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Abstract

Let H be a Hopf algebra. We exhibit the category equivalence H
HYD ∼=

H
HMH

H between Yetter-Drinfeld modules and two-sided two-cosided Hopf mod-
ules as an example of the adjunctions between categories of Doi-Koppinen
unified Hopf modules studied by Caenepeel and Raianu. More generally, we
study an induction functor DBYD(L) → D

RMH
T , where L,H are Hopf algebras,

D an L-bimodule coalgebra, T and R L-H-bicomodule algebras, and B a
suitably constructed L-L-bicomodule algebra.

1 Introduction

Let A be a bialgebra, D a left A-module coalgebra, and B a left A-comodule algebra.
In this situation (up to conventions like a choice of sides) Doi [4] and Koppinen [5]
define a Hopf module in D

BM(A) to be a left D-comodule and left B-module M
satisfying a certain compatibility condition: The comodule structure is required
to be given by a B-module map. These definitions unify several notions of Hopf
modules in the literature as well as that of modules graded by sets with group
actions. Caenepeel and Raianu [3] study induction and coinduction functors between
categories of Doi-Koppinen Hopf modules and the question when these pairs of
adjoint functors are equivalences. Their results unify and generalize the equivalences
of Schneider [10] for ordinary (relative) Hopf modules over Hopf-Galois extensions
and coextensions, and results of Menini [6] for modules graded by G-sets.
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A Yetter-Drinfeld H-module for a Hopf algebra H is a (left) H-module and H-
comodule M with the quite different compatibility condition (h(1) ⇀ m)(−1)h(2) ⊗
(h(1) ⇀ m)(0) = h(1)m(−1) ⊗ h(2) ⇀ m(0) for h ∈ H and m ∈ M , where ⇀ denotes
the module structure. The definition appears in [11], the key property is that the
category H

HYD of Yetter-Drinfeld H-modules is braided if H has bijective antipode.
There are two different connections between the notions of Yetter-Drinfeld and Hopf
modules: In [7] it was shown that for a Hopf algebraH there is a category equivalence
H
HYD ∼= H

HMH
H between the category of Yetter-Drinfeld modules and that of two-

sided two-cosided Hopf modules. Generalizations in [8, Thm. 3.5] and [1, Thm.
3.1] replace some of the four instances of H on the corners of the right hand side
by more general objects. On the other hand, Caenepeel, Militaru and Zhu [2] have
observed that Yetter-Drinfeld modules can be viewed as just a specific example of
Doi-Koppinen unified Hopf modules: We have H

HYD = H
HM(H ⊗Hop), in a sense

we will recall below.

It is thus natural, and the purpose of this note, to incorporate the equivalences
between Yetter-Drinfeld modules and two-sided two-cosided Hopf modules into the
framework of [3].

More precisely, we will find a suitable triple (A′, B ′, D′) such that H
HMH

H
∼=

D′
B′M(A′) (in fact, we will treat a more general setting). Two other ways of doing
this were given for finitely generated projective H by Beattie, Dăscălescu, Raianu
and Van Oystaeyen in [1], which also inspired the present paper. With our triple,
we can show that the equivalence H

HYD ∼= H
HMH

H coincides with one of the induction
functors H

HM(H ⊗Hop) → D′
B′M(A′) from [3].

2 Preliminaries

Throughout the paper, k will denote a commutative ring, algebras, coalgebras etc.
will be over k. We will make free use of Sweedler’s notation (with the summa-
tion symbol omitted) for comultiplications of coalgebras and for comodules (for left
comodules, we will use v 7→ v(−1) ⊗ v(0) to denote the coaction).

A Doi-Hopf datum (A,B,D) consists of a bialgebra A, a left A-module coalgebra
D and a left A-comodule algebra B. A left D-comodule and B-module M is said
to be a Hopf (A,B,D)-module (an object of the category D

BM(A)) if the module
structure map B⊗M → M is D-colinear (with respect to the D-comodule structure
of the left hand side induced by the canonical A⊗D-comodule structure via the A-
module coalgebra structure map A⊗D → D of D), or, equivalently, if the comodule
structure map M → D ⊗M is A-linear (with respect to the A-module structure
on the right hand side induced by the canonical A ⊗ B-module structure via the
A-comodule algebra structure map B → A⊗ B of B). This simply means that the
formula (bm)(−1)⊗ (bm)(0) = b(−1) ·m(−1)⊗ b(0)m(0) holds for all b ∈ B and m ∈M ,
where · denotes the A-action on D.

Let (A,B,D) and (A′, B ′, D′) be Doi-Hopf data. Let α : A→ A′ be a bialgebra
map, β : B → B ′ an A′-comodule algebra map (that is, an algebra map satisfying
β(b)(−1) ⊗ β(b)(0) = α(b(−1)) ⊗ β(b(0))) and δ : D → D′ an A-module coalgebra
map (that is, a coalgebra map satisfying δ(a · d) = α(a) · δ(d)). We shall call
(α, β, δ) : (A,B,D)→ (A′, B ′, D′) a morphism of Doi-Hopf data. In this situation,
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Caenepeel and Raianu [3] study an induction functor F : D
BM(A) → D′

B′M(A′)
defined as follows: F(M) = B ′ ⊗

B
M with the obvious left B ′-module structure and

the D′-comodule structure λ defined by λ(b′ ⊗m) = b′(−1) · δ(m(−1)) ⊗ b′(0) ⊗m(0).
If D is k-flat, then F has a right adjoint G defined as follows: G(M ′) = D2

D′
M ′ with

the obvious D-comodule structure (which is where flatness of D is used) and the
B-module structure defined by b(

∑
di ⊗m′i) = b(−1) · di ⊗ β(b(0))m

′
i.

We shall be needing the following variant of generalized Hopf modules: Let A
be a bialgebra, B a left A-comodule algebra and D a right A-module coalgebra.
The category DM(A)B consists of all left D-comodules and right B-modules M
satisfying (mb)(−1) ⊗ (mb)(0) = m(−1) · b(−1) ⊗m(0)b(0) for all m ∈ M and b ∈ B (so
that, by definition, DM(A)B

∼= D
BopM(Aop)).

Let L be a bialgebra, B an L-bicomodule algebra and D an L-bimodule coal-
gebra; we say that (L,B,D) is a Yetter-Drinfeld datum. The category D

BYD(L)
of Yetter-Drinfeld (L,B,D)-modules was defined by Caenepeel, Militaru and Zhu,
generalizing Yetter’s [11] definition of crossed modules, which is the special case
B = D = H. A Yetter-Drinfeld (L,B,D)-module is a left B-module and left D-
comodule M satisfying the compatibility condition (b(0) ⇀ m)(−1) ↼ b(1) ⊗ (b(0) ⇀
m)(0) = b(−1) ⇀ m(−1) ⊗ b(0) ⇀ m(0) for all b ∈ B and m ∈ M , where ⇀ and
↼ are used to denote the left and right L-action on D, and ⇀ also to denote
the B-action on M . If L has an antipode, then this condition is equivalent to
(b ⇀ m)(−1)⊗ (b ⇀ m)(0) = b(−1) ⇀m(−1) ↼ S(b(1))⊗ b(0) ⇀m(0) for all b ∈ B and
m ∈M , which is the form found in [2].

Clearly, an L-bimodule coalgebra is the same thing as a left L ⊗ Lop-module
coalgebra, and an L-bicomodule algebra is the same thing as a left L⊗Lcop-comodule
algebra. If, moreover, L is a Hopf algebra, then any left L⊗ Lcop-comodule algebra
is also a left L⊗Lop-comodule algebra via the antipode. If the antipode is bijective,
then in fact left L⊗Lop-comodule algebras and L-bicomodule algebras are equivalent
notions. The following observation is also due to [2]: Let (L,B,D) be a Yetter-
Drinfeld datum with L a Hopf algebra. Then, by the above, (L ⊗ Lop, B,D) is a
Doi-Hopf datum, and D

BYD(L) = D
BM(L⊗ Lop).

3 An induction functor

We will set up a particular morphism between two Doi-Hopf data, one of which
comes from a Yetter-Drinfeld datum, while the other has two-sided two-cosided
Hopf modules of a certain type as its Doi-Hopf modules.

Throughout this section we will assume the following situation: Let L and H
be bialgebras, D an L-bimodule coalgebra, R and T two L-H-bicomodule algebras.
We will assume that L and D are flat over k.

Definition 3.1. Objects of the category D
RMH

T are by definition D-H-bicomodules
and R-T -bimodules satisfying the four (generalized) Hopf module conditions for
being an object of DRM(L), DM(L)T , RMH and MH

T .

An R-T -bimodule is the same as a left B ′-module for B ′ = R ⊗ T op, and a
D-H-bicomodule is the same as a left D′-comodule for D′ := D ⊗ Hcop. Now the
condition for a left B ′-module and D′-comodule to be a Hopf module in each of the
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four ways in Definition 3.1 can also be expressed as a unified Hopf module condition.
We consider the Hopf algebra A′ = L⊗ Lop ⊗Hcop ⊗Hop cop, which has an obvious
left action on D′ and left coaction on B ′. We have

D
RMH

T
∼= D′

B′M(A′).

In the case where H is finitely generated projective and T = H, two different
descriptions of D

RMH
H as a category of Doi-Hopf modules were given in [1]. The

basic idea used there is dualizing one or both of the (co-)actions of H; this makes
the description more complicated in some respects, while we have to use a larger
bialgebra A′ in place of H ⊗H∗cop or H ⊗Hop that suffice in [1].

Definition 3.2. Put B := (R ⊗ T )coH. Then B is a left L ⊗ Lop-subcomodule
algebra of R ⊗ T op.

In fact, R⊗T is an L⊗Lop-H-bicomodule, whose H-coinvariants form an L⊗Lop-
subcomodule because L ⊗ Lop is k-flat. It is straightforward to check that B is a
subalgebra of R ⊗ T op. In particular, we have a Doi-Hopf datum (A,B,D) for
A = L⊗ Lop.

In the case that L is a Hopf algebra with bijective antipode, B is an L-bicomodule
algebra via

B 3
∑

ri ⊗ ti 7→
∑

ri(−1) ⊗ ri(0) ⊗ ti ∈ L ⊗ B
B 3

∑
ri ⊗ ti 7→

∑
ri ⊗ ti(0) ⊗ S−1(ti(−1)) ∈ B ⊗ L

and for the resulting Yetter-Drinfeld datum (L,B,D) we have D
BYD(L) ∼= D

BM(A).
If L and H are Hopf algebras with bijective antipode, we define an H-L-bico-

module algebra T−1 as follows: As an algebra, T−1 = T op, the left H-comodule
structure is given by t 7→ S−1(t(1)) ⊗ t(0), and the right L-comodule structure is
given by t 7→ t(0) ⊗ S−1(t(−1)). With this definition, we have

B ∼= R2
H
T−1

as an L-bicomodule subalgebra of R ⊗ T−1, by [10, Lem. 3.1].
Next, we define a morphism (α, β, δ) : (A,B,D)→ (A′, B ′, D′) of Doi-Hopf data

as follows:

α : L⊗ Lop 3 x⊗ y 7→ x⊗ y ⊗ 1⊗ 1 ∈ L ⊗ Lop ⊗Hcop ⊗Hop cop,

δ : D 3 d 7→ d⊗ 1 ∈ D ⊗Hcop,

and β is the inclusion.

Corollary 3.3. There is a pair of adjoint functors of Caenepeel-Raianu

D
BM(A)→ D′

B′M(A′) D′
B′M(A′)→ D

BM(A)

V 7→ B ′ ⊗
B
V D2

D′
M ←7 M

We have an isomorphism D′
B′M(A′) ∼= D

RMH
T and, if L is a Hopf algebra with bijective

antipode, the equality D
BM(A) = D

BYD(L). In these notations, the adjoint pair of
Caenepeel-Raianu induces a pair of adjoint functors

F : DBYD(L) → D
RMH

T G : DRMH
T → D

BYD(L).
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We have F(V ) = (R ⊗ T op) ⊗
B
V with the R-T -bimodule structure induced by the

obvious left R ⊗ T op-module structure, the left D-comodule structure λ and right
H-comodule structure ρ given by

λ(r ⊗ t⊗ v) = r(−1) ⇀ v(−1) ↼ t(−1) ⊗ r(0) ⊗ t(0) ⊗ v(0)

ρ(r ⊗ t⊗ v) = r(0) ⊗ t(0) ⊗ v ⊗ r(1)t(1),

and we have G(M) = M coH , which is a left D-subcomodule and B-submodule of M .

4 Examples

The purpose of the definitions of the preceding section is that the pair of induc-
tion and coinduction functors resulting from them generalizes several examples of
functors between Yetter-Drinfeld and two-sided two-cosided Hopf module categories.
Thus, we see that, in view of [2] those examples can be incorporated as part of the
theory developed in [3].

Let T be a right H-comodule algebra, and put U := T coH. Recall that T is
called a right H-Galois extension of U if the Galois map β : T ⊗

U
T → T ⊗H defined

by β(t⊗ t′) = tt′(0)⊗ t′(1) is a bijection. We denote β−1(1⊗h) =: h[1]⊗h[2] ∈ T ⊗
B
T .

Assume in addition that T is a left faithfully flat U-module. Then by [10, Thm.I]
we have an equivalence of categories

MU
∼=MH

T

N 7→ N ⊗
U
T

M coH ←7 M

The isomorphism N ∼= (N ⊗
U
T )

coH
for N ∈ MU maps n ∈ N to n ⊗ 1. The

isomorphism M coH ⊗
U
T ∼= M for M ∈ MH

T maps m ⊗ t ∈ M coH ⊗
U
T to mt ∈ M ,

its inverse maps m ∈M to m(0)m(1)
[1] ⊗m(1)

[2] ∈M coH ⊗
U
T .

Theorem 4.1. Let L be a k-flat bialgebra, H a Hopf algebra with bijective antipode,
T an L-H- bicomodule algebra which is a right H-Galois extension of U := T coH and
a faithfully flat left U-module, R an L-H-bicomodule algebra and D a k-flat L-L-
bimodule coalgebra. Let B := R2

H
(T−1). Then we have an equivalence of categories

D
BYD(L) → D

RMH
T

M 7→ M coH

V ⊗
U
T ←7 V

where M coH has the B-module structure of a B-submodule of M , and V ⊗
U
T has the

following structures: The right T -module structure and H-comodule structure are
induced by those of T . The left D-comodule structure maps v⊗ t to v(−1) ↼ t(−1) ⊗
v(0)⊗t(0), and the left R-module structure is given by r(v⊗t) = (r(0)⊗r(1)

[1])v⊗r(1)
[2]t.



96 P. Schauenburg

Proof. Note that Uop is a subalgebra of B (via u 7→ 1 ⊗ u). We have inverse
isomorphisms

(R ⊗ T )
coH ⊗

U
T ∼= R⊗ T∑

ri ⊗ ti ⊗ t 7→
∑

ri ⊗ tit
r(0) ⊗ r(1)

[1] ⊗ r(1)
[2]t←7 r ⊗ t.

Hence, T op ⊗
Uop

B ∼= R ⊗ T op, as T op-B-bimodules. It follows that for V ∈ D
BYD(L)

we have an isomorphism

α : V ⊗
U
T 3 v ⊗ t 7→ 1⊗ t⊗ v ∈ (R ⊗ T op)⊗

B
V = F(V )

with α−1(r ⊗ t ⊗ v) = (r(0) ⊗ r(1)
[1])v ⊗ r(1)

[2]t. It is straightforward to check that
the resulting structures making V ⊗

U
T an object of D

RMH
T are as indicated. The

adjunction morphisms are isomorphisms because of Schneider’s theorem which we
recalled just before the statement of the theorem. �

Corollary 4.2. Assume the situation of Theorem 4.1.

1. Assume D = k. Then we have recovered [8, Thm.3.2], a category equivalence

RMH
T
∼= BM.

2. Assume R = k. Then we have a category equivalence DMH
T
∼= DMU (the

category on the right hand side consists of D-comodules and U-modules M
satisfying (mu)(−1) ⊗ (mu)(0) = m(−1) ⊗m(0)u for all m ∈M and u ∈ U .

A special case of Theorem 4.1 occurs when U = k, that is, if T is a faithfully
flat H-Galois extension of the base ring k. In that case we can make a special
choice for L. By [9] there is a universal Hopf algebra L := L(A,H) for which
A is an L-H-bicomodule algebra. A is in fact also a left L-Galois extension of k
in this case, that is, the Galois map T ⊗ T 3 x ⊗ y 7→ x(−1) ⊗ x(0)y ∈ L ⊗ T
is a bijection. Let us denote the image of ` ⊗ 1 under the inverse of this map
by `(1) ⊗ `(2) ∈ T ⊗ T . Since the Galois map is H-colinear with the codiagonal
comodule structure on the domain and the comodule structure induced by that of
T on the codomain, L 3 ` 7→ `(1) ⊗ `(2) ∈ (T ⊗ T )coH is an isomorphism, which
is an isomorphism of algebras with the right hand side considered a subalgebra of
T ⊗ T op. Under this isomorphism, the left L-comodule structure of T corresponds
to the map

T 3 t 7→ t(0) ⊗ t(1)
[1] ⊗ t(1)

[2] ∈ (T ⊗ T )coH ⊗ T.
In this situation we can also give an answer to the following question: Starting

with an L-H-bicomodule algebra R we have constructed an L-L-bicomodule algebra
B to obtain the equivalence in Theorem 4.1. Which L-L-bicomodule algebras occur
in this fashion?

Proposition 4.3. Let H be a Hopf algebra with bijective antipode, T a faithfully
flat right H-Galois extension of k and L := L(T,H). Let G be a bialgebra. Then the
assignment R 7→ R2

H
T−1 defines a bijection between isomorphism classes of G-H-

bicomodule algebras and isomorphism classes of G-L-bicomodule algebras, with the
inverse given by B 7→ B2

H
T .
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In fact, this is a special case of [9, Thm. 5.5] which says that since T is an
L-H-bigalois extension of k, cotensoring with T , respectively T−1, defines inverse
equivalences of monoidal categories ML and MH.

In particular, every L-L-bicomodule algebra B occurs as R2
H
T−1 for a suitable L-

R-bicomodule algebra R, and thus for every B there is a suitable R with D
BYD(L) ∼=

D
RMH

T .

Corollary 4.4. Let H and L be Hopf algebras with bijective antipodes and A an H-
L-bicomodule algebra which is a faithfully flat left and right Hopf-Galois extension
of k. Let B be an L-L-bicomodule algebra and R an L-H-bicomodule algebra with
B ∼= R2

H
T−1. Let D be an L-L-bimodule coalgebra.

1. In the case that R = T , we have B ∼= L, so that we get a category equivalence
D
LYD(L) ∼= D

TMH
T , mapping V to V ⊗ T , with the right module and comodule

structures induced by those of T , the left module structure t(v⊗t′) = t(−1) ⇀ v⊗
t(0)t

′ and the left comodule structure mapping v⊗t to v(−1) ↼ t(−1)⊗v(0)⊗t(0).
The inverse equivalence maps M ∈ D

TMH
T to M coH , which is a D-subcomodule

of M , and an L-module by ` ⇀ m = `(1)m`(2) for ` ∈ L and m ∈ M . In the
case that D = L, this is [8, Thm. 3.5].

2. In the case that T = H, we have L ∼= H, and B ∼= R. The isomorphism
R → (R ⊗H)

coH
is given by r 7→ r(0) ⊗ S(r(1)). Consequently, we have a

category equivalence D
RYD(L) ∼= D

RMH
H, which maps V ∈ D

RYD(L) to V ⊗H,
with the right H-module and -comodule structure induced by those of H, the
left R-module structure given by r(v ⊗ h) = r(0) ⇀ v ⊗ r(1)h, and the left
D-comodule structure mapping v⊗h to v(−1) ↼ h(1)⊗ v(0)⊗ h(2). The inverse
equivalence maps M ∈ D

RMH
H to M coH , a D-subcomodule of M with the R-

module structure given by r ⇀ m = r(0)mS(r(1)) for r ∈ R and m ∈ M coH .
This result is [1, Thm. 3.1].

3. A common special case of the preceding two occurs when R = D = T = H,
whence L = H. Here we get the equivalence H

HYD ∼= H
HMH

H from [7]
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The categories of Yetter-Drinfel’d modules, Doi-Hopf modules and two-sided
two-cosided Hopf Modules. Appl. Categorical Structures. 6 (1998), 223–237.

[2] Caenepeel, S., Militaru, G., and Zhu, S. Crossed modules and Doi-Hopf
modules. Israel J. of Math. 100 (1997), 221–247.
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