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Abstract

We study boundedness, equicontinuity and sequential equicontinuity for
sets of separately continuous bilinear mappings between topological modules.

In this paper, we consider various types of boundedness, equicontinuity and se-
quential equicontinuity for sets of separately continuous bilinear mappings between
topological modules. Our purpose here is to establish relations among the various
notions of boundedness (resp. equicontinuity, sequential equicontinuity) under con-
sideration, as well as to establish relations among notions of a different nature; for
example, to obtain conditions under which pointwise boundedness implies separate
equicontinuity. The key result for our study is a version of the Banach-Steinhaus
theorem in the context of topological modules, proved in [7].

It should be mentioned that this paper was written under the influence of [2] (see
also [1] and [8]), where the same notions for sets of separately continuous bilinear
mappings between (real or complex) topological vector spaces have been studied.

Throughout this work, A denotes a commutative topological ring with an identity
element and A∗ denotes the multiplicative group of all invertible elements of A.
All modules under consideration are unitary A-modules. E, F and G represent
topological A-modules, M (resp. N ) represents a set of bounded subsets of E
(resp. F ), and Lsep(E,F ;G) represents the A-module of all separately continuous
A-bilinear mappings from E × F into G.
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Definition 1. Let X ⊂ Lsep(E,F ;G).

(B1) X is pointwise bounded if, for each (x, y) ∈ E × F , the set

X(x, y) = {u(x, y); u ∈ X}

is bounded in G.

(B2)(a) X isM-uniformly bounded if, for each y ∈ F and for each B ∈M, the set

{u(x, y); u ∈ X, x ∈ B}

is bounded in G.

(B2)(b) X is N -uniformly bounded if, for each x ∈ E and for each C ∈ N , the set

{u(x, y); u ∈ X, y ∈ C}

is bounded in G.

(B3) X is (M,N )-uniformly bounded if X isM-uniformly bounded andN -uniformly
bounded.

(B4) X is (M×N )-uniformly bounded if, for each B ∈ M and for each C ∈ N ,
the set

X(B × C) = {u(x, y); u ∈ X, x ∈ B, y ∈ C}
is bounded in G.

Remark 2. Since every subset of a topological module over a discrete ring is
necessarily bounded, there is no interest in the study of the notions just defined
when A is a discrete ring.

Remark 3. (a) If
⋃

B∈M
B = E (resp.

⋃
C∈N

C = F ), then (B2)(a) implies (B1) (resp.

(B2)(b) implies (B1)).
(b) If

⋃
C∈N

C = F (resp.
⋃

B∈M
B = E), then (B4) implies (B2)(a) (resp. (B4) implies

(B2)(b)). In particular, if
⋃

B∈M
B = E and

⋃
C∈N

C = F , then (B4) implies (B3).

There are examples showing that the reverse implications in Remark 3 are not
valid in general; see [2]. In the sequel we shall see conditions under which such
reverse implications hold.

Definition 4. Let X ⊂ Lsep(E,F ;G).

(E1)(a) X is left equicontinuous if, for each y ∈ F , the set

{x ∈ E 7→ u(x, y) ∈ G; u ∈ X}

is equicontinuous.

(E1)(b) X is right equicontinuous if, for each x ∈ E, the set

{y ∈ F 7→ u(x, y) ∈ G; u ∈ X}
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is equicontinuous.

(E2)(a) X is N -equihypocontinuous if, for each C ∈ N , the set

{x ∈ E 7→ u(x, y) ∈ G; u ∈ X, y ∈ C}

is equicontinuous.

(E2)(b) X isM-equihypocontinuous if, for each B ∈M, the set

{y ∈ F 7→ u(x, y) ∈ G; u ∈ X, x ∈ B}

is equicontinuous.

(E3) X is (M,N )-equihypocontinuous if X isM-equihypocontinuous and N -equi-
hypocontinuous.

(E4) X is equicontinuous if, for each (x, y) ∈ E×F and for each neighborhood W of
zero in G, there exist a neighborhood U of zero in E and a neighborhood V of zero in
F such that the relations u ∈ X, x′ ∈ U , y′ ∈ V imply u(x′+x, y′+y)−u(x, y) ∈W .

Remark 5. If
⋃

C∈N
C = F (resp.

⋃
B∈M

B = E), then (E2)(a) implies (E1)(a) (resp.

(E2)(b) implies (E1)(b)). In particular, if
⋃

B∈M
B = E and

⋃
C∈N

C = F , then (E3)

implies (E1)(a) and (E1)(b).

Remark 6. Suppose that the product of any neighborhood of zero in A by any
neighborhood of zero in E (resp. F ) is a neighborhood of zero in E (resp. F ).
Then (E4) implies (E2)(a) (resp. (E4) implies (E2)(b)); in particular, if these two
properties hold, then (E4) implies (E3). In fact, let X ⊂ Lsep(E,F ;G) be equicon-
tinuous, let C ∈ N , and assume that the product of any neighborhood of zero in
A by any neighborhood of zero in E is a neighborhood of zero in E. Given an
arbitrary neighborhood W of zero in G, there are a neighborhood U of zero in E
and a neighborhood V of zero in F such that X(U × V ) ⊂ W . By the boundedness
of C , there exists a neighborhood L of zero in A such that LC ⊂ V . Thus

X((LU)× C) = X(U × (LC)) ⊂ X(U × V ) ⊂ W.

Since, by assumption, LU is a neighborhood of zero in E, we have just verified that
the set

{x ∈ E 7→ u(x, y) ∈ G; u ∈ X, y ∈ C}
is equicontinuous. Therefore X isN -equihypocontinuous. By interchanging the roles
of E and F , we conclude that the other assertion is also true.

There are examples showing that the reverse implications in Remarks 5 and 6
are not valid in general; see [2]. In the sequel we shall see conditions under which
such reverse implications hold.

Theorem 7 and Corollary 8 below have already been established in [7].
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Theorem 7. Suppose that E and F are metrizable and E is barrelled [7] (resp. F is
barrelled). If X ⊂ Lsep(E,F ;G) is right equicontinuous (resp. left equicontinuous),
then X is equicontinuous.

Corollary 8. Suppose that E and F are metrizable and barrelled.
If X ⊂ Lsep(E,F ;G) is pointwise bounded, then X is equicontinuous.

Corollary 9. Suppose that there exists a countable subset C of A∗ such that 0 ∈ C .
Let E and F be metrizable, and let X ⊂ Lsep(E,F ;G).

(a) If E is complete (resp. F is complete) and X is right equicontinuous (resp. left
equicontinuous), then X is equicontinuous.

(b) If E and F are complete, and X is pointwise bounded, then X is equicontinuous.

Proof. (a) follows from Proposition 2.4 of [7] and Theorem 7; (b) follows from
Proposition 2.4 of [7] and Corollary 8.

Remarks 10 and 11 below are concerned with relations among some of the notions
considered in Definitions 1 and 4.

Remark 10. By Theorem 25.5 of [9], (E1)(a) implies (B2)(a), (E1)(b) implies
(B2)(b), (E2)(a) implies (B4), and (E2)(b) implies (B4) (in particular, (E3) implies
(B4)).

Remark 11. Suppose that the product of any two neighborhoods of zero in A is a
neighborhood of zero in A. Then (E4) implies (B4). In fact, let X ⊂ Lsep(E,F ;G)
be equicontinuous, and let B ∈M, C ∈ N . Given an arbitrary neighborhood W of
zero in G, there are a neighborhood U of zero in E and a neighborhood V of zero
in F such that X(U × V ) ⊂ W . By the boundedness of B and C , there exists a
neighborhood L of zero in A such that LB ⊂ U and LC ⊂ V . Thus

(LL)X(B × C) = X((LB)× (LC)) ⊂ X(U × V ) ⊂ W.

Since, by assumption, LL is a neighborhood of zero in A, we have just verified that
the set X(B × C) is bounded. Therefore X is (M×N )-uniformly bounded.

We have seen in Corollaries 8 and 9(b) conditions under which (B1) implies
(E4). In Theorem 12 (resp. Proposition 16) below, we shall see conditions under
which (B2)(b) implies (E2)(a), (B2)(a) implies (E2)(b), and (B1) implies (E1)(a)
or (E1)(b) (resp. (B4) implies (E2)(a) or (E2)(b), (B2)(a) implies (E1)(a), and
(B2)(b) implies (E1)(b)). Some consequences of Theorem 12 and Proposition 16 are
also derived.

Theorem 12. Suppose that E is barrelled (resp. F is barrelled), and let X ⊂
Lsep(E,F ;G). If X is N -uniformly bounded (resp. M-uniformly bounded), then
X is N -equihypocontinuous (resp. M-equihypocontinuous). In particular, if X is
pointwise bounded, then X is left equicontinuous (resp. right equicontinuous).
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Proof. Assume that E is barrelled and X is N -uniformly bounded. In order to prove
that X is N -equihypocontinuous, let C ∈ N and consider the set

Z = {x ∈ E 7→ u(x, y) ∈ G; u ∈ X, y ∈ C}

of continuous A-linear mappings from E into G. By hypothesis, Z(x) is bounded in
G for each x ∈ E. Thus, by Theorem 3.1 of [7], Z is equicontinuous. Therefore X

is N -equihypocontinuous. By interchanging the roles of E and F , we conclude that
the other assertion is also true.

Corollary 13. Suppose that E and F are barrelled, and let X ⊂ Lsep(E,F ;G). If X

is (M,N )-uniformly bounded, then X is (M,N )-equihypocontinuous. In particular,
if X is pointwise bounded, then X is left equicontinuous and right equicontinuous.

Proof. Immediate from Theorem 12.
The following corollary was suggested by Proposition 14, p.44 of [4].

Corollary 14. Suppose that F is barrelled (resp. E is barrelled), and let X ⊂
Lsep(E,F ;G). If

⋃
C∈N

C = F (resp.
⋃

B∈M
B = E) and X is N -equihypocontinuous

(resp. M-equihypocontinuous), then X is (M,N )-equihypocontinuous. In par-
ticular, if X is left equicontinuous (resp. right equicontinuous), then X is M-
equihypocontinuous (resp. N -equihypocontinuous). Thus, if E and F are bar-
relled and X is left equicontinuous and right equicontinuous, then X is (M,N )-
equihypocontinuous.

Proof. Immediate from Remarks 5 and 10, and Theorem 12.

Corollary 15. Suppose that E is barrelled (resp. F is barrelled), and let X ⊂
Lsep(E,F ;G). If X is N -uniformly bounded (resp. M-uniformly bounded), then
X is (M×N )-uniformly bounded. In particular, if X is pointwise bounded, then
X is M-uniformly bounded (resp. N -uniformly bounded). Thus, if E and F are
barrelled and X is pointwise bounded, then X is (M×N )-uniformly bounded.

Proof. Immediate from Theorem 12 and Remark 10.

Proposition 16. Suppose that E is bornological [3] (resp. F is bornological), M
is the set of all bounded subsets of E (resp. N is the set of all bounded subsets
of F ), and let X ⊂ Lsep(E,F ;G). If X is (M×N )-uniformly bounded, then X is
N -equihypocontinuous (resp. M-equihypocontinuous). In particular, if X is M-
uniformly bounded (resp. N -uniformly bounded), then X is left equicontinuous
(resp. right equicontinuous).

Proof. The proof is analogous to that of Theorem 12. For example, to prove one of
the assertions, assume that E is bornological and X is (M×N )-uniformly bounded,
M being the set of all bounded subsets of E. For a given C ∈ N , the set

Z = {x ∈ E 7→ u(x, y) ∈ G; u ∈ X, y ∈ C}

of (continuous) A-linear mappings transforms bounded subsets of E into bounded
subsets of G. By the theorem proved in [3], Z is equicontinuous. Therefore X is
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N -equihypocontinuous.

Corollary 17. Suppose that E and F are bornological,M is the set of all bounded
subsets of E and N is the set of all bounded subsets of F . If X ⊂ Lsep(E,F ;G) is
(M×N )-uniformly bounded, then X is (M,N )-equihypocontinuous.

Proof. Immediate from Proposition 16.

Corollary 18. Suppose that F is bornological (resp. E is bornological), and
let X ⊂ Lsep(E,F ;G). If N is the set of all bounded subsets of F (resp. M is
the set of all bounded subsets of E) and X is N -equihypocontinuous (resp. M-
equihypocontinuous), then X is (M,N )-equihypocontinuous.

Proof. Immediate from Remark 10 and Proposition 16.

Definition 19. Let X ⊂ Lsep(E,F ;G).

(S1)(a) X is sequentially left equicontinuous if, for each y ∈ F and for each null
sequence (xn)n∈N

in E, (u(xn, y))n∈N
converges uniformly to zero for u ∈ X.

(S1)(b) X is sequentially right equicontinuous if, for each x ∈ E and for each null
sequence (yn)n∈N

in F , (u(x, yn))n∈N
converges uniformly to zero for u ∈ X.

(S2)(a) X is sequentially N -equihypocontinuous if, for each C ∈ N and for each
null sequence (xn)n∈N

in E, (u(xn, y))n∈N
converges uniformly to zero for u ∈ X,

y ∈ C .

(S2)(b) X is sequentially M-equihypocontinuous if, for each B ∈ M and for each
null sequence (yn)n∈N

in F , (u(x, yn))n∈N
converges uniformly to zero for u ∈ X,

x ∈ B.

(S3) X is sequentially (M,N )-equihypocontinuous if X is sequentiallyM-equihypo-
continuous and sequentially N -equihypocontinuous.

(S4) X is sequentially equicontinuous if, for each (x, y) ∈ E × F and for each
sequence ((xn, yn))n∈N

in E × F converging to (x, y), (u(xn, yn))n∈N
converges uni-

formly to u(x, y) for u ∈ X.

Remark 20. If
⋃

C∈N
C = F (resp.

⋃
B∈M

B = E), then (S2)(a) implies (S1)(a) (resp.

(S2)(b) implies (S1)(b)). In particular, if
⋃

B∈M
B = E and

⋃
C∈N

C = F , then (S3)

implies (S1)(a) and (S1)(b).

Remark 21. Obviously, (Ei)(a) implies (Si)(a) and (Ei)(b) implies (Si)(b) for
i = 1, 2; in particular, (E3) implies (S3). Moreover, (E4) implies (S4).

Proposition 22. (a) Suppose that E is metrizable, and let Z be a set of A-linear
mappings from E into G. In order that Z be equicontinuous, it is necesssary and
sufficient that, for each null sequence (xn)n∈N

in E, (u(xn))n∈N
converges uniformly

to zero for u ∈ Z.
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(b) Suppose that E and F are metrizable, and let X be a set of A-bilinear mappings
from E×F into G. In order that X be equicontinuous, it is necessary and sufficient
that, for each (x, y) ∈ E×F and for each sequence ((xn, yn))n∈N

in E×F converging
to (x, y), (u(xn, yn))n∈N

converges uniformly to u(x, y) for u ∈ X.

Proof. We shall prove (a), the proof of (b) being analogous. The condition is
obviously necessary for every E. In order to prove the sufficiency of the condition,
let us fix a decreasing countable fundamental system (Un)n∈N

of neighborhoods of
zero in E (E is metrizable). If Z is not equicontinuous, there exist a neighborhood
W of zero in G, a sequence (xn)n∈N

in E and a sequence (un)n∈N
in Z such that

xn ∈ Un and un(xn) /∈ W for all n ∈ N. Therefore (xn)n∈N
is a null sequence in E

such that (u(xn))n∈N
does not converge uniformly to zero for u ∈ Z. This concludes

the proof.

Corollary 23. Suppose that E is metrizable (resp. F is metrizable), and let
X ⊂ Lsep(E,F ;G). If X is sequentially N -equihypocontinuous (resp. sequentially
M-equihypocontinuous), then X is N -equihypocontinuous (resp. M-equihypocon-
tinuous). In particular, if X is sequentially left equicontinuous (resp. sequentially
right equicontinuous), then X is left equicontinuous (resp. right equicontinuous).

Proof. Immediate from Proposition 22(a).

The following proposition generalizes Theorems 16 and 21 of [2], and improves
Remark 10 (recall Remark 21) when A is metrizable.

Proposition 24. Suppose that A is metrizable, and let X ⊂ Lsep(E,F ;G). If X

is sequentially N -equihypocontinuous (resp. sequentiallyM-equihypocontinuous),
then X is (M × N )-uniformly bounded. In particular, if X is sequentially left
equicontinuous (resp. sequentially right equicontinuous), then X is M-uniformly
bounded (resp. N -uniformly bounded).

Proof. Assume that X is sequentially N -equihypocontinuous, and let B ∈ M,
C ∈ N be given. We shall prove that the set X(B × C) is bounded. For this
purpose, let (an)n∈N

be a null sequence in A, (un)n∈N
a sequence in X, (xn)n∈N

a
sequence in B, and (yn)n∈N

a sequence in C . Since (anxn)n∈N
converges to zero in

E, it follows from the hypothesis that the sequence (anun(xn, yn))n∈N
converges to

zero in G. By Theorem 15.3 of [9], X(B×C) is bounded. Therefore X is (M×N )-
uniformly bounded. By interchanging the roles of E and F , we conclude that the
other assertion is also true.

There are examples showing that the reverse implications in Proposition 24 are
not valid in general; see [2]. In Theorem 28 below, we shall see conditions under
which such reverse implications hold. In order to reach our purpose, we shall need
the following

Definition 25. Let E be a topological A-module and let (xn)n∈N
be a sequence

in E; (xn)n∈N
converges to zero in the Mackey sense if there exists a null sequence

(an)n∈N
in A consisting of elements of A∗ such that (a−1

n xn)n∈N
is a null sequence
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in E. In this case, we shall write (xn)n∈N

M−→ 0.

Clearly, if (xn)n∈N

M−→ 0, then (xn)n∈N
is a null sequence.

E is said to be an M-topological A-module if every null sequence in E converges
to zero in the Mackey sense.

The following result, whose proof is due to N.C. Bernardes Jr., contains a well
known result ([5], p. 149) as a special case.

Proposition 26. Suppose that A contains a null sequence of elements of A∗, and
let E be a metrizable topological A-module. Then E is an M-topological A-module.

Proof. Let (xn)n∈N
be an arbitrary null sequence in E. Let (Un)n∈N

be a decreasing
countable fundamental system of neighborhoods of zero in E (E is metrizable), and
let (an)n∈N

be a null sequence in A consisting of elements of A∗.

We claim that there exists a strictly increasing sequence (mi)i∈N in N such that,
for each i ∈ N, the relation n ≥ mi implies xn ∈ aiUi . We argue by induction on
i. Since a0U0 is a neighborhood of zero in E by Theorem 12.4(1) of [9], there is
an m0 ∈ N such that the relation n ≥ m0 implies xn ∈ a0U0 . Assume that, for a
certain i ∈ N∗, m0 < · · · < mi have been constructed in such a way that the relation
n ≥ m` implies xn ∈ a`U` for ` = 0, . . . , i. Since ai+1Ui+1 is a neighborhood of zero
in E, there exists an mi+1 ∈ N, mi+1 > mi , such that the relation n ≥ mi+1 implies
xn ∈ ai+1Ui+1 . Therefore our claim is verified.

By what we have just proved, for each i ∈ N and for each mi ≤ n < mi+1 ,
there exists a yn ∈ Ui so that xn = bnyn , where bn = ai for mi ≤ n < mi+1 . Since

(yn)n≥m0
converges to zero in E, it follows that (xn)n∈N

M−→ 0, as we wished to
prove.

Remark 27. In Proposition 26, A may be taken as being metrizable and such that
0 ∈ A∗.

The following theorem generalizes Theorems 19 and 23 of [2].

Theorem 28. Suppose that E is an M-topological A-module (resp. F is an M-
topological A-module), M contains all sets consisting of points of null sequences
in E (resp. N contains all sets consisting of points of null sequences in F ), and
let X ⊂ Lsep(E,F ;G). If X is (M×N )-uniformly bounded, then X is sequentially
N -equihypocontinuous (resp. sequentially M-equihypocontinuous). In particular,
if X is M-uniformly bounded (resp. N -uniformly bounded), then X is sequentially
left equicontinuous (resp. sequentially right equicontinuous).

Proof. Let E, F and N be arbitrary. We claim that X is sequentially N -equihypo-
continuous if and only if for each sequence (un)n∈N

in X, for each null sequence
(xn)n∈N

in E and for each sequence (yn)n∈N
in F such that the set {yn;n ∈ N}

is contained in an element of N , the sequence (un(xn, yn))n∈N
converges to zero

in G. Indeed, it is obvious that the above-mentioned property is valid if X is se-
quentially N -equihypocontinuous. On the other hand, if X is not sequentially N -
equihypocontinuous, there are a C ∈ N and a null sequence (xn)n∈N

in E in such a
way that (u(xn, y))n∈N

does not converge uniformly to zero for u ∈ X, y ∈ C . Thus
there is a neighborhood W of zero in G such that, for every n ∈ N, there are an
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m ∈ N, m > n, a u ∈ X and a y ∈ C so that u(xm, y) /∈ W . It then follows that
there exist a strictly increasing sequence (nk)k∈N

in N, a sequence (ynk)k∈N
in C

and a sequence (unk)k∈N
in X such that unk(xnk , ynk) /∈ W for all k ∈ N. Therefore

(unk(xnk , ynk))k∈N
does not converge to zero, (xnk)k∈N

being a null sequence in E.
This proves our claim.

Now, assume that E is an M-topological A-module and that X is (M× N )-
uniformly bounded, M being as in the statement of the theorem. Let (un)n∈N

,
(xn)n∈N

and (yn)n∈N
be as indicated before, and let (an)n∈N

be a null sequence in

A consisting of elements of A∗ such that (a−1
n xn)n∈N

converges to zero in E. Since

the set {a−1
n xn; n ∈ N} belongs to M and the set {yn;n ∈ N} is contained in an

element of N , it follows that the sequence (un(a
−1
n xn, yn))n∈N

is bounded. Hence

(un(xn, yn))n∈N
converges to zero in G because un(xn, yn) = anun(a

−1
n xn, yn) for all

n ∈ N. Therefore X is sequentially N -equihypocontinuous. By interchanging the
roles of E and F , we conclude that the other assertion is also true.

Our next result is a bilinear version of the Banach-Steinhaus theorem, and was
suggested by Theorem 25 of [2].

Theorem 29. Suppose that E and F are barrelled, E is an M-topological A-
module, and G is separated. Let (un)n∈N

be a sequence in Lsep(E,F ;G) which is
pointwise convergent to a mapping u : E × F → G. Then (un)n∈N

is sequentially
equicontinuous, u ∈ Lsep(E,F ;G), and u is sequentially continuous.

Proof. It is easily seen that u is a bilinear mapping; and, by Corollary 3.1 of [7],
u ∈ Lsep(E,F ;G).

Now, let us prove that (un)n∈N
is sequentially equicontinuous. For this purpose,

let M (resp. N ) be the set of all bounded subsets of E (resp. F ). Since (un)n∈N
is pointwise bounded, Corollary 15 ensures that (un)n∈N

is (M × N )-uniformly
bounded. Therefore, by Theorem 28, (un)n∈N

is sequentiallyN -equihypocontinuous.
Let (x, y) ∈ E×F , and let ((xk, yk))k∈N

be a sequence in E×F converging to (x, y).
Since

un(xk, yk)− un(x, y) = un(x, yk − y) + un(xk − x, y) + un(xk − x, yk − y)

for all n, k ∈ N, and since the set

{z ∈ F 7→ un(x, z) ∈ G;n ∈ N}

is equicontinuous by Theorem 3.1 of [7], it follows that (un(xk, yk))k∈N
converges

uniformly to un(x, y) for n ∈ N. Thus (un)n∈N
is sequentially equicontinuous.

Finally, u is sequentially continuous. Indeed, let ((xk, yk))k∈N
be a sequence in

E×F converging to an element (x, y) in E×F , and let W be a closed neighborhood
of zero in G. Then there exists a k0 ∈ N such that un(xk, yk) − un(x, y) ∈ W for
all n ∈ N and for all k ≥ k0 . Consequently, u(xk, yk) − u(x, y) ∈ W for all k ≥ k0 .
Hence u is sequentially continuous, thereby concluding the proof of the theorem.

Corollary 30. Suppose that A contains a null sequence of elements of A∗. Suppose
that E and F are metrizable and complete, and that G is separated. If (un)n∈N

is a
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sequence in Lsep(E,F ;G) which is pointwise convergent to a mapping u : E×F → G,
then (un)n∈N

is equicontinuous and u is continuous.

Proof. Immediate from Propositon 2.4 of [7], Proposition 26, Theorem 29 and Propo-
sition 22(b).

Remark 31. In the particular case when A = R or C, E and F are metrizable
(one or both being complete) and X is a countable set, some of our results have
already been obtained, by different methods; see Corollaries 6, 10, 13, 16 and 17 of
[8]. Also, our Corollary 30 has already been obtained when E and F are metrizable
and complete topological vector spaces over R or C; see Corollary 14 of [8].

We conclude the paper with an application (Proposition 33) of one of our results.
In order to prove it, we shall need the following

Proposition 32. Suppose that the product of any two neighborhoods of zero in
A is a neighborhood of zero in A. Suppose that

⋃
B∈M

B = E and
⋃

C∈N
C = F , and

consider the A-module L(E,F ;G) of all continuous A-bilinear mappings from E×F
into G endowed with the topology τM×N of uniform convergence on all subsets of
E × F of the form B × C , where B ∈M and C ∈ N . Then (L(E,F ;G), τM×N ) is
a topological A-module, which is separated if G is separated.

Proof. Without loss of generality we may assume that for every B1, B2 ∈ M and
for every C1, C2 ∈ N there are a B3 ∈ M and a C3 ∈ N such that (B1 × C1) ∪
(B2 × C2) ⊂ B3 × C3 . We claim that if u ∈ L(E,F ;G), B ∈ M and C ∈ N , then
u(B × C) is bounded. Indeed, let W be a neighborhood of zero in G. Then there
exist a neighborhood U of zero in E and a neighborhood V of zero in F such that
u(U × V ) ⊂ W , and there exists a neighborhood L of zero in A such that LB ⊂ U
and LC ⊂ V . Consequently, (LL)u(B × C) ⊂ W , LL being a neighborhood of
zero in A by hypothesis. Therefore u(B × C) is bounded. By Proposition (a) of
[6], (L(E,F ;G), τM×N ) is a topological A-module, which is clearly separated if G is
separated.

Proposition 33. Suppose that A contains a null sequence of elements of A∗. Sup-
pose that E and F are metrizable and complete, and that G is separated and
sequentially complete. If

⋃
B∈M

B = E and
⋃

C∈N
C = F , then (L(E,F ;G), τM×N ) is a

separated sequentially complete topological A-module.

Proof. It is easily verified that the product of any two neighborhoods of zero in A
is a neighborhood of zero in A. Therefore, by Proposition 32, (L(E,F ;G), τM×N )
is a separated topological A-module. Now, let (un)n∈N

be a Cauchy sequence in
(L(E,F ;G), τM×N ). Since

⋃
B∈M

B = E and
⋃

C∈N
C = F , (un(x, y))n∈N

is a Cauchy

sequence in G for each (x, y) ∈ E × F . Thus (un(x, y))n∈N
converges in G for each

(x, y) ∈ E × F , because G is sequentially complete. By Corollary 30, the mapping
u : E × F → G defined by u(x, y) = lim

n→∞
un(x, y) belongs to L(E,F ;G). Finally,
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(un)n∈N
converges to u for τM×N , thereby concluding the proof.
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