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Abstract

We consider the positive set theory “Strong Frege 3” (SF3) proposed by
E. Weydert and discussed in [5]. SF3 is a “three valued” set theory where two
binary predicates appear, ∈ and ∈, mutually exclusive, but none of whom is
the negation of the other (so given the sets x and y there are three possibilities:
either x ∈ y holds, or x∈y holds, or both fail). SF3 gives the axiom of
extensionality with respect to ∈ and ∈, and a comprehension schema for those
first order formulas which are built positively from x ∈ y, x∈y, x = y and
¬(x = y).

In this paper we build a model M, which we conjecture to satisfy SF3,
and we prove thatM does satisfy SF3 but in the logic without Leibniz rules
for equality; M is nontrivial in the sense that its equality relation is not the
trivial relation which identifies everything. The construction uses an ad hoc
calculus C∆3, which is a typed, three-valued variant of the Fitch combinatory
logic C∆ (see [1]).

1 Introduction: the theory SF3

In this paper we are concerned with the “positive” set theory Strong Frege 3 (SF3),
which can be considered as a sort of “three-valued” set theory where equality is
treated classically. The author of SF3 is E. Weydert. Some theories inspired by the
same ideas as SF3 can be found in the works of Gilmore [2] and Hinnion [3], [4]. As
far as I know, the only published paper about SF3 is my [5]. Here we just define the
theory SF3 (following closely the first section of [5]), and we refer to [5] for more
details.
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The name of the theory Strong Frege 3 dates to 1989 and is due to R. Hinnion;
its explanation is the following:

• Strong: in contraposition with another theory, called simply Frege 3 (F3).
Shortly, F3 can be viewed as SF3 where the equality predicate x = y and its
negation ¬(x = y) are replaced by an equivalence ≡ and another predicate 6≡,
and the axiom x ≡ y ⇒ ¬(x 6≡ y) is given, but the axiom x ≡ y∨x 6≡ y is not;

• Frege: in honour of G. Frege, the author of the first (although inconsistent)
comprehension principle for sets;

• 3: because, given the sets x and y in SF3, we can have three situations: either
x ∈ y holds, or x∈y holds, or both fail; in other words the membership relation
between sets may be undetermined.

We call sets the inner objects of SF3. The formal language of SF3 is the first
order language consisting of two binary predicates, ∈ (membership) and ∈ (bar-
membership), and including the equality predicate =.

First of all we have the following axiom:

Axiom 1. (mutual exclusion) x ∈ y ⇒ ¬(x∈y).

This axiom means that each of ∈ and ∈ is a kind of “weak negation” of the other.
However since we do not state the natural counterpart of the axiom (i.e. something
like x ∈ y ∨ x∈y), we do not impose a priori that each of ∈ and ∈ is the negation of
the other; actually this is provably false in SF3.

A set in SF3 is a kind of “two-face medal”, for it can have (zero or more) members
and (zero or more) bar-members. Anyway, a set is determined by its members and
its barmembers, as the following axiom states:

Axiom 2. (extensionality) (∀t((t ∈ x⇔ t ∈ y) ∧ (t∈x⇔ t∈y)))⇒ x = y.

Finally we give the very core of SF3, namely its comprehension schema. The
idea is to repeat Frege’s comprehension schema for set-theoretic formulas (this time
in the ∈,∈-language), but with two changes:

• considering only those formulas which are “positive” in the definition below;

• while defining a set, specifying both its members and its barmembers (so this
set will be uniquely determined, by extensionality).

So we first define the positive formulas:

Definition 3. (positive formulas) The set Pf of the positive formulas is the smallest
set of ∈,∈-formulas such that:

• x ∈ y, x∈y, x = y, ¬(x = y) are in Pf (these are the basic positive formulas);

• if φ, ψ are in Pf then φ ∨ ψ, φ ∧ ψ, ∃xφ, ∀xφ are in Pf.
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Let us consider the four kinds of basic positive formulas (and fix two variables x
and y): by mutual exclusion, x ∈ y and x∈y are in a status of mutual weak negation
or, since they are both positive, of positive negation; moreover each of x = y and
¬(x = y) is logically the negation of the other, and we can consider also their
correspondance as a positive negation, since they are both positive by definition.

So we have a bijection between basic positive formulas, called positive negation;
there is a natural extension of this bijection to all positive formulas by induction,
and we give it in the following definition:

Definition 4. (positive negation of positive formulas) Given the positive formula φ,
we call positive negation of φ the formula Pn(φ), where:

• Pn(x ∈ y) is x∈y, Pn(x∈y) is x ∈ y, Pn(x = y) is ¬(x = y) and Pn(¬(x =
y)) is x = y;

• Pn(φ ∨ ψ) is Pn(φ) ∧ Pn(ψ), and Pn(φ ∧ ψ) is Pn(φ) ∨ Pn(ψ);

• Pn(∃xφ) is ∀xPn(φ), and Pn(∀xφ) is ∃xPn(φ).

We write φ for Pn(φ); we note that, for any positive φ, φ is positive and φ is φ.
Now, because of the presence of ∈ and ∈ in SF3, it is natural to associate (certain)

sets with (certain) pairs of formulas. For example, given two formulas φ(x) and ψ(x)
with at most x free, by extensionality there is at most one set whose members are
those enjoying φ and whose barmembers are those enjoying ψ; when φ is a positive
formula and ψ is φ, this set exists by the following axiom schema, where b is a
variable which is not free in φ:

Axiom 5. φ (positive comprehension schema) ∃b∀x((x ∈ b⇔ φ) ∧ (x∈b⇔ φ)).

We denote {x|φ} the set b of the previous axiom.
We call SF3 the first order theory whose nonlogical axioms are the axioms of

Mutual Exclusion, Extensionality and of the Positive Comprehension schema.
An important detail is still missing. In order to formalize our theory we have to

express it within first order logic with equality. Usually the logical axioms of this
logic include the so-called Leibniz rules, which say that equality is a congruence with
respect to every predicate symbol in consideration. In our case, where we have two
predicate symbols ∈ and ∈, the Leibniz rules would be: x = x′ ∧ y = y′ ∧ x ∈ y ⇒
x′ ∈ y′, and similarly for ∈. However for simplicity we do not include the Leibniz
rules among our axioms. This simplifies a great deal the problem of finding the
models of SF3.

2 The consistency problem for SF3

As usual, when one proposes a new axiomatic system, the first question is the
consistency of the system. The consistency of SF3 is a longstanding open problem.
Many models are known of the theory SF3 without extensionality; for instance, the
Π1

1 sets are a natural model of this theory once a Π1
1 enumeration of them is given;

unfortunately there is no such injective enumeration (see [6]), so that the Π1
1 sets do

not give us a model of the full SF3 with extensionality. Also, one can find various
“term models” of SF3 minus extensionality. So the main trouble is extensionality.
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In this paper we do obtain a modelM of the full SF3 with extensionality, but we
are not able to prove that M satisfies the Leibniz rules, though we conjecture that
it is so. If we call “trivial” a model of SF3 minus the Leibniz rule where the equality
identifies everything, then our model M is nontrivial. Note that in trivial models,
extensionality is trivially satisfied. This is why we call such models “trivial”.

So our approach to the consistency problem of SF3 consists in proving the fol-
lowing theorem:

Theorem 6. Assume the consistency of set theory ZFC. There exists a nontrivial
model M of SF3 without Leibniz rules (M is defined in section 8). Hence if M
verifies the Leibniz rules, then the theory SF3 is consistent.

Note that the theorem delivers as a corollary that SF3 without Leibniz rules
is consistent, but this can be seen directly by constructing trivial models, which
however is an easy but tedious task which is left to the interested reader. Instead,
it seems nonobvious to construct nontrivial models of this theory.

We will prove the theorem above in the next sections. Essentially the idea
of the proof is to use Combinatory Logic, and in particular Fitch’s combinatory
logic C∆ (see [1]). This system has the right expressiveness, and it has also good
extensionality properties, but not exactly the right ones for SF3; to obtain the
“right” extensionality we use a typed, three-valued version of C∆, called C∆3,
which will be exposed in the next sections. We perform our construction inside
ZFC , but of course some weaker metatheories may go as well.

3 The system C∆3: types and terms

In this section we begin the exposition of the Fitch-like calculus C∆3. This calculus,
unlike that of [1], is typed, so we begin by introducing the types of C∆3.

Definition 7. (types of C∆3) The class Type of the types is the least class such
that:

• B is in Type, and is called the boolean type;

• D is in Type, called the main type;

• if T and U are in Type, then T → U is a type, and is called the type of the
functions from T to U .

As usual we abbreviate T → (U → V ) as T → U → V .
Our types look similar to the usual type theories, such as those of Martin-Löf.

However only some types are important for us. In particular, among the types,
we select some types called the predicative types, which will be useful for encoding
predicate logic in our system:

Definition 8. (predicative types) The set of the predicative types is the set Pt =
{Tn|n ∈ N}, where:

• T0 is B;

• Tn+1 is D→ Tn.
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Intuitively Tn is the type of the n-ary predicates. In particular T0, namely B, is
intended to be the type of the propositions.

Now we define the basic terms of C∆3 and their types:

Definition 9. (basic terms) The set Bt of the basic terms and their types are the
following.

• the bottom combinator bottomn (n ≥ 1) has type Tn;

• the B-equality, =B, has type B → B → B;

• the D-equality, =D, has type D→ D → B;

• the membership Mnij (n ≥ 2, 1 ≤ i ≤ n, 1 ≤ j ≤ n, i < j) has type Tn;

• the identity Inij (n ≥ 2, 1 ≤ i ≤ n, 1 ≤ j ≤ n, i < j) has type Tn;

• the permutation Pnσ (n ≥ 2, σ permutation on {1, . . . , n}) has type Tn → Tn;

• the negation ¬n (n ≥ 1) has type Tn → Tn;

• the disjunction ∨n (n ≥ 1) has type Tn → Tn→ Tn;

• the existential quantification En (n ≥ 1) has type Tn+1 → Tn.

We note that the combinators introduced here are not complete with respect
to combinatory logic, but they are just what is needed to obtain a system at least
as powerful as SF3, as we will see. In particular we do not need anything like the
combinators K and S of Curry’s Combinatory Logic. Now we proceed to defining

all the terms of C∆3; we mostly follow the usual type theory, and the only new
thing here is that we identify the types D and D → B; in this way the type D is
endowed with an applicative structure which will be useful in the sequel.

Definition 10. (terms) The set Term of the terms and the relation “is a term of
type” are the least objects such that:

• if t is a basic term of type T , then t is a term of type T ;

• if a is a term of type T → U and b is a term of type T , then ab is a term of
type U ;

• if d is a term of type D, then d is a term of type D → B;

• if d is a term of type D → B, then d is a term of type D.

We adopt the usual way of associating terms: we write abc for (ab)c.
Among the terms, those beginning with =D or =B have a special importance. We

call D-equation a term beginning with =D, which has necessarily the form =D ab,
where a and b are terms of type D; such a term will be also denoted a =D b. Likewise
we call B-equation a term beginning with =B, which has necessarily the form =B ab,
where a and b are terms of type B; such a term will be also denoted a =B b.

We note that we can apply any term d of type D to any term d′ of type D,
modulo viewing d as a function from D to B; the result dd′ will be a term of type
B.
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4 The calculus of a set of D-equations

Let A be a set of D-equations. The calculus CA associated with A is a pair of sets of
booleans (PA,RA). Intuitively PA is the set of the propositions which are provable
in A, and RA is the set of the propositions which are refutable in A.

The set PA will be constructed in a denumerable sequence of steps PnA. We
begin by defining P0A and RA:

Definition 11. (POA and RA) The pair (P0A,RA) is the least pair of sets such
that:

1. a =D b is in P0A iff a =D b is in A;

2. a =D b is in RA iff a =D b is not in A;

3. Mnijd1 . . . dn is in P0A (resp. RA) iff didj is in P0A (resp. RA);

4. Inijd1 . . . dn is in P0A (resp. RA) iff di =D dj is in P0A (resp. RA);

5. Pnσxd1 . . . dn is in P0A (resp. RA) iff xdσ1 . . . dσn is in P0A (resp. RA);

6. ¬nxd1 . . . dn is in P0A (resp. RA) iff xd1 . . . dn is in RA (resp. P0A);

7. ∨nxyd1 . . . dn is in P0A (RA) iff xd1 . . . dn is in P0A (RA) or (and) yd1 . . . dn
is in P0A (RA);

8. Enxd1 . . . dn is in P0A (RA) iff for some (all) d of type D, xdd1 . . . dn is in
P0A (RA).

Before completing the definition of PA we define the depth of a term b of type
B as the maximum number of nested =B’s occurring in b. More formally:

Definition 12. (depth of a term of type B) We define the depth of a term of type
B as follows (by induction on the length of b):

• depth(b) is 0 if b is not a B-equation;

• depth(a =B b) is 1 +max(depth(a), depth(b)).

Remark 13. We note that a term of type B and of depth 0 cannot contain any
occurrence of the term =B. In fact, reasoning by exclusion, such a term must be an
application of two terms of type D, and by definition no term of type D can contain
the term =B.

Now we can complete the definition of PA. The idea is of having only three
booleans, up to equality provable in PA: the true, the false and the undefined. In
this sense our calculus is three-valued.

Definition 14. (PA) We define the sets PnA and PA as follows:

• P0A is given above;



A nontrivial model of Weydert’s SF3 minus the Leibniz rules 83

• Pn+1A is PnA plus all the equalities a =B b, where either a and b lie in PnA,
or a and b lie in RA, or a and b have depth ≤ n and do not lie neither in PnA
nor in RA;

• PA is
⋃
n∈N PnA.

We remark that, in the construction of the PnA and RA, there is no rule for
introducing terms beginning with bottomn, hence for any tuple d1 . . . dn of type
D, bottomnd1 . . . dn lies neither in PA nor in RA. So the bottomn are “empty”
combinators, which will be useful in constructing our model of SF3.

The calculus CA = (PA,RA) has some nice properties; for instance:

Lemma 15. 1. PA and RA have the same closure properties listed in def. 11
for P0A and RA;

2. a =B b is in PA iff either a and b are in PA, or a and b are in RA, or a and
b lie neither in PA nor in RA.

3. PA and RA are disjoint.

Proof: 1 follows because P0A and PA are the same up to some B-equations. 2
follows by induction on the depth of the equation a =B b, taking into account that
each term in Pk+1A\PkA has depth k+ 1. 3 can be proved first for P0A and RA by
induction on the structure of P0A and RA, and extends to PA and RA because the
difference PA− P0A contains only B-equations and RA contains no B-equation. �

5 Normality

In this section we follow closely the section 4 of [1] and we give some technical
notions which will be useful in the sequel. Let us start with the notions of resultant,
preresultant and medioresultant.

Definition 16. (resultant, preresultant and medioresultant) Let a, b be terms of
the same type T and let c be a term. By an ab-resultant of c we will mean any
result of replacing exactly one occurrence of a by b in c, or of b by a in c. If
no terms occur to the left of the replaced occurrence, then the ab-resultant of c
will be called an ab-preresultant of c (Thus bdef is an ab-preresultant of adef , and
viceversa). Otherwise it will be called an ab-medioresultant of c. (Thus dbefg is an
ab-medioresultant of daefg, and viceversa). Hence every ab-resultant of a term is
either an ab-preresultant of that term or else is an ab-medioresultant of it.

Now let us proceed with the definition of normality, prenormality and equinor-
mality (our definition of equinormality is weaker than that of [1] because we do not
impose ref lexivity):

Definition 17. (normality, prenormality and equinormality) Let X be a set of
terms. Let a =T b be an equation (where T is D or B).

• The set X is said to be normal in a =T b if all ab-resultants of members of X
are members of X. If E is a set of equations, we say that X is normal in E
if it is normal in all members of E.
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• The set X is said to be prenormal in a =T b if all ab-preresultants of members
of X are members of X. If E is a set of equations, we say that X is prenormal
in E if it is prenormal in all members of E.

• Assume that X is a set of equations. The set X will be said to be equinormal in
a =T b if a =T b is in X, and moreover all ab-medioresultants of members of X
are members of X. If E is a set of equations, we say that X is equinormal in E
if it is equinormal in all members of E. We denote Xeq the equinormal closure
of X, namely the smallest set of equations containing X and equinormal in
itself.

In the sequel we will denote by Eq the set of all the equations (in type D or B).
At this point, like in [1], we have a theorem.

Theorem 18. Let A be a set of D-equations and let p =T q be an equation. If
PA ∩ Eq is equinormal in p =T q and PA and RA are prenormal in p =T q, then
PA and RA are normal in p =T q.

Proof: given the hypotheses of the theorem, it is enough to show that if x is
in PA and u is a pq-resultant of x, then u is in PA, and if y is in RA and v is
a pq-resultant of y, then v is in RA. Now, in case u is actually a pq-preresultant
of x, then u is in PA by the prenormality of PA in p =T q; similarly if y is in
RA and v is a pq-preresultant of y, then v is in RA. So we can assume that u is
a pq-medioresultant of x, and that v is a pq-medioresultant of y. We proceed by
induction.

Assume first that x is an equation. Then x is in PA ∩Eq; by the equinormality
of PA ∩ Eq in p =T q, and since u is a pq-medioresultant of x, u is in PA ∩ Eq,
hence u is in PA.

Likewise assume that y is an equation. Then y is in RA∩Eq, so y is a D-equation
and y is not in A, hence y is not in PA ∩ Eq. Since v is a pq-medioresultant of y,
by the equinormality of PA ∩Eq, v is not in PA ∩Eq, and v is still a D-equation,
hence v is not in A, hence v is in RA.

Now assume that x and y are added to PA and RA by some of the rules 3 to 8 of
def. 11. Assume for instance that x is in PA by the rule 3. Then x is Mnijd1 . . . dn
for some d1, . . . , dn such that didj is in PA. Since u is a pq-medioresultant of x, u
is Mnijd

′
1 . . . d

′
n, where each d′k is a pq-resultant of dk, and only one d′k is different

from dk. So d′id
′
j is a pq-resultant of didj. By inductive hypothesis applied to didj ,

we have that d′id
′
j is in PA, hence Mnijd

′
1 . . . d

′
n is in PA by rule 3, namely u is in

PA. The other cases are analogous. �

Corollary 19. If PA∩Eq is equinormal in itself and if PA and RA are prenormal
in PA ∩ Eq, then PA and RA are normal in PA ∩Eq.

6 Conormality and autonormality

In this section we consider the key definitions of our construction, namely that of
conormality and autonormality. Our definition of conormality is different from [1],
though it is similar in the spirit.
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Definition 20. (conormality and autonormality) Let A be a set of D-equations and
let e be an equation (in type B or D). A is said to be conormal in e if: for every set
X of D-equations including A and such that e is in PX and PX ∩Eq is equinormal
in A ∪ {e}, we have that PX and RX are prenormal in e.

If E is a set of equations, A is said to be conormal in E if A is conormal in
every member of E.

A is said to be autonormal if A is conormal in itself.

We are interested mostly in autonormal sets. The existence of autonormal sets
is guaranteed by the following theorem (whose proof is trivial):

Theorem 21. The empty set ∅ is autonormal.

Now we obtain a theorem saying that B-equations are quite irrelevant for conor-
mality, in the following sense:

Theorem 22. Let A be a set of D-equations and let a =B b be a B-equation in PA.
Then:

1. PA ∩Eq is equinormal in a =B b;

2. PA and RA are normal in a =B b;

3. A is conormal in a =B b.

Proof:

1. Let c =T d be in PA ∩Eq and let c′ =T d
′ be an ab-medioresultant of c =T d.

Then it must be T = B, and some term between c and d must be equal to a
or b, and c′ =B d′ is obtained from c =B d by replacing the term above with
b or a respectively. Suppose for instance that a is equal to c (the other cases
are analogous). By definition of PA, since a =B b is in PA, we have a is in
PA if and only if b is in PA; and since c =T d is in PA we have c in PA if
and only if d is in PA. But c is equal to a by hypothesis; so b is in PA if and
only if d is in PA; and since b is c′ and d is d′, we conclude that c′ is in PA if
and only if d′ is in PA, hence c′ =B d

′ is in PA.

2. Assume that a =B b is in PA ∩ Eq. Then a is in PA iff b is in PA, and a
is in RA iff b is in RA. Hence by Lemma 15 PX and RX are prenormal in
a =B b, and since PA ∩Eq is equinormal in a =B b by the previous point, we
conclude that PA and RA are normal in a =B b by theorem 18.

3. Let X be a set of D-equations including A and assume that a =B b is in PX.
Then, by Lemma 15, a is in PX iff b is in PX, and a is in RX iff b is in RX.
Hence PX and RX are prenormal in a =B b.

�

We now give an important definition.

Definition 23. Given a set A of D-equations, let us denote Dcon(A) the set of all
the D-equations in which A is conormal.
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We have a way to “enlarge” autonormal sets, similar to [1]:

Theorem 24. Let A be an autonormal set of D-equations, and let A′ = (Dcon(A))eq .
Then A′ is autonormal.

Proof: Let a =D b be an equation in A′ and let X be any set of D-equations
including A′, such that a =D b is in PX and PX ∩ Eq is equinormal in A′. We
want to show that PX and RX are prenormal in a =D b. Now, since PX ∩ Eq
is equinormal in A′ and A′ includes Dcon(A), PX ∩Eq is equinormal in Dcon(A).
Moreover PX and RX are prenormal inDcon(A) because A is conormal inDcon(A);
hence PX and RX are normal in Dcon(A) by theorem 18; hence PX and RX are
normal in A′ because A′ is the smallest set of D-equations containing Dcon(A) and
closed under the medioresultant relation. Then PX and RX are prenormal in A′,
hence PX and RX are prenormal in a =D b. �

We can repeat the reasoning above for increasing ordinal sequences of autonormal
sets:

Theorem 25. Let (Aβ)β<α be an increasing ordinal sequence of autonormal sets of
D-equations and let A′ = (

⋃
β<αDcon(Aβ))eq. Then A′ is autonormal.

Proof: Let a =D b be an equation in A′ and let X be any set of D-equations
including A′, such that PX ∩ Eq is equinormal in A′. We want to show that PX
and RX are prenormal in a =D b. Now since PX ∩ Eq is equinormal in A′ and A′

includesDcon(Aβ), PX∩Eq is equinormal in Dcon(Aβ). Moreover PX and RX are
prenormal in Dcon(Aβ) by the conormality of Aβ in Dcon(Aβ); hence PX and RX
are normal in every Dcon(Aβ) by theorem 18; hence PX and RX are normal in A′

because, once again, A′ is the smallest set of D-equations containing
⋃
β<αDcon(Aβ)

and closed under the medioresultant relation. Then PX and RX are prenormal in
A′, hence PX and RX are prenormal in a =D b. �

We conclude this section with a theorem and a corollary which will be useful for
proving the extensionality of our model of SF3:

Theorem 26. Let A be a class of D-equations and let a =D b a D-equation. If PA
(resp. RA) is prenormal in ac =B bc for every c of type D, then PA (resp. RA) is
prenormal in a =D b.

Proof: since PA is prenormal in ac =B bc for any c of type D, we have for every
c that ac is in PA iff bc is in PA; but this means exactly that PA is prenormal in
a =D b. The same holds for RA. �

Corollary 27. Let A be a set of D-equations and let a =D b a D-equation. If A is
conormal in ac =B bc for any c of type D, then A is conormal in a =D b.

Proof: Let X be a set of D-equations including A, containing a =D b and such
that PX ∩ Eq is equinormal in A ∪ {a =D b}. By lemma 15, PX ∩ Eq contains
ac =B ac for every term c of type D. Hence, by equinormality of PX ∩ Eq in
a =D b, we have that PX ∩ Eq contains ac =B bc for every term c of type D.
Moreover PX ∩Eq is equinormal in ac =B bc by theorem 22. Hence we can use the
conormality of A in ac =B bc for every c, and we can infer that PX and RX are
prenormal in ac =B bc for every c. So by the previous theorem PX and RX are
prenormal in a =D b. Hence A is conormal in a =D b. �
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7 The system C∆3

Now we are ready to construct a set ∆3 of D-equations which will be the basis for
the construction of a model of SF3.

Definition 28. (∆3) Let Xα the ordinal sequence of sets defined by:

• X0 = ∅;

• Xα+1 = (Dcon(Xα))eq;

• Xλ = (
⋃
α<λXα)eq for λ limit ordinal.

We let ∆3 =
⋃
αXα.

We note that the sequence Xα is an increasing sequence of sets of D-equations,
and since all the D-equations form a set, the sequence must stabilize at some ordinal
δ, namely Xδ = Xδ+1 = . . . = ∆3.

Now a key theorem follows:

Theorem 29. 1. ∆3 is autonormal;

2. if ∆3 is conormal in a D-equation a =D b, then a =D b belongs to ∆3;

3. ∆3 is equinormal in itself.

Proof:

1. by the previous theorems, every Xα is autonormal; but ∆3 = Xδ, hence ∆3 is
autonormal.

2. If ∆3 is conormal in a =D b, and ∆3 = Xδ, then a =D b is in Dcon(Xδ) which
is included in (Dcon(Xδ))

eq = Xδ+1 = ∆3, hence a =D b is in ∆3.

3. We have ∆3 = Xδ = Xδ+1 = (Dcon(Xδ))
eq, hence ∆3 is equinormal in itself.

�

8 The model of SF3

We are ready to define a model M of SF3:

Definition 30. We define M to be the model with universe M , membership ∈M,
bar-membership ∈M and equality =M, where:

• M is the set of the terms of C∆3 of type D;

• x ∈M y iff yx is in P∆3;

• x∈My iff yx is in R∆3;

• x =M y iff x =D y is in ∆3.
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Theorem 31. M is a nontrivial model of SF3 in the logic without Leibniz rules.
Equality of M is a nontrivial equivalence relation.

Proof: first, we check that =M is an equivalence relation on M .
Now ref lexivity follows because ∆3 is conormal in d =D d for every d of type

D; symmetry follows because the definition of ab-resultant is symmetric in a and
b; transitivity follows because if a =D b and b =D c are in ∆3, then a = c is an
ab-medioresultant of b =D c, hence by the equinormality of ∆3 in itself we have
a =D c in ∆3.

Now we check the nonlogical axioms of SF3.
Mutual exclusion holds because P∆3 and R∆3 are disjoint.
Extensionality holds. In fact let x, y be two terms of type D with the same

members and the same barmembers: this means that for any z of type D, xz is in
P∆3 iff yz is in P∆3, and xz is in R∆3 iff yz is in R∆3. Then xz =B yz is in P∆3

for any z, hence ∆3 is conormal in xz =B yz for any z; hence by corollary 27 ∆3

is conormal in x =D y; hence by theorem 29 x =D y is in ∆3, namely x and y are
equal in M.

Finally comprehension holds. In fact let φ(x1, . . . , xn, c1, . . . , cm) be a positive
formula with n free variables and m constants, and let a1, . . . , am be terms of type
D; by induction we can construct a term Tφ(a1, . . . , am) of type Tn such that for any
d1, . . . , dn of type D:

• Tφ(a1, . . . , am)d1 . . . dn is in P∆3 iff M |= φ(d1, . . . , dn, a1, . . . , am);

• Tφ(a1, . . . , am)d1 . . . dn is in R∆3 iffM |= φ(d1, . . . , dn, a1, . . . , am).

In fact we can suppose that φ is prenex (a quantifier-free formula preceded by
zero or more quantifiers) and irref lexive (namely no subformula x ∈ x or x∈x or
x = x or ¬(x = x) occurs). This last restriction is irrelevant as we can simulate, for
instance, x ∈ x with ∃y(x = y ∧ x ∈ y).

1. if φ is basic positive and contains at least one variable, then Tφ can be con-
structed using Mkij , Ikij, ¬k and Pkσ. For instance, the filter of a set a, namely
the set {x|a ∈ x}, can be constructed as P2τM212a, where τ is the transposition
which exchanges 1 and 2.

2. if φ is basic positive and contains two constants, then in particular φ is a
sentence, hence either φ is true in the model and φ is false, or φ is false
in the model and φ is true, or both φ and φ are false. In the first case,
φ can be encoded by any identically true predicate of type Tn, for instance
truen = EnIn+1,1,2. In the second case, φ can be encoded by by any identically
false predicate of type Tn, for instance falsen = ¬ntruen. Finally in the third
case, φ can be encoded by any identically undefined predicate of type Tn, for
instance bottomn.

3. If φ is quantifier-free, then φ is a boolean combination of basic positive formu-
las, hence Tφ can be constructed using ¬k, ∨k and Tψ for ψ basic.

4. If φ has quantifiers and is a sentence, then we can proceed as in point b.
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5. If φ has quantifiers and is not a sentence, then φ is a sequence of quantifiers
followed by a quantifier-free formula, hence Tφ can be constructed using Ek,
¬k, Pkσ and Tψ for ψ quantifier-free.

As an example of application of the definitions, we prove that equality in M is
non trivial. In fact take any term a of type D. Then = a is the singleton of a,
i.e. the set containing exactly the elements of the model which are equal to a, and
¬2(= a) is the complement of the singleton of a. We show that = a is different from
¬2(= a) in M. In fact suppose for an absurdity that they are equal in M. Let η
denote the equation (= a) =D (¬2(= a)); then η is in ∆3, hence ∆3 is conormal in
it. Then take X to be the set of all the D-equations; of course X includes ∆3 and
X is equinormal in itself, hence in ∆3 ∪ {η}; so we can apply to X the conormality
of ∆3 in η and we find that PX is prenormal in η. Hence, for any term d of type
D, (= a)d lies in PX if and only if (¬2(= a))d lies in PX. Now by definition of X,
(= a)d lies in PX for every d, hence (¬2(= a))d lies in PX (by the above) and in
RX (by the rules about the negation). But this is absurd since PX ∩ RX = ∅. �

9 Conclusion

First we remark that the above arguments show the existence of a nontrivial model of
SF3 in a logic without Leibniz rules, but this is not completely satisfactory because
one usually wants the Leibniz rules. However, I do conjecture that the modelM of
the previous section does verify the Leibniz rules; this is because, intuitively, ∆3 is
a “small” set of somewhat “necessary” equations, which are selected by quantifying
universally on a large set of structures (i.e. all those calculi PX,RX which are
involved in the property of the autonormality of ∆3).

Whatever is the answer to the conjecture above, I think that the study of M
or other “Fitch-like” models of SF3 or parts of it could be an interesting task. It
is possible that some other Fitch-like construction (more clever than mine) delivers
directly the unconditional consistency of SF3, but this seems to require further
investigations.

Summing up, this paper is not intended as a conclusion of something, but rather
the beginning of some (hopefully not too hard) work.
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