Invariance of g-completeness with corners
under finite holomorphic surjections

Viorel Vajaitu

1 Introduction

It was shown by Narasimhan [6] using purely cohomological methods that a complex
space Y is Stein if, and only if, its normalization Y™* is Stein; more generaly, if
m: X — Y is a finite surjective holomorphic map, then X is Stein if, and only if,
Y is Stein.

In the same circle of ideas, a more general invariance theorem was given in [10];
namely:

Theorem Letm: X — Y be a finite holomorphic surjection of complex spaces.
Then X is cohomologically q-complete if, and only if, Y is cohomologically q-com-
plete.

We recall that a complex space Z is said to be “cohomologically g-complete” if
the cohomology group H*(Z, F) vanishes for every integer i > ¢ and every coherent
analytic sheaf F on Z. Therefore, by the well-known theorem of Cartan and Serre,
Stein spaces correspond to cohomologically 1-complete spaces.

In this paper we deal with a more geometrical aspect of an extension of Nara-
simhan’s result, which is obtained for ¢ = 1; namely we prove the following

Theorem 1 Let w: X — Y be a finite holomorphic surjection of complex spaces.
Then X is q-complete with corners (resp. q-convex with corners) if, and only if, Y
is q-complete with corners (resp. q-convex with corners).
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In particular we get:

Corollary 1 A complex space is q-complete with corners (resp. q-convexr with cor-
ners) if, and only if, its normalization is so.

Corollary 2 A complex space is q-complete with corners if, and only if, every irre-
ducible component of it is q-complete with corners.

Finally, we obtain an extension of a well-known result of Lelong [4].

Proposition 1 Let M be a purely n-dimensional Stein manifold and D C M an
open set such that for every hypersurface H of M the intersection H N D 1is q-
complete with corners. Assume that 1 < ¢ < n— 1. Then D is g-complete with
corners.

2 Preliminaries

Throughout this paper all complex spaces are assumed to be reduced and with
countable topology.

(o) Let D C C" be an open set. For ¢ € C*(D,R) and z € D we define the
quadratic form on C" by:

n 8290

L(p, 2)(&m) = jZl 92107,
We say that ¢ is g-convex (on D) if its Levi form L(p, 2)(§) := L(p, 2)(£,€), £ € C,
has at least n — g+ 1 positive eigenvalues for every z € D. Equivalently, this means
that through each point z € D passes a (n — ¢ + 1)-dimensional affine complex
subspace H of C" so that ¢y, is strongly plurisubharmonic (or 1-convex according
with our setting) on a neighborhood of z in H,.

(Z>€i77j7 5777 e C".

Let X be a complex space. A function ¢ € C?(X,R) is said to be q-convez if each
point x € X has an open neighborhood U together with an embedding ¢ : U — U
where U ¢ C™ is an open set, and a g-convex extension function ¢ € 02((7 ,R) of
¢|,- (This definition is independent of the local embeddings.)

We say that ¢ € C°(X,R) is g-convez with corners if each point z € X admits an
open neighborhood U for which there are finitely many g-convex functions fi, ..., fx
on U such that

Y, = max{fi,..., fe}.

A complex space X is said to be q-conver with corners if there is an continuous
exhaustion function ¢ : X — R which is g-convex with corners on X \ K for
some compact subset of X. If we can take K the empty set, then X is said to be
q-complete with corners. The normalization is chosen such that Stein spaces are
precisely the spaces 1-complete with corners.

Examples. 1) An arbitrary finite intersection of g-complete with corners open sets
of a given complex space stays g-complete with corners.
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2) If A C P” is an analytic set such that every irreducible component has
dimension > n — ¢, then P™ \ A is g-complete with corners (see [7]).

3) If X is a Stein manifold and D C X an open set such that H*(D, Ox) vanishes
for all ¢ > ¢, then D is g-complete with corners (see, for instance [11]).

An open set D of a complex space X is said to be locally q-complete with corners
if every point of the boundary 0D of D in X admits an open neighborhood U such
that U N D is g-complete with corners.

(e) Now let M be a purely n-dimensional complex manifold, ¢ a positive integer
less than n, and D C M an open set. Following [3] we say that D is pseudoconvez
of order n — q if the next property holds:

For every ¢ € 9D and every coordinate neighborhood (U, (z1,...,z2,)) which
contains £ as the origin one has:

(%) If for some R > 0, the set {(21,...,24,0,...,0) € U; 0 < 3L |z]* < R}
is contained in D, then there is » > 0 such that for every (wgt1,...,w,) with
lw;] <7, q+1 <3 <mn, the set {(21,...,2¢, Wgt1,---,wn) € U; 2L, |2:* < R}
contains at least one point of M \ D.

Next we relate this property with the local g-completeness with corners. (This
characterization will be useful in proving proposition 1.)

Lemma 1 Keeping the notations from above, the following statements are equiva-
lent.

(a) D is locally g-complete with corners.
(b) D is pseudoconvex of order n — q.

(¢) For every open set U C M and (n— q)-convez function ¢ on U, the restriction
oj\p does not attain a marimal value.

Proof. The equivalence of (a) and (b) is shown in [11] or [5]. We show now that
(a) = (c). We do this by reductio ad absurdum. Thus there are: a point &, € 9D,
an open neighborhood U of &, such that U N D is g-complete with corners, and a
(n — q)-convex function ¢ on U such that ¢[p\p < ¢(&)-

Take H 3 &, be a complex submanifold of X of dimension ¢ + 1 such that ¢|g
is 1-convex (we may shrink U, if necessary). Since H N D N U is g-complete with
corners, we may assume without any loss of generality that ¢ = n — 1, and by some
coordinate changes that £, = 0. Therefore ¢ is 1-convex. Now, by developping ¢
into Taylor series around 0, we get

p(2) = (0) + Ref(2) + L(1,0)z + o(||2]*),
on a small enough open ball B CC U centered at 0 with f holomorphic (in fact
given by a holomorphic polynomial of degree at most 2) on a neighborhood of the
closure of B in U.
Note that for every ¢ > 0, the set {z € B; f(z) = ¢} is contained in D.

Now let ¢» : UN D — R be (n — 1)-convex with corners and exhaustive and
A € R be given as the maximum of ¢ on the compact set {z € 0B, |f(z)| < 1} of
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DNU. If we apply the maximum principle for (n — 1)-convex functions with corners
on the analytic sets { f = ¢} (which are of dimension > n—1), we deduce that the set
{z € B; f(z) =¢,0 < ¢ < 1} is contained in the compact set {z € UND; ¢ (z) < A};
hence it is relatively compact. But this is absurd !

Now we turn to the implication (c¢) = (b). Here we follow the preprint of Ueda
[9]. Again we use the reductio ad absurdum method. Thus for some point &, € 0D
there exists a coordinate neighborhood (U, (z1,...,2,)) which contains &, as the
origin such that if we set 2’ = (21,..., 2,) and 2" = (2441, ..., 2,) one has:

There is a positive number R with {(2/,0) € U;0 < ||| < R} C D, and there
exist a sequence {2/} which converges to 0 in C"~% such that I, := {(Z/, 2); ||2/|| <
R} C D.

Set T, := {(2,0); |2l < R}, A" := {2/ € C%; ||| < R}, A" = {2 €
C"7; ||2"|| < r} with r > 0 small enough such that {(z/,2"); ||| = R, ||z"] <
r} C D, and A := A" x A”. Set , := A\ T',. Define ¢, on 2, by

o2, 2 = 217+ 112" = 20072

Clearly ¢, has g+ 1 positive eigenvalues, hence it is (n — ¢)-convex. Now remark
that L, := 0(Q, \ D) is contained in A" x dA” (This is obvious!) and ¢,|;, <
R? 4 1/r?, for all v. On the other hand, the sequence {supgcr \p ¥, (§)}, diverges
to infinity. Thus, if v is large enough, ¢, |o,\p attains a maximum. This concludes
the proof of the lemma.

The proof of propositon 1.

In virtue of Peternell’s result [7], one has to show that D is locally g-complete
with corners. Assume this is not true. Hence by the above lemma there are: a point
&, € 0D, an open neighborhood U of §,, and a (n — ¢)-convex function ¢ on U such
that ¢[o\p < (&)

Take H > &, be a complex submanifold of X of dimension ¢ + 1 such that ¢|g
is 1-convex (we may shrink U, if necessary). Now we employ the lemma 1 again to
the g-complete with corners open set D N H of the Stein manifold H, and we derive
easily a contradiction.

Remark. Mutatis mutandis, the statement of proposition 1 remains true if we
replace M by a purely n-dimensional projective manifold.

3 The proof of theorem 1

We show firstly the “if” part. Let ¢ : ¥ — R be g-convex with corners and
exhaustive. Then there exists an open covering {V;}icr of Y such that: {V;}ics is
locally finite, each V; is a Stein compactum, and there are g-convex functions with
corners 9;;,j = 1,..., k;, defined on a neighborhood of V; with

Y(y) = max{iy(y); i and j such that y € Vi}
and if y € 9V, then ¥;;(y) < ¥(y) for all j = 1,..., k;. This can be easily satisfied.
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Now set U; := 7 4(V;),i € I, and ¢;; := ;; om. Let 6; be l-convex on a
neighborhood of U;. For every sequence ¢ = {¢;}; of positive numbers we define a
function, not necessarily continuous, . : X — R as follows: For x € X we put

QOE(l') = max{gozj(:c) + 6191(1'),] = 1, ey ki,l' S Uz}

Then . > tom; consequently . is exhaustive. Moreover, if ¢; > 0 are sufficiently
small, one gets for all ¢+ and x € OU; that

max{;;(z),7=1,...,k} < @c(x).

In particular we deduce that ¢, is continuous and g-convex with corners. (On
each ¢; we impose finitely many restrictions.) The proof of the “if” part follows.

To show the “only if” part, we use induction over the dimension n of X. The
case n = 0 being clear, let n > 0 and assume the theorem proven for complex spaces
X of dimension less than n.

Consider Y’ C Y a thin analytic set such that 7 : X \ X' — Y \ V', X' :=
71(Y"), is a covering map, say, with k sheets. Since X’ is g-complete with corners,
by the induction hypothesis, Y’ is also g-complete with corners. Then there are:
W C Y an open neighborhood of Y’ and ¢’ : U — R a function g-convex with
corners on a neighborhood U of W such that 1)’ restricted to W is exhaustive. This
can be done similarly as in [2], theorem 1.

Let ¢ : X — R be g-convex with corners and exhaustive. From [8], there is
a function 0 : X — R U {—o0} such that: {o = —oc0} = X', expo is smooth,
and every point x € X admits an open neighborhood 2 for which there is a smooth
function h on Q with o + h is 1-convex on Q \ X’. Therefore, if y € C*(R,R) is
rapidly increasing and convex, ¢’ := x(¢) + 0 is g-convex with corners on X \ X’
and exhaustive on X \ 7= 1(V), where V is an open neighborhood of Y', V C W.
Moreover, notice that the sequence {¢'(z,)} diverges to —oo whenever the sequence
{z,} € X\ X’ converges to some point of X’.

Now we define a continuous function 6 : Y\ Y’ — R as follows: For every point
y e Y \Y' let 771 (y) = {z1,...,21}; then set

0(y) = max{¢'(z1),...,¢ (z)}.

Since 7 induces a covering map with k sheets between X \ X’ and Y \ Y, one
gets easily that 6 is g-convex with corners, 6 restricted to Y \ V' is exhaustive, and
for every sequence {y,}, in Y \ Y’ which converges to a point of Y’ the sequence
{0(y,)}, diverges to —oc.

Set ¢, := mingp 0 which is a real number since ¢ restricted to W\ V is ex-
haustive; then select a smooth function ; : R — R which is strictly increasing
and convex such that u(t) =t if t <t, — 1 and u(d) > ¢’ on W\ V. We define
Y — R as follows

_ J max{u(0),9'}  on W;
yi= { (), on Y\ V.
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Then 1 is well-defined, g-convex with corners, and exhaustive for Y. Therefore Y
is g-complete with corners; whence the proof of the induction step.

The g-convex with corners analogue is to be treated in a similar way and we

omit it.
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