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Abstract

Let H be a Hopf algebra. We exhibit the category equivalence ¥YD =
B M between Yetter-Drinfeld modules and two-sided two-cosided Hopf mod-
ules as an example of the adjunctions between categories of Doi-Koppinen
unified Hopf modules studied by Caenepeel and Raianu. More generally, we
study an induction functor BYD(L) — EMH | where L, H are Hopf algebras,
D an L-bimodule coalgebra, T' and R L-H-bicomodule algebras, and B a
suitably constructed L-L-bicomodule algebra.

1 Introduction

Let A be a bialgebra, D a left A-module coalgebra, and B a left A-comodule algebra.
In this situation (up to conventions like a choice of sides) Doi [4] and Koppinen [5]
define a Hopf module in EM(A) to be a left D-comodule and left B-module M
satisfying a certain compatibility condition: The comodule structure is required
to be given by a B-module map. These definitions unify several notions of Hopf
modules in the literature as well as that of modules graded by sets with group
actions. Caenepeel and Raianu [3] study induction and coinduction functors between
categories of Doi-Koppinen Hopf modules and the question when these pairs of
adjoint functors are equivalences. Their results unify and generalize the equivalences
of Schneider [10] for ordinary (relative) Hopf modules over Hopf-Galois extensions
and coextensions, and results of Menini [6] for modules graded by G-sets.
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A Yetter-Drinfeld H-module for a Hopf algebra H is a (left) H-module and H-
comodule M with the quite different compatibility condition (A1) — m)1)h@) ®
(h(1y = m)() = haym(-1) ® hy = my) for h € H and m € M, where — denotes
the module structure. The definition appears in [11], the key property is that the
category YD of Yetter-Drinfeld H-modules is braided if H has bijective antipode.
There are two different connections between the notions of Yetter-Drinfeld and Hopf
modules: In [7] it was shown that for a Hopf algebra H there is a category equivalence
BYD =~ T MH between the category of Yetter-Drinfeld modules and that of two-
sided two-cosided Hopf modules. Generalizations in [8, Thm. 3.5] and [1, Thm.
3.1] replace some of the four instances of H on the corners of the right hand side
by more general objects. On the other hand, Caenepeel, Militaru and Zhu [2] have
observed that Yetter-Drinfeld modules can be viewed as just a specific example of
Doi-Koppinen unified Hopf modules: We have 2YD = # M(H @ H°P), in a sense
we will recall below.

It is thus natural, and the purpose of this note, to incorporate the equivalences
between Yetter-Drinfeld modules and two-sided two-cosided Hopf modules into the
framework of [3].

More precisely, we will find a suitable triple (A’, B’, D) such that # M =
PIM(A") (in fact, we will treat a more general setting). Two other ways of doing
this were given for finitely generated projective H by Beattie, Dascalescu, Raianu
and Van Oystaeyen in [1], which also inspired the present paper. With our triple,
we can show that the equivalence # YD = £ M coincides with one of the induction
functors Y M(H @ H°P) — 2, M(A’) from [3].

2 Preliminaries

Throughout the paper, k£ will denote a commutative ring, algebras, coalgebras etc.
will be over k. We will make free use of Sweedler’s notation (with the summa-
tion symbol omitted) for comultiplications of coalgebras and for comodules (for left
comodules, we will use v — v(_1) ® v(g) to denote the coaction).

A Doi-Hopf datum (A, B, D) consists of a bialgebra A, a left A-module coalgebra
D and a left A-comodule algebra B. A left D-comodule and B-module M is said
to be a Hopf (A, B, D)-module (an object of the category BM(A)) if the module
structure map B® M — M is D-colinear (with respect to the D-comodule structure
of the left hand side induced by the canonical A ® D-comodule structure via the A-
module coalgebra structure map A® D — D of D), or, equivalently, if the comodule
structure map M — D ® M is A-linear (with respect to the A-module structure
on the right hand side induced by the canonical A ® B-module structure via the
A-comodule algebra structure map B — A ® B of B). This simply means that the
formula (bm)—1y ® (bm)(o) = b—1) - m(—1) ® boym(oy holds for all b € B and m € M,
where - denotes the A-action on D.

Let (A, B, D) and (A’, B’, D) be Doi-Hopf data. Let a : A — A’ be a bialgebra
map, 5 : B — B’ an A’-comodule algebra map (that is, an algebra map satisfying
B) 1) ® B(b)oy) = alb-1)) ® B(bey)) and § : D — D" an A-module coalgebra,
map (that is, a coalgebra map satisfying d(a - d) = a(a) - 6(d)). We shall call
(a, 3,0) : (A, B, D) — (A’, B’, D’) a morphism of Doi-Hopf data. In this situation,
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Caenepeel and Raianu [3] study an induction functor F : BM(A) — B M(A)
defined as follows: F(M) = B’ ® M with the obvious left B’-module structure and
B

the D'-comodule structure A defined by A(b' ®@ m) = V' (_yy - (m(_1)) ® V' (0) @ m(q).
If D is k-flat, then F has a right adjoint G defined as follows: G(M') = DE/M’ with

the obvious D-comodule structure (which is where flatness of D is used) and the
B-module structure defined by b(3" d; ® m}) = b_1y - d; @ B(bo))m;.

We shall be needing the following variant of generalized Hopf modules: Let A
be a bialgebra, B a left A-comodule algebra and D a right A-module coalgebra.
The category P M(A), consists of all left D-comodules and right B-modules M
satisfying (mb) 1) ® (mb)) = m(—1y - b—1) ® m(o)b(oy for all m € M and b € B (so
that, by definition, PM(A) 5 = By M(AP)).

Let L be a bialgebra, B an L-bicomodule algebra and D an L-bimodule coal-
gebra; we say that (L, B, D) is a Yetter-Drinfeld datum. The category BYD(L)
of Yetter-Drinfeld (L, B, D)-modules was defined by Caenepeel, Militaru and Zhu,
generalizing Yetter’s [11] definition of crossed modules, which is the special case
B = D = H. A Yetter-Drinfeld (L, B, D)-module is a left B-module and left D-
comodule M satisfying the compatibility condition (bgy — m)1) < by ® (by —
m)ey = b1y = m1) ® by = my for all b € B and m € M, where — and
~— are used to denote the left and right L-action on D, and — also to denote
the B-action on M. If L has an antipode, then this condition is equivalent to
(b—=m)1) @ (b = m)) = b—1)y = m1) = S(ba)) @ by = m(o) for all b € B and
m € M, which is the form found in [2].

Clearly, an L-bimodule coalgebra is the same thing as a left L ® L°°-module
coalgebra, and an L-bicomodule algebra is the same thing as a left L& L°°P-comodule
algebra. If, moreover, L is a Hopf algebra, then any left L ® L°“P-comodule algebra
is also a left L ® L°P-comodule algebra via the antipode. If the antipode is bijective,
then in fact left L ® L°P-comodule algebras and L-bicomodule algebras are equivalent
notions. The following observation is also due to [2]: Let (L, B, D) be a Yetter-
Drinfeld datum with L a Hopf algebra. Then, by the above, (L ® L°°, B, D) is a
Doi-Hopf datum, and BYD(L) = EM(L @ L°P).

3 An induction functor

We will set up a particular morphism between two Doi-Hopf data, one of which
comes from a Yetter-Drinfeld datum, while the other has two-sided two-cosided
Hopf modules of a certain type as its Doi-Hopf modules.

Throughout this section we will assume the following situation: Let L and H
be bialgebras, D an L-bimodule coalgebra, R and T' two L-H-bicomodule algebras.
We will assume that L and D are flat over k.

Definition 3.1. Objects of the category E M4 are by definition D-H-bicomodules
and R-T-bimodules satisfying the four (generalized) Hopf module conditions for
being an object of PM(L), PM(L),, pM™ and M.

An R-T-bimodule is the same as a left B’-module for B’ = R ® T°P, and a
D-H-bicomodule is the same as a left D’-comodule for D' := D ® HP. Now the
condition for a left B’-module and D’-comodule to be a Hopf module in each of the
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four ways in Definition 3.1 can also be expressed as a unified Hopf module condition.
We consider the Hopf algebra A’ = L ® L°? @ HP @ HP “°° which has an obvious
left action on D’ and left coaction on B’. We have

DM = B m(A).

In the case where H is finitely generated projective and T = H, two different
descriptions of M as a category of Doi-Hopf modules were given in [1]. The
basic idea used there is dualizing one or both of the (co-)actions of H; this makes
the description more complicated in some respects, while we have to use a larger
bialgebra A" in place of H @ H**°? or H ® H°P that suffice in [1].

Definition 3.2. Put B := (R®T)°". Then B is a left L ® LP-subcomodule
algebra of R ® T°P.

In fact, R®T is an L& L°P-H-bicomodule, whose H-coinvariants form an L& L°P-
subcomodule because L ® L°P is k-flat. It is straightforward to check that B is a
subalgebra of R @ T°P. In particular, we have a Doi-Hopf datum (A, B, D) for
A=L® LP.

In the case that L is a Hopf algebra with bijective antipode, B is an L-bicomodule
algebra via

B> Z"“z‘ Rt — Z""z‘(-1) ®Ti(0) ®Rt, e LB
B> ZTZ‘ R t; — Zﬁ‘ ®tz‘(o) &® S_l(ti(_l)) €cB®L
and for the resulting Yetter-Drinfeld datum (L, B, D) we have BYD(L) = B M(A).
If L and H are Hopf algebras with bijective antipode, we define an H-L-bico-
module algebra T~! as follows: As an algebra, T-! = T°P, the left H-comodule

structure is given by ¢t — S‘l(t(l)) ® t(o), and the right L-comodule structure is
given by ¢ — t) ® S~'(¢(_1)). With this definition, we have

B~ ROT™!
H
as an L-bicomodule subalgebra of R ® T~ by [10, Lem. 3.1].

Next, we define a morphism («, 3,0) : (A, B, D) — (A’, B', D) of Doi-Hopf data
as follows:

a: LRLPo2r@y—ry11le L L% HP® HP P,
0:D3>d—d®1€ D® H®,
and [ is the inclusion.
Corollary 3.3. There is a pair of adjoint functors of Caenepeel-Raianu
BM(A) — BM(A) BM(A) = EM(A)
Vi—B®V DOM «— M
B D’
We have an isomorphism B, M(A") = R M and, if L is a Hopf algebra with bijective

antipode, the equality EM(A) = BYD(L). In these notations, the adjoint pair of
Caenepeel-Raianu induces a pair of adjoint functors

F:2YD(L) - EME G EME - ByD(L).
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We have F(V) = (R @ T°P) %) V' with the R-T-bimodule structure induced by the

obvious left R ® T°P-module structure, the left D-comodule structure X\ and right
H-comodule structure p given by

Ar @t @) =11y = V(1) =t @ 70) @ To) @ V(o)

pr @t v) =re) o) @vOTa)tw),
and we have G(M) = M“H which is a left D-subcomodule and B-submodule of M.

4 Examples

The purpose of the definitions of the preceding section is that the pair of induc-
tion and coinduction functors resulting from them generalizes several examples of
functors between Yetter-Drinfeld and two-sided two-cosided Hopf module categories.
Thus, we see that, in view of [2] those examples can be incorporated as part of the
theory developed in [3].

Let T be a right H-comodule algebra, and put U := T  Recall that T is
called a right H-Galois extension of U if the Galois map 5 : T %)T — T ® H defined
by B(t@t') = tt'(y@t'(1) is a bijection. We denote 3~} (1®h) =: bl @ A € T%)T.

Assume in addition that 7" is a left faithfully flat U-module. Then by [10, Thm.I]
we have an equivalence of categories

My = My
N—NXT
U

McoH “ M

The isomorphism N = (N%)T)COH for N € My maps n € N ton ® 1. The
isomorphism M @ T2 M for M € M¥ maps m @t € M°? QT to mt € M,
U U

its inverse maps m € M to m(o)m(l)[ll ® m(1)[2] e M<H g,
U

Theorem 4.1. Let L be a k-flat bialgebra, H a Hopf algebra with bijective antipode,
T an L-H- bicomodule algebra which is a right H-Galois extension of U := T and
a faithfully flat left U-module, R an L-H-bicomodule algebra and D a k-flat L-L-
bimodule coalgebra. Let B := RE (T~1). Then we have an equivalence of categories

pYD(L) — pM7
M — MCOH
VT —V
U

where MH has the B-module structure of a B-submodule of M, and V %)T has the

following structures: The right T-module structure and H-comodule structure are
induced by those of T'. The left D-comodule structure maps v @t to v(_y) “~ t(—1) @
v(0)®t(0), and the left R-module structure is given by r(vet) = (roy@rq)M)vrq) dt.
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Proof. Note that U°P is a subalgebra of B (via u — 1 ® u). We have inverse
isomorphisms

(R®T)C°H<5U<>T§R®T

Sretete Y et
r(0) ® 7"(1)[1] & 7“(1)[2]1% —r@t.
Hence, T°? @ B =~ R ® T°P, as T°P-B-bimodules. It follows that for V € BYD(L)

Uop
we have an isomorphism

a:V?TBv@tb—ﬂ@t@vG(R®T°p)%>V:]:(V)

with o ' (r @ t ® v) = (r@) ® ra)M)v @ ryIt. Tt is straightforward to check that
the resulting structures making V' ® T an object of EMZ are as indicated. The
U

adjunction morphisms are isomorphisms because of Schneider’s theorem which we
recalled just before the statement of the theorem. [

Corollary 4.2. Assume the situation of Theorem 4.1.

1. Assume D = k. Then we have recovered [8, Thm.3.2], a category equivalence

rM7 = p M.

2. Assume R = k. Then we have a category equivalence P ME = P M, (the
category on the right hand side consists of D-comodules and U-modules M
satisfying (mu)—1) ® (mu)o) = m—1) @ meyu for allm € M and v € U.

A special case of Theorem 4.1 occurs when U = k, that is, if T is a faithfully
flat H-Galois extension of the base ring k. In that case we can make a special
choice for L. By [9] there is a universal Hopf algebra L := L(A, H) for which
A is an L-H-bicomodule algebra. A is in fact also a left L-Galois extension of &
in this case, that is, the Galois map T® T > 2 @y — ) @ zoy € LT
is a bijection. Let us denote the image of ¢ ® 1 under the inverse of this map
by (M ® () € T ® T. Since the Galois map is H-colinear with the codiagonal
comodule structure on the domain and the comodule structure induced by that of
T on the codomain, L 3 £ — (M @ (® ¢ (T @ T)®" is an isomorphism, which
is an isomorphism of algebras with the right hand side considered a subalgebra of
T ® T°P. Under this isomorphism, the left L-comodule structure of T' corresponds
to the map

To>t—to® t(l)[l] ® t(l)m € (T® T)COH ®T.

In this situation we can also give an answer to the following question: Starting
with an L-H-bicomodule algebra R we have constructed an L-L-bicomodule algebra
B to obtain the equivalence in Theorem 4.1. Which L-L-bicomodule algebras occur
in this fashion?

Proposition 4.3. Let H be a Hopf algebra with bijective antipode, T a faithfully
flat right H-Galois extension of k and L := L(T, H). Let G be a bialgebra. Then the
assignment R +— RET‘1 defines a bijection between isomorphism classes of G-H -
bicomodule algebras and isomorphism classes of G-L-bicomodule algebras, with the
inverse given by B +— BET.



Hopf modules and Yetter-Drinfeld modules 97

In fact, this is a special case of [9, Thm. 5.5] which says that since T' is an
L-H-bigalois extension of k, cotensoring with T', respectively 77!, defines inverse
equivalences of monoidal categories M* and M*.

In particular, every L-L-bicomodule algebra B occurs as RET‘1 for a suitable L-

R-bicomodule algebra R, and thus for every B there is a suitable R with BYD(L) =
DMH
RMT-

Corollary 4.4. Let H and L be Hopf algebras with bijective antipodes and A an H -
L-bicomodule algebra which is a faithfully flat left and right Hopf-Galois extension
of k. Let B be an L-L-bicomodule algebra and R an L-H-bicomodule algebra with
B = RET‘l. Let D be an L-L-bimodule coalgebra.

1. In the case that R =T, we have B = L, so that we get a category equivalence
PYD(L) = RDME, mapping V to V@ T, with the right module and comodule
structures induced by those of T, the left module structure t(v®t') = t(_1) = v®
toyt’ and the left comodule structure mapping v @t to v(_y)  t(—1) V(o) Dt (0)-
The inverse equivalence maps M € 2 MHE to M<H  which is a D-subcomodule
of M, and an L-module by £ — m = {Mml? for ¢ € L and m € M. In the
case that D = L, this is [8, Thm. 3.5].

2. In the case that T' = H, we have L = H, and B = R. The isomorphism
R — (R® H)®" is given by v v+ 10y @ S(ray). Consequently, we have a
category equivalence RYD(L) = DM which maps V € BYD(L) to V @ H,
with the right H-module and -comodule structure induced by those of H, the
left R-module structure given by r(v ® h) = r@oy — v ® ryh, and the left
D-comodule structure mapping v ® h to v(_1) = ha) @ v() @ hy. The inverse
equivalence maps M € EME to M a D-subcomodule of M with the R-
module structure given by r — m = rymsS(rq)) forr € R and m € M.
This result is [1, Thm. 3.1].

3. A common special case of the preceding two occurs when R = D =T = H,
whence L = H. Here we get the equivalence BYD = L MU from [7]
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