the sym-
metric group Sym(6). Hence A1 = 26:Z3.Sym(6) with dilatation group K∞1 = 26.Z3,
point-transitive on Π1, and A∞1 = Sym(6) acting on the six points of Π∞1 . Thus,
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if we glue AG(2, 5) with Π1 endowed with ‖1, we obtain a flag-transitive geometry
Γ1 with Aut(Γ1) = (26.Z3 × 52.Z4)).PGL2(5) (see Theorem 3.6 and Corollary 3.8).

Here Γ1 belongs to the following special case of L.C2

•
4

•
5

•
3

Af

Turning to A2 = Aut(Π2, ‖2), we have A2 = 26:Z3.Sym(5) with dilatation group

K∞2 = 24.Alt(5) and A∞2 = 22:Z3.2 = Sym(4). Thus, by Theorem 3.6 and Corollary
3.8, if we glue AG(2, 3) with Π2 endowed with ‖2, we get a flag-transitive geometry
Γ2 with Aut(Γ2) = (24.Alt(5) × 32.Z2)).PGL2(3). Here Γ1 has diagram and orders
as follows

•
2

•
3

•
5

Af

The above are the only flag-transitive finite thick L.C2 geometries with non-
classical point-residues that are presently known. Actually, one more non-classical
flag-transitive finite thick generalized quadrangle is known, namely the generalized
quadrangle Π of type T ∗2 (O) and order (15, 17) obtained from the Lunelli-Sce hy-

peroval O of PG(2, 16). If ‖ is the parallelism that Π inherits from AG(3, 16) (see
§7.4.2), then A = Aut(Π, ‖) = Aut(Π) with dilatation group K∞ = 212:Z15 (point-
transitive on Π) and A∞ = Z2× 32.Z8 (which is the stabilizer of O in PΓL2(16); see
[24]). However, the intersection of A∞ with any conjugate of PGL2(17) in Sym(18) is

not transitive on the 18 points of Π∞. Hence we cannot hope for any flag-transitive
gluing here, by Corollary 3.8.

The generalized quadrangle Π = AS(3) is also flag-transitive. In fact, it is
classical. It admits a parallelism ‖, as we noticed in §5.3.7. However Aut(Π, ‖) is
not flag-transitive. Thus, no flag-transitive gluing can be obtained from it.

6.4.2 Gluing dual grids with affine spaces

Let q be a prime power and let S be a Singer cycle of PG(n, q). We can build a
model of the dual grid Π of order (1, q) by taking S × {0, 1} as set of points and
representing a line {(a, 0), (b, 1)} of Π by the ordered pair (a, b). We can define a
parallelism ‖ on Π by setting (a, b) ‖ (c, d) when b−1a = d−1c (see §5.6.2). Let

A = Aut(Π, ‖). It is not difficult to prove that A = (S.N).2, with N the normalizer
of S in the symmetric group on the (qn+1 − 1)/(q − 1) points of PG(n, q). We have
K∞ = S × Z2, point-transitive on Π, and A∞ = S.

S is a subgroup of PGLn+1(q). By Corollary 3.8, if we glue the point-line system
of AG(n+ 1, q) with Π endowed with ‖, then we get a flag-transitive geometry Γ for

the diagram L.C2, with orders (q − 1, (qn+1 − q)/(q − 1), 1)

•
q − 1

•
qn+1−1
q−1

•
1

L
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When n = 1 and q = 2, Γ is a quotient of an affine polar space (see [26]).

6.4.3 Flat flag-transitive extended grids

An extended grid is a geometry belonging to the following special case of L.C2

•
1

points

•
s

lines

•
1

planes

c

An extended grid Γ is said to be flat if every point of Γ is incident with all planes
of Γ. Flat flag-transitive finite extended grids have been classified by Meixner and
Pasini [25]. All of them can be obtained by gluing a dual grid, endowed with a

suitable parallelism, with the point-line system of an affine geometry over GF (2)
endowed with its natural parallelism.

6.5 Gluing generalized quadrangles

Using the flag-transitive generalized quadrangles with parallelism mentioned earlier

we get (probably new) finite flag-transitive GABs of type C̃2

•
3

•
5

•
3

•
5

•
3

•
5

•
15

•
17

•
15

Actually we have three infinite families here, as we can glue any number of copies.

6.6 Gluing polygons, grids and dual grids

Gluing a 2n-gon and a 2m-gon we get a thin geometry over the diagram

• • •
2n 2m

It has a flag-transitive automorphism group of order 8mn. Gluing an (n×n)-grid

and a 2m-gon we get a flag-transitive geometry with diagram and orders as follows

•
n− 1

•
1

•
1

2m

We can also glue two of copies of the dual grid of order (1, n) equipped with a
parallelism (§5.6.2). Thus we get a GAB of type C̃2 with orders 1, n− 1, 1

•
1

•
n− 1

•
1

This GAB is flag-transitive for suitable choices of the parallelisms on the two
copies of the dual grid and suitable matchings of the lines at infinity (§3.4.4).
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6.6.1 Gluing two copies of a cartesian space

Let Γ be a cartesian space of rank n built on a product
∏n
i=1 Xi of sets with the

same cardinality q+ 1 (see §5.3.2). By Corollary 3.10 there is a unique plain gluing
of two copies of Γ (up to isomorphisms). It is flag-transitive by Corollary 3.8 and it
belongs to the following diagram

•
q
��
�

��
�

HHH
HHH
•
q •

1
•
1

..... •
1

•
1

We can also consider the twisted gluing of two copies of Γ, which is unique too.

It is flag-transitive and it belongs to the following diagram of affine type

(C̃n) •
q

•
1

•
1

..... •
1

•
1

•
q

7 Applications of parallel expansion

Some examples of parallel expansions were given in previous sections, sometimes

implicitly. For instance, the geometry of cells of a chamber system (§5.11) is a
parallel expansion. Bi-affine geometries of flag-type (§6.1) are precisely parallel
expansions of dual affine geometries. The dual-affine expansions defined in §6.2.1
are the dual of certain parallel expansions (see §7.4.1). A generalized quadrangle

of type T ∗2 (O) is a parallel expansion of a geometry of rank 1 (see §7.4.2). We will
discuss more examples in this section.

7.1 Affine expansion of buildings

We refer to [7] (Chapter 12 by Cohen, §6.19). Consider the building Γ of a non-
twisted group of Lie-Chevalley type and fix a node i in the corresponding Coxeter

diagram. The i-shadow space σi(Γ) of Γ has a natural embedding in some projective
space in which each line of σi(Γ) is a full projective line. This does extend to some
twisted cases for at least one of the end nodes (types 3D4, 2F4,

2E6).

Do those embeddings give rise to parallel expansions? Thanks to the results of
[8] about parallel expansion, we know this at least in certain cases. This is giving
geometries with parallelism over the following diagrams with buildings as geometries
at infinity

(Af.An) • • • ..... • •
Af

(Af.Cn) • • • ..... • • •
Af
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(Af.Dn) • • • ..... • •��
��

HHHH•

•Af

• •��
��

HHHH•

•

•

•

.....

.....

•

•

•

•Af

• • •
Af 6

• • •
Af 8

• • • •
Af

• • •��
��

HHHH•

•

•

•

• •

Af

The first diagram (Af.An) describes (n+1)-dimensional affine geometries, which
are the prototypes of affine expansions. Affine expansions of polar spaces of rank n
belong to the second diagram (Af.Cn). They are (possibly improper) quotients of

affine polar spaces [32] (also [30], Chapter 8, §8.4.7). The third diagram (Af.Dn)
describes affine expansions of Dn-buildings. These can be obtained by “unfolding”
certain affine polar spaces ([30], Chapter 8, §8.4.7).

The fourth picture describes several diagrams of different kinds, including Af.An

as a “limit case”.

7.2 Affine expansion of the Alt(7)-geometry

Let Γ be the Alt(7)-geometry (Neumaier [27]). Γ is the only known example of
a finite thick non-building geometry belonging to a connected Coxeter diagram of

spherical type. It has diagram C3 and uniform order 2

•
2

points

•
2

lines

•
2

planes

and it can be described as follows [27]. The planes and the lines of Γ are re-
spectively the points and the lines of PG(3, 2). The points of Γ are 7 models of the
symplectic generalized quadrangle W (2), transitively permuted by A7 in its action

on PG(3, 2) as a subgroup of L4(2) = A8. The incidence relation is the natural one
(containment).

We can consider the affine expansion Γ
∗

in A = AG(4, 2) of the dual Γ∗ of Γ, via
the identification of the planes of Γ with the points of A∞ = PG(3, 2) (it is easily
seen that (i) of §4.4 holds). Γ

∗
has diagram and orders as follows
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• • • •
1 2 2 2

c

Γ
∗

is flag-transitive by Proposition 4.2, with Aut(Γ
∗
) = 24:Alt(7). It is the unique

flag-transitive geometry with the above diagram involving Γ as a residue [33].

Another geometry Γ′ is mentioned in [27] where Γ occurs as a residue. It has
diagram and orders as follows

• • • •
1 2 2 2

points lines planes 3-spaces

c

and Aut(Γ′) = Alt(8). It is the unique flag-transitive geometry with this diagram
admitting Γ as a residue [33]. There are 15 3-spaces of Γ′, as many as the points of
PG(3, 2). Hence we can consider the affine expansion Γ

′∗
in AG(4, 2) of the dual Γ′∗

of Γ′, thus obtaining a geometry with diagram and orders as follows

• • • • •
1 2 2 2 1

c c∗

Γ
′∗

is flag-transitive by Proposition 4.2, with Aut(Γ
′∗

) = 24:Alt(8). It is the
unique flag-transitive geometry with the above diagram admitting Γ as a residue
[33]. Note that Γ

∗
is also a residue of Γ

′∗
.

Parallel expansions admit parallelisms (see §4.5). Hence we can also glue two
copies of Γ

∗
or of Γ

′∗
, thus obtaining geometries belonging to the following diagrams,

with the Alt(7)-geometry as a residue

•

•

��
��

HHHH• • •

c

c
(from Γ

∗
)

•

•

��
��

HHHH• • • •

c

c c∗
(from Γ

′∗
)

These gluings are flag-transitive (by Corollary 3.7) with automorphism groups

(24 × 24):Alt(7) and (24 × 24):Alt(8) respectively.

7.3 Affine expansions of generalized digons

Let A = AG(4, K), K commutative. In A∞ consider a ruled quadric Q and let S1,
S2 be the two systems of lines that partition the points of Q. Here Γ consists of
the lines in S1 ∪ S2 and any two distinct elements are incident provided they have
a common point on Q. Thus, Γ is a generalized digon. Here the 0-elements (resp.

1-elements) of A are the points (resp. planes) of AG(4, K). The parallel expansion
Γ exists (this was observed by Buekenhout [6]). It is flag-transitive and it belongs
to the following diagram, where the central node represents the 0-elements
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• •
0

•
Af∗ Af

(Actually, Γ is the unfolding of an affine polar space, by Theorem 7.57 of [30].)
By gluing two copies of Γ we get a flag-transitive geometry belonging to the following
diagram:

•01�
��
�

HHHH•

•

��
��

HHHH• 02

Af

Af

Af∗

Af∗

7.4 Duals of Laguerre-like geometries

Let A and Γ be as in section 4. To define the parallel expansion Γ of Γ in A we
only need the {0, 1}-truncation of A. However, it may be interesting to consider the
other elements of A. For instance, for some A and for some choice of Γ among the

subgeometries of A∞, the elements of Γ may be identified with some elements of A.
We will examine some examples of this kind in the next two paragraphs.

The affine expansions we describe here are the dual of some Laguerre-like ge-
ometries (see §6.2.1).

7.4.1 Affine expansions of dual hyperovals

Let A = AG(3, q), with q even and let Γ = O∗ be the dual of a hyperoval. Let us

take {0, 1, 2} as set of types of Γ, with 0 and 1 as in section 4. The 0-elements of
Γ are the points of AG(3, q), the 1-elements are the lines of AG(3, q) with point at
infinity in Γ and the remaining elements (those of type 2) are the planes of AG(3, q)
with line at infinity in Γ (that is in O∗).

Γ inherits a 0-parallelism ‖ from AG(3, q). It is straightforward to prove that
this is the unique 0-parallelism of Γ. Hence Aut(Γ) = Aut(Γ, ‖) (see §2.5).

By an argument of Huybrechts [20], Aut(Γ) is the subgroup of AΓL3(q) preserv-
ing O∗. Hence Γ is flag-transitive if and only q = 2, 4 or 16, with O∗ the dual of the
Lunelli-Sce hyperoval when q = 16 (see [19], [24]). Furthermore, Γ

∞
is complete if

and only if q = 2 or 4.

On the other hand, any point p of A∞\O∗ define a 2-parallelism in the following
way : for each point (resp. line) x of Γ, the parallel class of x is the pointset (resp.
lineset) in Γ of the projective subspace < p, x > generated by p and x.

Similar results hold for affine expansions of dual Witt-Bose-Shrikhande spaces
(compare §6.2.3, example 3).

7.4.2 A construction for T ∗2 (O)

Replace O∗ by a hyperoval O in §7.4.1 and denote by Γ the complete graph with
O as set of vertices. The affine expansion Γ of Γ in A = AG(3, q) belongs to the
Coxeter diagram C2.c
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(C2.c) •
0

q − 1
•
1

1
•
2

q

c

(types are written above and orders below the nodes of the diagram). The 0-
elements of Γ are the points of A, the 1-elements are the lines of A with point at

infinity in O and the 2-elements are the planes of A with a secant of O as line
at infinity. Actually, Γ is a truncation of a thin-lined Cn-geometry (see §7.5.2)
obtained as an affine expansion of the thin projective geometry having O as set of
points (§7.5).

The {0, 1}-truncation of Γ is the generalized quadrangle T ∗2 (O). It is straight-
forward to check that the parallelism ‖ inherited from AG(3, q) is the unique 0-
parallelism of T ∗2 (O). On the other hand, every line L of A∞ external to O induces

a 1-parallelism ‖L on T ∗2 (O). The parallel classes of ‖L are the planes of A with L
as line at infinity (compare §6.3.1).

7.5 Expanding thin projective geometries

Given a connected geometry A of rank 2 over the set of types {0, 1} and with a
0-parallelism ‖, let B be a finite subset of A∞ of size n ≥ 2 and let Γ be the
thin projective geometry with B as set of points. Denote by Γ(A,B) the parallel

expansion of Γ in A. Obviously, Γ(A,B) has rank n and it belongs to a diagram of
the following form, with order 1 at every node except possibly the first one:

(X.An−1) •
X
•
1

•
1

..... •
1

•
1

where X denotes some class of geometries containing the geometries obtained

from A by removing all classes of ‖ but two. Note that all geometries obtained in
this way have even gonality.

7.5.1 Cell geometries of chamber systems

Let C be a chamber system with the properties considered in §5.11. As we noticed

in §5.11 , the geometry ΓC of cells of C is the parallel expansion, in the semilinear
space A of chambers and panels of C, of the thin projective geometry Γ having the
types C as points. That is, ΓC = Γ(A,B) where B = A∞ is the set of types of C.

On the other hand, let A be a semilinear space over the set of types {0, 1}, with

a 0-parallelism ‖ and finitely many points at infinity. We can define a chamber
system C(A, ‖) by taking the 0-elements of A as chambers and the 1-elements as
panels, using A∞ as set of types. Clearly, if B = A∞, then Γ(A,B) is just the

geometry of cells of C(A, ‖).

7.5.2 Thin-lined Cn-geometries

Let A be a semilinear space over the set of types {0, 1}, equipped with a 0-parallelism
‖ satisfying the following property
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(P) for any 1-elements L, M , L′, M ′, from L ‖ L′, M ‖M ′ and L ∩M 6= ∅
it follows that L′ ∩M ′ 6= ∅.

Then for every subset B of A∞ of size n ≥ 2 the parallel expansion Γ(A,B)

belongs to the Coxeter diagram Cn, with order 1 at all nodes except possibly the
first one

(Cn) • •
1

•
1

..... •
1

•
1

Namely Γ(A,B) is a thin-lined Cn-geometry, according to a popular terminology.

Deleting some lines of A if necessary, we can always assume that B = A∞. Thus

we can consider the chamber system C(A, ‖) as in §7.5.1 and Γ(A,B) is the geometry
of cells of C(A, ‖). As (P) holds in (A, 0, ‖), the chamber system C(A, ‖) belongs to
the diagram with n vertices but no edges. We call this diagram trivial.

The following is proved in [31]

Theorem 7.1 Every thin-lined Cn-geometry is the geometry of cells of a chamber
system with trivial diagram.

That is, every thin-lined Cn geometry is the parallel expansion of the thin pro-

jective geometry of rank n − 1 in some semilinear space with parallelism. Thus, a
classification of thin-lined Cn-geometries is equivalent to a classification of chamber
systems with trivial diagram of rank n and this is in turn equivalent to a classifica-
tion of semiliner spaces endowed with a parallelism satisfying (P) with n points at

infinity.

Some classification of finite thin-lined C3 has been given by S.Rees [36] by means

of latin squares.

Hamming spaces of rank n are thin-lined Cn-geometries. In fact they are the
duals of thin-lined polar spaces of rank n (§5.3.2). That is, a Hamming space of

rank n is the cell geometry of the chamber system of a geometry with trivial diagram
of rank n.

7.5.3 An example from the octahedron

Let A be the graph of the octahedron with its unique parallelism ‖ (see §5.6.1) and
B = A∞. Then Γ(A,B) is a thin geometry for the following Coxeter diagram

• • • •
6

The chamber system C(A, ‖) belongs to the following Coxeter diagram

•

•

•

•

�
�
�
�@

@
@
@
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7.6 An example from the Petersen graph

Let Γ be the hemi-icosahedron. The Petersen graph is the system of faces and edges
of Γ. The dual of this graph can be embedded in PG(n, 2) with n = 3, 4 or 5 (see

[10]). The vertices of Γ correspond to pentagons of the Petersen graph. Thus, we
can realize Γ in PG(n, 2) (n as above), representing the edges and the faces of Γ by
suitable points and lines of PG(n, 2) and realizing the vertices of Γ as pentagons.

(i) of §4.4 holds. Hence Γ admits an affine expansion Γ in AG(n + 1, 2). It is not
difficult to check that Γ is thin and it belongs to the following Coxeter diagram

•0 HHHH
HHHH

•3 �
��
�•

1
•
2

5

where 0, 1, 2 and 3 are types. The elements of type 0, 1 and 2 are respectively
points lines and planes of AG(n+ 1, 2). The residues of the elements of type 0 are

isomorphic to Γ, whereas the residues of the elements of type 2 are hemi-cubes.
The residues of the elements of type 3 are affine expansions of pentagons. Γ is
flag-transitive by Proposition 4.2 and Aut(Γ) = 2n+1:Alt(5).

The {0, 1, 2}-truncation Γ
′
of Γ is an affine expansion of the dual Petersen graph

(Buekenhout-King [10], section 5) with diagram as follows:

• • •
c P ∗

We have Aut(Γ
′
) = 2n+1:Sym(5), larger than Aut(Γ). Indeed there are two

isomorphic ways of choosing six pentagons in the Petersen graph to represent the
six point of the hemi-icosahedron. Thus, we have two models of Γ with the same
{0, 1, 2}-truncation Γ

′
and some automorphisms of Γ

′
interchange them.

7.7 Alexandrov spaces

A famous theorem of Alexandrov characterizes the space-time of special relativity
(see [7], chapter 16 by Lester). In [11], Buekenhout and Masson provide a broad
generalization in terms of affine incidence geometry. Their Alexandrov spaces are

instances of parallel expansion and the problems left open in that work can be
transported to our more general setting.

References
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