
Epistasis and Deceptivity

B. Naudts ∗ A. Verschoren

Abstract

Deceptivity and epistasis both contribute to make fitness functions hard to
optimize for a genetic algorithm. In this note we examine the relation between
these concepts, with particular emphasis on their mutual reinforcement.

Introduction

There are several factors which can make a fitness function f hard to optimize,
including deceptivity and high epistasis. By a thorough investigation of the length
2 case, we show that these properties are essentially independent, but may mutually
reinforce each other. In particular, epistasis is responsable for the different behavior
of the type I and type II minimal deceptive problem.

1 Epistasis

In genetics, a gene or gene pair is said to be epistatic to a gene at another locus,
if it masks the (phenotypical) expression of the second one, cf. [8]. In this way,
epistasis expresses links between separate genes in a chromosome. The analogous
notion in the context of genetic algorithms (GAs) was introduced by Rawlins [7],
who defines minimal epistasis to correspond to the situation where every gene (or
bit) is independent of every other gene, whereas maximal epistasis arises when no
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proper subset of genes is independent of any other gene. Actually, this dependency
always being defined with respect to some fixed (positively valued) fitness function
f , the case of minimal resp. maximal epistasis corresponds to f being expressible as
a linear combination of functions, each of which only depends upon a single gene,
resp. to f being essentially a random function.

Of course, this description of epistasis is much too vague to be used efficiently
as a computable component for GA hardness. In order to remedy this, Davidor [1]
suggests the following definition for the epistasis of a length ` string s = s0 . . . s`−1

in the search space Ω = {0, 1}`:

ε(s) = f(s) −
`−1∑
i=0

1

2`−1

∑
t∈Ω,ti=si

f(t) +
`− 1

2`
∑
t∈Ω

f(t).

In [9, 10], this definition is rewritten as follows. Define

e =


ε (00 . . . 0)
ε (00 . . . 1)

...
ε (11 . . . 1)

 resp. f =


f00...0

f00...1
...

f11...1

 ,

where we denote for any s ∈ Ω by fs the fitness value f(s). For any positive integers
0 ≤ i, j < 2`, put

eij =
1

2`
(` + 1− 2dij) ,

where dij is the Hamming distance between i and j (the number of bits in which
the binary representations of i and j differ, cf. [12]). Letting E` = (eij) ∈ M2` (Q),
the rational valued 2` by 2` matrices, it is easy to see that

e = f − E`f .

This allows us to define the global epistasis of f to be

ε`(f) :=
√∑
s∈Ω

ε2(s) = ‖e‖ .

Usually, it is easier to work with the matrix G` = 2`E` ∈ M2` (Z) with entries
gij = `+ 1− 2dij for all 0 ≤ i, j < 2`. It is easy to see that

G` =

(
G`−1 + U`−1 G`−1 −U`−1

G`−1 −U`−1 G`−1 + U`−1

)
,

where

U`−1 =


1 · · · 1
...

. . .
...

1 · · · 1

 ∈ M2l−1 (Z) .

It easily follows that G2
` = 2`G`, hence that E` is idempotent. Using this, it is clear,

taking into account that E` is symmetric, that ε2
`(f) = tf F` f , where F` = I` − E`,

with I` the unit matrix of dimension 2`.
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It is obvious that for any positive real number r ∈ R, we have ε(rf) = rε(f),
whereas the epistasis of f and rf , viewed as expressing linkage between different
bits, should be the same.

This leads us to define the normalized epistasis of a fitness function f as

ε∗`(f) = ε2
`

(
f

||f ||

)
=
ε2
`(f)

||f ||

=
tf(I− E`)f

tf f
,

and as F` is an orthogonal projection (it is both idempotent and symmetric), it thus
follows that

0 ≤ ε∗`(f) ≤ 1.

Actually, it is easy to see that ε∗`(f) = 0 if and only if f has minimal epistasis,
in the sense of Rawlins [7]. On the other hand, it has been proved in [9] that the
maximal value of ε∗`(f) that may be reached by a (positive valued!) fitness function
f is 1− 1

2`−1 . In fact, this value is reached precisely by fitness functions f with the

property that there exists some t ∈ Ω with binary complement t̂ and some positive
real number α such that f(t) = f(t̂) = α and f(s) = 0 for t 6= s 6= t̂.

2 Deceptivity

For any length ` schema H ∈ {0, 1,#}, let us denote by f(H) the average fitness of
(the binary strings represented by) H and let us call the number of fixed bits in H
the order of H.

As in [6] for example, two length ` schemata

H = h0 . . . h`−1, H ′ = h′0 . . . h
′
`−1 ∈ {0, 1,#}`

are said to be competing, if they have the same order and if for any 0 ≤ i < ` we
have hi = # if and only if h′i = #. Let M(f) be the set of global optima of f
(usually M(f) consists of a single element). We say that f is deceptive of order m
if there exists x 6∈ M(f) such that if H and H ′ are competing schemata of order
at most m and if x ∈ H, then f(H) > f(H ′). Although the schema H contains
the optimum m, the GA is thus lead away from it, as m is more likely expected to
belong to competing schemata, in view of their, misleading, higher average fitness.

Let us now work over Ω = {0, 1}2, i.e., let us consider length 2 strings and let us
consider a fitness function f on Ω with maximum value f11, i.e., with M(f) = {11}.

It is easy to see that if both f00 + f01 ≤ f10 + f11 and f00 + f10 ≤ f01 + f11, then
f is non-deceptive.

However, if we assume f00 + f01 > f10 + f11 for example, then f is deceptive of
order 1. Indeed, the string x = 01 belongs to the two order-1 schemata H1 = 0#
and H2 = #1, with (unique) corresponding competing schemata H ′1 = 1# resp.
H ′2 = #0. We have

f(H1) =
1

2
(f00 + f01) >

1

2
(f10 + f11) = f(H ′1).
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On the other hand, we also have

f(H2) =
1

2
(f01 + f11) >

1

2
(f00 + f10) = f(H ′2).

Indeed, otherwise f01 + f11 ≤ f00 + f10, which, combined with f00 + f01 > f10 + f11

would lead to f11 − f00 < f00 − f11, a contradiction.
In the deceptive situation described in the preceding paragraph, depending on

whether f01 > f00 or f00 ≥ f01, one speaks, as in [3], of the minimal deceptive problem
of type I resp. of type II. It appears that, although both are deceptive of order 1,
these functions exhibit a very different convergence behaviour with respect to genetic
algorithms. Indeed, although in the type I case deceptivity initially leads the GA
away from the global maximum, after a sufficiently large number of generations, the
GA is still capable of discovering the real maximum, whereas this is not necessary
so in the type II case . We refer to [3] for full details and examples of typical runs.

In view of the previous remarks, deceptivity, which is of order 1 in both cases,
does not permit to distinguish the (very different) type I and type II behavior.

3 Epistasis versus Deceptivity

In this section, we take a detailed look at the link between epistasis and deceptivity
in the special case ` = 2. As one easily verifies, in this case the matrix G = G2

equals

G =


3 1 1 −1
1 3 −1 1
1 −1 3 1
−1 1 1 3

 .
It follows that F = F2 = I2 − E2 is given by

F =
1

4


1 −1 −1 1
−1 1 1 −1
−1 1 1 −1

1 −1 −1 1

 .
Write

f̃ = f00 + f11 − f01 − f10,

then

tf F f =
1

4

(
f00 f01 f10 f11

)
1 −1 −1 1
−1 1 1 −1
−1 1 1 −1

1 −1 −1 1



f00

f01

f10

f11

 =
1

4
f̃2.

The normalized epistasis of f is given by

ε∗2(f) =
tf F f
tf f

,
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so, restricting (as we may) to the case ||f || = 1, we have that ε∗(f) is proportional
to

f̃2 = (f11 + f00 − f01 − f10)
2.

Let us assume throughout f11 to be the maximum value of f . The maximal value
of f is then reached for

f =


α
0
0
α


with α =

√
2/2. Here, f̃ = 2α =

√
2, so ε∗2(f) = 1/2 (as tf f = 2α2 = 1). Let us

fix the set {a, b, c, d} of values of f and assume that a = f11 > b > c > d, then it is
clear that f̃ = f11 + f00 − f01 − f10 can take three values:

1. if

f =


b
c
d
a

 or f =


b
d
c
a


then f̃ = α1 = a + b− c− d;

2. if

f =


c
b
d
a

 or f =


c
d
b
a


then f̃ = α2 = a + c− b− d;

3. if

f =


d
b
c
a

 or f =


d
c
b
a


then f̃ = α3 = a + d− b− c.

Since a > b > c > d, it is clear that α1 > 0 and α2 > 0. Moreover, b − c > 0 (and
c− b < 0), so α1 > α2.

On the other hand, if a+d > b+ c, then a3 > 0 and if a+d < b+ c, then α3 < 0.
Clearly, α2 > α3, as c − d > 0 (and d − c < 0) and α2 > −α3, as a − b > 0 (and
b− a < 0).

We have thus shown that
α2

1 > α2
2 > α2

3.

Since ε∗2(f) is proportional to f̃2, this yields:

Proposition 3.1. With a fixed set of values f00, f01, f10 < f11, the normalized epis-
tasis ε∗2(f) can take three different values ε1 < ε2 < ε3, where
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1. ε1 corresponds to f01 > f10 > f00 or f10 > f01 > f00 (low epistasis);

2. ε2 corresponds to f01 > f00 > f10 or f10 > f00 > f01 (medium epistasis);

3. ε3 corresponds to f00 > f01 > f10 or f00 > f10 > f01 (high epistasis).

Let us now relate the previous result to deceptivity.
If f has low epistasis ε∗2(f) = ε1, then f00+f01 < f10+f11 and f00+f10 < f01+f11,

so f is non-deceptive. So, if f is deceptive, it has necessarily medium or high
epistasis.

If f is deceptive and has medium epistasis, i.e., if ε∗2(f) = ε2, then f is deceptive
of type I. Indeed, if we assume f00 + f01 > f10 + f11 for example, then we are
necessarily in the situation f01 > f00 > f10 (otherwise f10 > f00 > f01, hence
f10 + f11 > f00 + f01, a contradiction). So f is deceptive of type I, as f00 < f01.

If f is deceptive and has high epistasis, i.e., if ε∗2(f) = ε3, then f is deceptive of
type II, as in each of the possibilities f00 > f01 > f10 and f00 > f10 > f01, we have
f01 < f00.

Conclusion 3.2. We have proved:

1. deceptivity cannot occur in the low epistasis case;

2. if deceptivity occurs, epistasis allows to differentiate between type I deceptivity
(medium epistasis) and type II deceptivity (high epistasis).

In particular, the fact that deceptive fitness functions of type II are much harder
to optimize than their type I analogues is explained by the extra difficulty implied
by their epistatic behaviour.

Note 3.3. Let us note that although deceptive functions cannot have low epistasis,
the converse is not necessarily true, i.e., even fitness functions with high epistasis
are not necessarily deceptive (but remain difficult to optimize precisely due to this
high epistasis).

Indeed, consider the fitness function f given by

f =


α− 2ε
ε
0
α

 ,

where α =
√

2/2 and ε > 0. As

f00 + f01 = α− ε < α = f10 + f11

and
α− 2ε = f00 + f10 < f01 + f11 = α

it follows that f is non-deceptive. However, if we choose ε < α/3, then

f11 > f00 > f01 > f10,
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so, clearly, f has high epistasis. Actually, it is easy to see that

ε∗2(f) =
1

4

(2α − 3ε)2

(α − 2ε)2 + ε2 + α2
,

so, for small values of ε, we find that

ε∗2(f) ≈ 1

4

4α2

2α2
=

1

2
,

which is the highest possible value that ε∗2(f) may reach. It thus follows that even
maximally epistatic fitness functions are not necessarily deceptive.

Note 3.4. A similar type of analysis may be done for higher dimensions, in partic-
ular, by using Walsh transforms as in [4, 5]. On the other hand, one should realize
that for ` ≥ 3, the situation becomes much more complex. This is mainly due to the
higher dimensionality of the function space, which eliminates some of the constraints
which lead to the tight links between epistasis and deceptivity in the 2-bit case. In
particular, in higher dimensions no intrinsic classification of deceptivity (type I ver-
sus type II) is available, and other factors than high epistasis or deceptivity may
account for the GA hardness of a fitness function.
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