A nontrivial model of Weydert's $S F_{3}$ minus the Leibniz rules

Giacomo Lenzi

Abstract

We consider the positive set theory "Strong Frege 3 " $\left(S F_{3}\right)$ proposed by E. Weydert and discussed in [5]. $S F_{3}$ is a "three valued" set theory where two binary predicates appear, \in and $\bar{\epsilon}$, mutually exclusive, but none of whom is the negation of the other (so given the sets x and y there are three possibilities: either $x \in y$ holds, or $x \bar{\in} y$ holds, or both fail). $S F_{3}$ gives the axiom of extensionality with respect to \in and $\bar{\epsilon}$, and a comprehension schema for those first order formulas which are built positively from $x \in y, x \bar{\in} y, x=y$ and $\neg(x=y)$.

In this paper we build a model \mathcal{M}, which we conjecture to satisfy $S F_{3}$, and we prove that \mathcal{M} does satisfy $S F_{3}$ but in the logic without Leibniz rules for equality; \mathcal{M} is nontrivial in the sense that its equality relation is not the trivial relation which identifies everything. The construction uses an ad hoc calculus $C \Delta_{3}$, which is a typed, three-valued variant of the Fitch combinatory $\operatorname{logic} C \Delta$ (see [1]).

1 Introduction: the theory $S F_{3}$

In this paper we are concerned with the "positive" set theory Strong Frege $3\left(S F_{3}\right)$, which can be considered as a sort of "three-valued" set theory where equality is treated classically. The author of $S F_{3}$ is E. Weydert. Some theories inspired by the same ideas as $S F_{3}$ can be found in the works of Gilmore [2] and Hinnion [3], [4]. As far as I know, the only published paper about $S F_{3}$ is my [5]. Here we just define the theory $S F_{3}$ (following closely the first section of [5]), and we refer to [5] for more details.

[^0]The name of the theory Strong Frege 3 dates to 1989 and is due to R. Hinnion; its explanation is the following:

- Strong: in contraposition with another theory, called simply Frege $3\left(F_{3}\right)$. Shortly, F_{3} can be viewed as $S F_{3}$ where the equality predicate $x=y$ and its negation $\neg(x=y)$ are replaced by an equivalence \equiv and another predicate $\not \equiv$, and the axiom $x \equiv y \Rightarrow \neg(x \not \equiv y)$ is given, but the axiom $x \equiv y \vee x \not \equiv y$ is not;
- Frege: in honour of G. Frege, the author of the first (although inconsistent) comprehension principle for sets;
- 3: because, given the sets x and y in $S F_{3}$, we can have three situations: either $x \in y$ holds, or $x \bar{\in} y$ holds, or both fail; in other words the membership relation between sets may be undetermined.

We call sets the inner objects of $S F_{3}$. The formal language of $S F_{3}$ is the first order language consisting of two binary predicates, \in (membership) and $\bar{\epsilon}$ (barmembership), and including the equality predicate $=$.

First of all we have the following axiom:
Axiom 1. (mutual exclusion) $x \in y \Rightarrow \neg(x \bar{\in} y)$.
This axiom means that each of \in and $\bar{\epsilon}$ is a kind of "weak negation" of the other. However since we do not state the natural counterpart of the axiom (i.e. something like $x \in y \vee x \bar{\in} y$), we do not impose a priori that each of \in and $\bar{\epsilon}$ is the negation of the other; actually this is provably false in $S F_{3}$.

A set in $S F_{3}$ is a kind of "two-face medal", for it can have (zero or more) members and (zero or more) bar-members. Anyway, a set is determined by its members and its barmembers, as the following axiom states:

Axiom 2. (extensionality) $(\forall t((t \in x \Leftrightarrow t \in y) \wedge(t \bar{\in} x \Leftrightarrow t \bar{\in} y))) \Rightarrow x=y$.
Finally we give the very core of $S F_{3}$, namely its comprehension schema. The idea is to repeat Frege's comprehension schema for set-theoretic formulas (this time in the $\in, \bar{\epsilon}$-language), but with two changes:

- considering only those formulas which are "positive" in the definition below;
- while defining a set, specifying both its members and its barmembers (so this set will be uniquely determined, by extensionality).

So we first define the positive formulas:
Definition 3. (positive formulas) The set Pf of the positive formulas is the smallest set of $\in, \bar{\epsilon}$-formulas such that:

- $x \in y, x \bar{\in} y, x=y, \neg(x=y)$ are in Pf (these are the basic positive formulas);
- if ϕ, ψ are in Pf then $\phi \vee \psi, \phi \wedge \psi, \exists x \phi, \forall x \phi$ are in Pf.

Let us consider the four kinds of basic positive formulas (and fix two variables x and y): by mutual exclusion, $x \in y$ and $x \bar{\in} y$ are in a status of mutual weak negation or, since they are both positive, of positive negation; moreover each of $x=y$ and $\neg(x=y)$ is logically the negation of the other, and we can consider also their correspondance as a positive negation, since they are both positive by definition.

So we have a bijection between basic positive formulas, called positive negation; there is a natural extension of this bijection to all positive formulas by induction, and we give it in the following definition:

Definition 4. (positive negation of positive formulas) Given the positive formula ϕ, we call positive negation of ϕ the formula $\operatorname{Pn}(\phi)$, where:

- $\operatorname{Pn}(x \in y)$ is $x \bar{\in} y, \operatorname{Pn}(x \bar{\in} y)$ is $x \in y, \operatorname{Pn}(x=y)$ is $\neg(x=y)$ and $\operatorname{Pn}(\neg(x=$ $y)$) is $x=y$;
- $\operatorname{Pn}(\phi \vee \psi)$ is $\operatorname{Pn}(\phi) \wedge \operatorname{Pn}(\psi)$, and $\operatorname{Pn}(\phi \wedge \psi)$ is $\operatorname{Pn}(\phi) \vee \operatorname{Pn}(\psi)$;
- $\operatorname{Pn}(\exists x \phi)$ is $\forall x \operatorname{Pn}(\phi)$, and $\operatorname{Pn}(\forall x \phi)$ is $\exists x \operatorname{Pn}(\phi)$.

We write $\bar{\phi}$ for $P n(\phi)$; we note that, for any positive $\phi, \bar{\phi}$ is positive and $\overline{\bar{\phi}}$ is ϕ.
Now, because of the presence of \in and $\bar{\epsilon}$ in $S F_{3}$, it is natural to associate (certain) sets with (certain) pairs of formulas. For example, given two formulas $\phi(x)$ and $\psi(x)$ with at most x free, by extensionality there is at most one set whose members are those enjoying ϕ and whose barmembers are those enjoying ψ; when ϕ is a positive formula and ψ is $\bar{\phi}$, this set exists by the following axiom schema, where b is a variable which is not free in ϕ :

Axiom 5. ϕ (positive comprehension schema) $\exists b \forall x((x \in b \Leftrightarrow \phi) \wedge(x \bar{\in} b \Leftrightarrow \bar{\phi}))$.
We denote $\{x \mid \phi\}$ the set b of the previous axiom.
We call $S F_{3}$ the first order theory whose nonlogical axioms are the axioms of Mutual Exclusion, Extensionality and of the Positive Comprehension schema.

An important detail is still missing. In order to formalize our theory we have to express it within first order logic with equality. Usually the logical axioms of this logic include the so-called Leibniz rules, which say that equality is a congruence with respect to every predicate symbol in consideration. In our case, where we have two predicate symbols \in and $\bar{\epsilon}$, the Leibniz rules would be: $x=x^{\prime} \wedge y=y^{\prime} \wedge x \in y \Rightarrow$ $x^{\prime} \in y^{\prime}$, and similarly for $\bar{\epsilon}$. However for simplicity we do not include the Leibniz rules among our axioms. This simplifies a great deal the problem of finding the models of SF_{3}.

2 The consistency problem for $S F_{3}$

As usual, when one proposes a new axiomatic system, the first question is the consistency of the system. The consistency of $S F_{3}$ is a longstanding open problem. Many models are known of the theory $S F_{3}$ without extensionality; for instance, the Π_{1}^{1} sets are a natural model of this theory once a Π_{1}^{1} enumeration of them is given; unfortunately there is no such injective enumeration (see [6]), so that the Π_{1}^{1} sets do not give us a model of the full $S F_{3}$ with extensionality. Also, one can find various "term models" of $S F_{3}$ minus extensionality. So the main trouble is extensionality.

In this paper we do obtain a model \mathcal{M} of the full $S F_{3}$ with extensionality, but we are not able to prove that \mathcal{M} satisfies the Leibniz rules, though we conjecture that it is so. If we call "trivial" a model of $S F_{3}$ minus the Leibniz rule where the equality identifies everything, then our model \mathcal{M} is nontrivial. Note that in trivial models, extensionality is trivially satisfied. This is why we call such models "trivial".

So our approach to the consistency problem of $S F_{3}$ consists in proving the following theorem:

Theorem 6. Assume the consistency of set theory ZFC. There exists a nontrivial model \mathcal{M} of $S F_{3}$ without Leibniz rules (\mathcal{M} is defined in section 8). Hence if \mathcal{M} verifies the Leibniz rules, then the theory $S F_{3}$ is consistent.

Note that the theorem delivers as a corollary that $S F_{3}$ without Leibniz rules is consistent, but this can be seen directly by constructing trivial models, which however is an easy but tedious task which is left to the interested reader. Instead, it seems nonobvious to construct nontrivial models of this theory.

We will prove the theorem above in the next sections. Essentially the idea of the proof is to use Combinatory Logic, and in particular Fitch's combinatory $\operatorname{logic} C \Delta$ (see [1]). This system has the right expressiveness, and it has also good extensionality properties, but not exactly the right ones for $S F_{3}$; to obtain the "right" extensionality we use a typed, three-valued version of $C \Delta$, called $C \Delta_{3}$, which will be exposed in the next sections. We perform our construction inside $Z F C$, but of course some weaker metatheories may go as well.

3 The system $C \Delta_{3}$: types and terms

In this section we begin the exposition of the Fitch-like calculus $C \Delta_{3}$. This calculus, unlike that of [1], is typed, so we begin by introducing the types of $C \Delta_{3}$.

Definition 7. (types of $C \Delta_{3}$) The class Type of the types is the least class such that:

- B is in Type, and is called the boolean type;
- D is in Type, called the main type;
- if T and U are in Type, then $T \rightarrow U$ is a type, and is called the type of the functions from T to U.

As usual we abbreviate $T \rightarrow(U \rightarrow V)$ as $T \rightarrow U \rightarrow V$.
Our types look similar to the usual type theories, such as those of Martin-Löf. However only some types are important for us. In particular, among the types, we select some types called the predicative types, which will be useful for encoding predicate logic in our system:

Definition 8. (predicative types) The set of the predicative types is the set $\mathrm{Pt}=$ $\left\{T_{n} \mid n \in \mathbf{N}\right\}$, where:

- T_{0} is B;
- T_{n+1} is $D \rightarrow T_{n}$.

Intuitively T_{n} is the type of the n-ary predicates. In particular T_{0}, namely B, is intended to be the type of the propositions.

Now we define the basic terms of $C \Delta_{3}$ and their types:
Definition 9. (basic terms) The set Bt of the basic terms and their types are the following.

- the bottom combinator bottom $n(n \geq 1)$ has type T_{n};
- the B-equality, $=_{B}$, has type $B \rightarrow B \rightarrow B$;
- the D-equality, $=_{D}$, has type $D \rightarrow D \rightarrow B$;
- the membership $M_{n i j}(n \geq 2,1 \leq i \leq n, 1 \leq j \leq n, i<j)$ has type T_{n};
- the identity $I_{n i j}(n \geq 2,1 \leq i \leq n, 1 \leq j \leq n, i<j)$ has type T_{n};
- the permutation $P_{n \sigma}(n \geq 2, \sigma$ permutation on $\{1, \ldots, n\})$ has type $T_{n} \rightarrow T_{n}$;
- the negation $\neg_{n}(n \geq 1)$ has type $T_{n} \rightarrow T_{n}$;
- the disjunction $\vee_{n}(n \geq 1)$ has type $T_{n} \rightarrow T_{n} \rightarrow T_{n}$;
- the existential quantification $E_{n}(n \geq 1)$ has type $T_{n+1} \rightarrow T_{n}$.

We note that the combinators introduced here are not complete with respect to combinatory logic, but they are just what is needed to obtain a system at least as powerful as $S F_{3}$, as we will see. In particular we do not need anything like the combinators K and S of Curry's Combinatory Logic. Now we proceed to defining all the terms of $C \Delta_{3}$; we mostly follow the usual type theory, and the only new thing here is that we identify the types D and $D \rightarrow B$; in this way the type D is endowed with an applicative structure which will be useful in the sequel.

Definition 10. (terms) The set Term of the terms and the relation "is a term of type" are the least objects such that:

- if t is a basic term of type T, then t is a term of type T;
- if a is a term of type $T \rightarrow U$ and b is a term of type T, then $a b$ is a term of type U;
- if d is a term of type D, then d is a term of type $D \rightarrow B$;
- if d is a term of type $D \rightarrow B$, then d is a term of type D.

We adopt the usual way of associating terms: we write $a b c$ for $(a b) c$.
Among the terms, those beginning with $=_{D}$ or $=_{B}$ have a special importance. We call D-equation a term beginning with $={ }_{D}$, which has necessarily the form $={ }_{D} a b$, where a and b are terms of type D; such a term will be also denoted $a={ }_{D} b$. Likewise we call B-equation a term beginning with $={ }_{B}$, which has necessarily the form $={ }_{B} a b$, where a and b are terms of type B; such a term will be also denoted $a={ }_{B} b$.

We note that we can apply any term d of type D to any term d^{\prime} of type D, modulo viewing d as a function from D to B; the result $d d^{\prime}$ will be a term of type B.

4 The calculus of a set of D-equations

Let A be a set of D-equations. The calculus $C A$ associated with A is a pair of sets of booleans $(P A, R A)$. Intuitively $P A$ is the set of the propositions which are provable in A, and $R A$ is the set of the propositions which are refutable in A.

The set $P A$ will be constructed in a denumerable sequence of steps $P_{n} A$. We begin by defining $P_{0} A$ and $R A$:

Definition 11. ($P_{O} A$ and $R A$) The pair $\left(P_{0} A, R A\right)$ is the least pair of sets such that:

1. $a={ }_{D} b$ is in $P_{0} A$ iff $a={ }_{D} b$ is in A;
2. $a={ }_{D} b$ is in $R A$ iff $a={ }_{D} b$ is not in A;
3. $M_{n i j} d_{1} \ldots d_{n}$ is in $P_{0} A$ (resp. RA) iff $d_{i} d_{j}$ is in $P_{0} A$ (resp. RA);
4. $I_{n i j} d_{1} \ldots d_{n}$ is in $P_{0} A$ (resp. RA) iff $d_{i}={ }_{D} d_{j}$ is in $P_{0} A$ (resp. RA);
5. $P_{n \sigma} x d_{1} \ldots d_{n}$ is in $P_{0} A$ (resp. RA) iff $x d_{\sigma 1} \ldots d_{\sigma n}$ is in $P_{0} A$ (resp. RA);
6. $\neg_{n} x d_{1} \ldots d_{n}$ is in $P_{0} A$ (resp. RA) iff $x d_{1} \ldots d_{n}$ is in $R A$ (resp. $P_{0} A$);
7. $\vee_{n} x y d_{1} \ldots d_{n}$ is in $P_{0} A(R A)$ iff $x d_{1} \ldots d_{n}$ is in $P_{0} A(R A)$ or (and) $y d_{1} \ldots d_{n}$ is in $P_{0} A(R A)$;
8. $E_{n} x d_{1} \ldots d_{n}$ is in $P_{0} A$ (RA) iff for some (all) d of type $D, x d d_{1} \ldots d_{n}$ is in $P_{0} A(R A)$.

Before completing the definition of $P A$ we define the depth of a term b of type B as the maximum number of nested $={ }_{B}$'s occurring in b. More formally:

Definition 12. (depth of a term of type B) We define the depth of a term of type B as follows (by induction on the length of b):

- depth(b) is 0 if b is not a B-equation;
- $\operatorname{depth}\left(a=_{B} b\right)$ is $1+\max (\operatorname{depth}(a), \operatorname{depth}(b))$.

Remark 13. We note that a term of type B and of depth 0 cannot contain any occurrence of the term $=_{B}$. In fact, reasoning by exclusion, such a term must be an application of two terms of type D, and by definition no term of type D can contain the term $={ }_{B}$.

Now we can complete the definition of $P A$. The idea is of having only three booleans, up to equality provable in $P A$: the true, the false and the undefined. In this sense our calculus is three-valued.

Definition 14. ($P A$) We define the sets $P_{n} A$ and $P A$ as follows:

- $P_{0} A$ is given above;
- $P_{n+1} A$ is $P_{n} A$ plus all the equalities $a={ }_{B} b$, where either a and b lie in $P_{n} A$, or a and b lie in $R A$, or a and b have depth $\leq n$ and do not lie neither in $P_{n} A$ nor in $R A$;
- $P A$ is $\bigcup_{n \in \mathbf{N}} P_{n} A$.

We remark that, in the construction of the $P_{n} A$ and $R A$, there is no rule for introducing terms beginning with bottom $_{n}$, hence for any tuple $d_{1} \ldots d_{n}$ of type D, bottom $d_{1} \ldots d_{n}$ lies neither in $P A$ nor in $R A$. So the bottom ${ }_{n}$ are "empty" combinators, which will be useful in constructing our model of $S F_{3}$.

The calculus $C A=(P A, R A)$ has some nice properties; for instance:
Lemma 15. 1. $P A$ and $R A$ have the same closure properties listed in def. 11 for $P_{0} A$ and $R A$;
2. $a={ }_{B} b$ is in $P A$ iff either a and b are in $P A$, or a and b are in $R A$, or a and b lie neither in $P A$ nor in $R A$.
3. $P A$ and $R A$ are disjoint.

Proof: 1 follows because $P_{0} A$ and $P A$ are the same up to some B-equations. 2 follows by induction on the depth of the equation $a={ }_{B} b$, taking into account that each term in $P_{k+1} A \backslash P_{k} A$ has depth $k+1.3$ can be proved first for $P_{0} A$ and $R A$ by induction on the structure of $P_{0} A$ and $R A$, and extends to $P A$ and $R A$ because the difference $P A-P_{0} A$ contains only B-equations and $R A$ contains no B-equation.

5 Normality

In this section we follow closely the section 4 of [1] and we give some technical notions which will be useful in the sequel. Let us start with the notions of resultant, preresultant and medioresultant.

Definition 16. (resultant, preresultant and medioresultant) Let a, b be terms of the same type T and let c be a term. By an ab-resultant of c we will mean any result of replacing exactly one occurrence of a by b in c, or of b by a in c. If no terms occur to the left of the replaced occurrence, then the ab-resultant of c will be called an ab-preresultant of c (Thus bdef is an ab-preresultant of adef, and viceversa). Otherwise it will be called an ab-medioresultant of c. (Thus dbefg is an ab-medioresultant of daefg, and viceversa). Hence every ab-resultant of a term is either an ab-preresultant of that term or else is an ab-medioresultant of it.

Now let us proceed with the definition of normality, prenormality and equinormality (our definition of equinormality is weaker than that of [1] because we do not impose ref lexivity):
Definition 17. (normality, prenormality and equinormality) Let X be a set of terms. Let $a=_{T} b$ be an equation (where T is D or B).

- The set X is said to be normal in $a=_{T} b$ if all ab-resultants of members of X are members of X. If E is a set of equations, we say that X is normal in E if it is normal in all members of E.
- The set X is said to be prenormal in $a=_{T} b$ if all ab-preresultants of members of X are members of X. If E is a set of equations, we say that X is prenormal in E if it is prenormal in all members of E.
- Assume that X is a set of equations. The set X will be said to be equinormal in $a={ }_{T} b$ if $a=_{T} b$ is in X, and moreover all ab-medioresultants of members of X are members of X. If E is a set of equations, we say that X is equinormal in E if it is equinormal in all members of E. We denote $X^{\text {eq }}$ the equinormal closure of X, namely the smallest set of equations containing X and equinormal in itself.

In the sequel we will denote by $E q$ the set of all the equations (in type D or B). At this point, like in [1], we have a theorem.

Theorem 18. Let A be a set of D-equations and let $p=_{T} q$ be an equation. If $P A \cap E q$ is equinormal in $p=_{T} q$ and $P A$ and $R A$ are prenormal in $p=_{T} q$, then $P A$ and $R A$ are normal in $p={ }_{T} q$.

Proof: given the hypotheses of the theorem, it is enough to show that if x is in $P A$ and u is a $p q$-resultant of x, then u is in $P A$, and if y is in $R A$ and v is a $p q$-resultant of y, then v is in $R A$. Now, in case u is actually a $p q$-preresultant of x, then u is in $P A$ by the prenormality of $P A$ in $p=_{T} q$; similarly if y is in $R A$ and v is a $p q$-preresultant of y, then v is in $R A$. So we can assume that u is a $p q$-medioresultant of x, and that v is a $p q$-medioresultant of y. We proceed by induction.

Assume first that x is an equation. Then x is in $P A \cap E q$; by the equinormality of $P A \cap E q$ in $p=_{T} q$, and since u is a $p q$-medioresultant of x, u is in $P A \cap E q$, hence u is in $P A$.

Likewise assume that y is an equation. Then y is in $R A \cap E q$, so y is a D-equation and y is not in A, hence y is not in $P A \cap E q$. Since v is a $p q$-medioresultant of y, by the equinormality of $P A \cap E q, v$ is not in $P A \cap E q$, and v is still a D-equation, hence v is not in A, hence v is in $R A$.

Now assume that x and y are added to $P A$ and $R A$ by some of the rules 3 to 8 of def. 11. Assume for instance that x is in $P A$ by the rule 3 . Then x is $M_{n i j} d_{1} \ldots d_{n}$ for some d_{1}, \ldots, d_{n} such that $d_{i} d_{j}$ is in $P A$. Since u is a $p q$-medioresultant of x, u is $M_{n i j} d_{1}^{\prime} \ldots d_{n}^{\prime}$, where each d_{k}^{\prime} is a $p q$-resultant of d_{k}, and only one d_{k}^{\prime} is different from d_{k}. So $d_{i}^{\prime} d_{j}^{\prime}$ is a $p q$-resultant of $d_{i} d_{j}$. By inductive hypothesis applied to $d_{i} d_{j}$, we have that $d_{i}^{\prime} d_{j}^{\prime}$ is in $P A$, hence $M_{n i j} d_{1}^{\prime} \ldots d_{n}^{\prime}$ is in $P A$ by rule 3, namely u is in $P A$. The other cases are analogous.

Corollary 19. If $P A \cap E q$ is equinormal in itself and if $P A$ and $R A$ are prenormal in $P A \cap E q$, then $P A$ and $R A$ are normal in $P A \cap E q$.

6 Conormality and autonormality

In this section we consider the key definitions of our construction, namely that of conormality and autonormality. Our definition of conormality is different from [1], though it is similar in the spirit.

Definition 20. (conormality and autonormality) Let A be a set of D-equations and let e be an equation (in type B or D). A is said to be conormal in e if: for every set X of D-equations including A and such thate is in $P X$ and $P X \cap E q$ is equinormal in $A \cup\{e\}$, we have that $P X$ and $R X$ are prenormal in e.

If E is a set of equations, A is said to be conormal in E if A is conormal in every member of E.
A is said to be autonormal if A is conormal in itself.
We are interested mostly in autonormal sets. The existence of autonormal sets is guaranteed by the following theorem (whose proof is trivial):

Theorem 21. The empty set \emptyset is autonormal.
Now we obtain a theorem saying that B-equations are quite irrelevant for conormality, in the following sense:

Theorem 22. Let A be a set of D-equations and let $a=_{B} b$ be a B-equation in $P A$. Then:

1. $P A \cap E q$ is equinormal in $a={ }_{B} b$;
2. $P A$ and $R A$ are normal in $a={ }_{B} b$;
3. A is conormal in $a={ }_{B} b$.

Proof:

1. Let $c=_{T} d$ be in $P A \cap E q$ and let $c^{\prime}=_{T} d^{\prime}$ be an $a b$-medioresultant of $c==_{T} d$. Then it must be $T=B$, and some term between c and d must be equal to a or b, and $c^{\prime}={ }_{B} d^{\prime}$ is obtained from $c={ }_{B} d$ by replacing the term above with b or a respectively. Suppose for instance that a is equal to c (the other cases are analogous). By definition of $P A$, since $a={ }_{B} b$ is in $P A$, we have a is in $P A$ if and only if b is in $P A$; and since $c=_{T} d$ is in $P A$ we have c in $P A$ if and only if d is in $P A$. But c is equal to a by hypothesis; so b is in $P A$ if and only if d is in $P A$; and since b is c^{\prime} and d is d^{\prime}, we conclude that c^{\prime} is in $P A$ if and only if d^{\prime} is in $P A$, hence $c^{\prime}={ }_{B} d^{\prime}$ is in $P A$.
2. Assume that $a={ }_{B} b$ is in $P A \cap E q$. Then a is in $P A$ iff b is in $P A$, and a is in $R A$ iff b is in $R A$. Hence by Lemma $15 P X$ and $R X$ are prenormal in $a={ }_{B} b$, and since $P A \cap E q$ is equinormal in $a={ }_{B} b$ by the previous point, we conclude that $P A$ and $R A$ are normal in $a={ }_{B} b$ by theorem 18.
3. Let X be a set of D-equations including A and assume that $a={ }_{B} b$ is in $P X$. Then, by Lemma 15, a is in $P X$ iff b is in $P X$, and a is in $R X$ iff b is in $R X$. Hence $P X$ and $R X$ are prenormal in $a={ }_{B} b$.

We now give an important definition.
Definition 23. Given a set A of D-equations, let us denote $D \operatorname{con}(A)$ the set of all the D-equations in which A is conormal.

We have a way to "enlarge" autonormal sets, similar to [1]:
Theorem 24. Let A be an autonormal set of D-equations, and let $A^{\prime}=(\operatorname{Dcon}(A))^{e q}$. Then A^{\prime} is autonormal.

Proof: Let $a={ }_{D} b$ be an equation in A^{\prime} and let X be any set of D-equations including A^{\prime}, such that $a={ }_{D} b$ is in $P X$ and $P X \cap E q$ is equinormal in A^{\prime}. We want to show that $P X$ and $R X$ are prenormal in $a={ }_{D} b$. Now, since $P X \cap E q$ is equinormal in A^{\prime} and A^{\prime} includes $\operatorname{Dcon}(A), P X \cap E q$ is equinormal in $\operatorname{Dcon}(A)$. Moreover $P X$ and $R X$ are prenormal in $\operatorname{Dcon}(A)$ because A is conormal in $\operatorname{Dcon}(A)$; hence $P X$ and $R X$ are normal in $D \operatorname{con}(A)$ by theorem 18; hence $P X$ and $R X$ are normal in A^{\prime} because A^{\prime} is the smallest set of D-equations containing $\operatorname{Dcon}(A)$ and closed under the medioresultant relation. Then $P X$ and $R X$ are prenormal in A^{\prime}, hence $P X$ and $R X$ are prenormal in $a={ }_{D} b$.

We can repeat the reasoning above for increasing ordinal sequences of autonormal sets:

Theorem 25. Let $\left(A_{\beta}\right)_{\beta<\alpha}$ be an increasing ordinal sequence of autonormal sets of D-equations and let $A^{\prime}=\left(\cup_{\beta<\alpha} D \operatorname{con}\left(A_{\beta}\right)\right)^{e q}$. Then A^{\prime} is autonormal.

Proof: Let $a={ }_{D} b$ be an equation in A^{\prime} and let X be any set of D-equations including A^{\prime}, such that $P X \cap E q$ is equinormal in A^{\prime}. We want to show that $P X$ and $R X$ are prenormal in $a={ }_{D} b$. Now since $P X \cap E q$ is equinormal in A^{\prime} and A^{\prime} includes $\operatorname{Dcon}\left(A_{\beta}\right), P X \cap E q$ is equinormal in $\operatorname{Dcon}\left(A_{\beta}\right)$. Moreover $P X$ and $R X$ are prenormal in $\operatorname{Dcon}\left(A_{\beta}\right)$ by the conormality of A_{β} in $\operatorname{Dcon}\left(A_{\beta}\right)$; hence $P X$ and $R X$ are normal in every $\operatorname{Dcon}\left(A_{\beta}\right)$ by theorem 18; hence $P X$ and $R X$ are normal in A^{\prime} because, once again, A^{\prime} is the smallest set of D-equations containing $\bigcup_{\beta<\alpha} \operatorname{Dcon}\left(A_{\beta}\right)$ and closed under the medioresultant relation. Then $P X$ and $R X$ are prenormal in A^{\prime}, hence $P X$ and $R X$ are prenormal in $a={ }_{D} b$.

We conclude this section with a theorem and a corollary which will be useful for proving the extensionality of our model of $S F_{3}$:
Theorem 26. Let A be a class of D-equations and let $a={ }_{D} b$ a D-equation. If $P A$ (resp. RA) is prenormal in $a c={ }_{B}$ bc for every c of type D, then $P A(r e s p . R A)$ is prenormal in $a={ }_{D} b$.

Proof: since $P A$ is prenormal in $a c=_{B} b c$ for any c of type D, we have for every c that $a c$ is in $P A$ iff $b c$ is in $P A$; but this means exactly that $P A$ is prenormal in $a={ }_{D} b$. The same holds for $R A$.

Corollary 27. Let A be a set of D-equations and let $a={ }_{D} b a D$-equation. If A is conormal in $a c={ }_{B} b c$ for any c of type D, then A is conormal in $a={ }_{D} b$.

Proof: Let X be a set of D-equations including A, containing $a={ }_{D} b$ and such that $P X \cap E q$ is equinormal in $A \cup\left\{a={ }_{D} b\right\}$. By lemma $15, P X \cap E q$ contains $a c={ }_{B} a c$ for every term c of type D. Hence, by equinormality of $P X \cap E q$ in $a={ }_{D} b$, we have that $P X \cap E q$ contains $a c={ }_{B} b c$ for every term c of type D. Moreover $P X \cap E q$ is equinormal in $a c={ }_{B} b c$ by theorem 22. Hence we can use the conormality of A in $a c=_{B} b c$ for every c, and we can infer that $P X$ and $R X$ are prenormal in $a c={ }_{B} b c$ for every c. So by the previous theorem $P X$ and $R X$ are prenormal in $a=_{D} b$. Hence A is conormal in $a={ }_{D} b$.

7 The system $C \Delta_{3}$

Now we are ready to construct a set Δ_{3} of D-equations which will be the basis for the construction of a model of SF_{3}.

Definition 28. $\left(\Delta_{3}\right)$ Let X_{α} the ordinal sequence of sets defined by:

- $X_{0}=\emptyset$;
- $X_{\alpha+1}=\left(\operatorname{Dcon}\left(X_{\alpha}\right)\right)^{e q}$;
- $X_{\lambda}=\left(\cup_{\alpha<\lambda} X_{\alpha}\right)^{e q}$ for λ limit ordinal.

We let $\Delta_{3}=\bigcup_{\alpha} X_{\alpha}$.
We note that the sequence X_{α} is an increasing sequence of sets of D-equations, and since all the D-equations form a set, the sequence must stabilize at some ordinal δ, namely $X_{\delta}=X_{\delta+1}=\ldots=\Delta_{3}$.

Now a key theorem follows:
Theorem 29. 1. Δ_{3} is autonormal;
2. if Δ_{3} is conormal in a D-equation $a=_{D} b$, then $a={ }_{D} b$ belongs to Δ_{3};
3. Δ_{3} is equinormal in itself.

Proof:

1. by the previous theorems, every X_{α} is autonormal; but $\Delta_{3}=X_{\delta}$, hence Δ_{3} is autonormal.
2. If Δ_{3} is conormal in $a={ }_{D} b$, and $\Delta_{3}=X_{\delta}$, then $a=_{D} b$ is in $\operatorname{Dcon}\left(X_{\delta}\right)$ which is included in $\left(\operatorname{Dcon}\left(X_{\delta}\right)\right)^{e} q=X_{\delta+1}=\Delta_{3}$, hence $a={ }_{D} b$ is in Δ_{3}.
3. We have $\Delta_{3}=X_{\delta}=X_{\delta+1}=\left(\operatorname{con}\left(X_{\delta}\right)\right)^{e} q$, hence Δ_{3} is equinormal in itself.

8 The model of $S F_{3}$

We are ready to define a model \mathcal{M} of $S F_{3}$:
Definition 30. We define \mathcal{M} to be the model with universe M, membership $\in_{\mathcal{M}}$, bar-membership $\bar{\epsilon}_{\mathcal{M}}$ and equality $=_{\mathcal{M}}$, where:

- M is the set of the terms of $C \Delta_{3}$ of type D;
- $x \in_{\mathcal{M}} y$ iff $y x$ is in $P \Delta_{3}$;
- $x \bar{\epsilon}_{\mathcal{M}} y$ iff $y x$ is in $R \Delta_{3}$;
- $x={ }_{\mathcal{M}} y$ iff $x={ }_{D} y$ is in Δ_{3}.

Theorem 31. \mathcal{M} is a nontrivial model of S_{3} in the logic without Leibniz rules. Equality of \mathcal{M} is a nontrivial equivalence relation.

Proof: first, we check that $=_{\mathcal{M}}$ is an equivalence relation on M.
Now ref lexivity follows because Δ_{3} is conormal in $d={ }_{D} d$ for every d of type D; symmetry follows because the definition of $a b$-resultant is symmetric in a and b; transitivity follows because if $a={ }_{D} b$ and $b={ }_{D} c$ are in Δ_{3}, then $a=c$ is an $a b$-medioresultant of $b={ }_{D} c$, hence by the equinormality of Δ_{3} in itself we have $a={ }_{D} c$ in Δ_{3}.

Now we check the nonlogical axioms of $S F_{3}$.
Mutual exclusion holds because $P \Delta_{3}$ and $R \Delta_{3}$ are disjoint.
Extensionality holds. In fact let x, y be two terms of type D with the same members and the same barmembers: this means that for any z of type $D, x z$ is in $P \Delta_{3}$ iff $y z$ is in $P \Delta_{3}$, and $x z$ is in $R \Delta_{3}$ iff $y z$ is in $R \Delta_{3}$. Then $x z={ }_{B} y z$ is in $P \Delta_{3}$ for any z, hence Δ_{3} is conormal in $x z=_{B} y z$ for any z; hence by corollary $27 \Delta_{3}$ is conormal in $x={ }_{D} y$; hence by theorem $29 x=_{D} y$ is in Δ_{3}, namely x and y are equal in \mathcal{M}.

Finally comprehension holds. In fact let $\phi\left(x_{1}, \ldots, x_{n}, c_{1}, \ldots, c_{m}\right)$ be a positive formula with n free variables and m constants, and let a_{1}, \ldots, a_{m} be terms of type D; by induction we can construct a term $T_{\phi}\left(a_{1}, \ldots, a_{m}\right)$ of type T_{n} such that for any d_{1}, \ldots, d_{n} of type D :

- $T_{\phi}\left(a_{1}, \ldots, a_{m}\right) d_{1} \ldots d_{n}$ is in $P \Delta_{3}$ iff $\mathcal{M} \models \phi\left(d_{1}, \ldots, d_{n}, a_{1}, \ldots, a_{m}\right)$;
- $T_{\phi}\left(a_{1}, \ldots, a_{m}\right) d_{1} \ldots d_{n}$ is in $R \Delta_{3}$ iff $\mathcal{M} \vDash \bar{\phi}\left(d_{1}, \ldots, d_{n}, a_{1}, \ldots, a_{m}\right)$.

In fact we can suppose that ϕ is prenex (a quantifier-free formula preceded by zero or more quantifiers) and irref lexive (namely no subformula $x \in x$ or $x \bar{\in} x$ or $x=x$ or $\neg(x=x)$ occurs). This last restriction is irrelevant as we can simulate, for instance, $x \in x$ with $\exists y(x=y \wedge x \in y)$.

1. if ϕ is basic positive and contains at least one variable, then T_{ϕ} can be constructed using $M_{k i j}, I_{k i j}, \neg_{k}$ and $P_{k \sigma}$. For instance, the filter of a set a, namely the set $\{x \mid a \in x\}$, can be constructed as $P_{2 \tau} M_{212} a$, where τ is the transposition which exchanges 1 and 2.
2. if ϕ is basic positive and contains two constants, then in particular ϕ is a sentence, hence either ϕ is true in the model and $\bar{\phi}$ is false, or ϕ is false in the model and $\bar{\phi}$ is true, or both ϕ and $\bar{\phi}$ are false. In the first case, ϕ can be encoded by any identically true predicate of type T_{n}, for instance true ${ }_{n}=E_{n} I_{n+1,1,2}$. In the second case, ϕ can be encoded by by any identically false predicate of type T_{n}, for instance false $e_{n}=\neg_{n}$ true $_{n}$. Finally in the third case, ϕ can be encoded by any identically undefined predicate of type T_{n}, for instance bottom ${ }_{n}$.
3. If ϕ is quantifier-free, then ϕ is a boolean combination of basic positive formulas, hence T_{ϕ} can be constructed using \neg_{k}, \vee_{k} and T_{ψ} for ψ basic.
4. If ϕ has quantifiers and is a sentence, then we can proceed as in point b.
5. If ϕ has quantifiers and is not a sentence, then ϕ is a sequence of quantifiers followed by a quantifier-free formula, hence T_{ϕ} can be constructed using E_{k}, $\neg_{k}, P_{k \sigma}$ and T_{ψ} for ψ quantifier-free.

As an example of application of the definitions, we prove that equality in \mathcal{M} is non trivial. In fact take any term a of type D. Then $=a$ is the singleton of a, i.e. the set containing exactly the elements of the model which are equal to a, and $\neg_{2}(=a)$ is the complement of the singleton of a. We show that $=a$ is different from $\neg_{2}(=a)$ in \mathcal{M}. In fact suppose for an absurdity that they are equal in \mathcal{M}. Let η denote the equation $(=a)={ }_{D}\left(\neg_{2}(=a)\right)$; then η is in Δ_{3}, hence Δ_{3} is conormal in it. Then take X to be the set of all the D-equations; of course X includes Δ_{3} and X is equinormal in itself, hence in $\Delta_{3} \cup\{\eta\}$; so we can apply to X the conormality of Δ_{3} in η and we find that $P X$ is prenormal in η. Hence, for any term d of type $D,(=a) d$ lies in $P X$ if and only if $\left(\neg_{2}(=a)\right) d$ lies in $P X$. Now by definition of X, $(=a) d$ lies in $P X$ for every d, hence $\left(\neg_{2}(=a)\right) d$ lies in $P X$ (by the above) and in $R X$ (by the rules about the negation). But this is absurd since $P X \cap R X=\emptyset$.

9 Conclusion

First we remark that the above arguments show the existence of a nontrivial model of $S F_{3}$ in a logic without Leibniz rules, but this is not completely satisfactory because one usually wants the Leibniz rules. However, I do conjecture that the model \mathcal{M} of the previous section does verify the Leibniz rules; this is because, intuitively, Δ_{3} is a "small" set of somewhat "necessary" equations, which are selected by quantifying universally on a large set of structures (i.e. all those calculi $P X, R X$ which are involved in the property of the autonormality of Δ_{3}).

Whatever is the answer to the conjecture above, I think that the study of \mathcal{M} or other "Fitch-like" models of $S F_{3}$ or parts of it could be an interesting task. It is possible that some other Fitch-like construction (more clever than mine) delivers directly the unconditional consistency of $S F_{3}$, but this seems to require further investigations.

Summing up, this paper is not intended as a conclusion of something, but rather the beginning of some (hopefully not too hard) work.

References

[1] F. B. Fitch, The system $C \Delta$ of combinatory logic, Journal of Symbolic Logic vol. 28, Number 1, 1963, pp. 87-97.
[2] P. C. Gilmore, The consistency of partial set theory without extensionality, in Proceedings of Symposia in Pure Mathematics, Am. Math. Soc., Providence, Rhode Island, vol. 13, Part II, 1974, pp. 147-153.
[3] R. Hinnion, Le paradoxe de Russell dans les versions positives de la theorie naïve des ensembles, C. R. Acad. Sci. Paris, t. 304, Serie I, n. 12, 1987, pp. 307-310.
[4] R. Hinnion, Naïve set theory with extensionality in partial logic and in paradoxical logic, Notre Dame Journal of Formal Logic, vol. 35, Number 1, 1994, pp. 15-40.
[5] G. Lenzi, Weydert's $S F_{3}$ has no recursive term model, Bull. Soc. Mat. Belg., 44 (1992) 3, ser. B, pp. 311-327.
[6] Owings, The meta r.e. sets, but not the Π_{1}^{1} sets, are enumerable without repetition, JSL 1970.

LaBRI - Université Bordeaux I
351, Cours de la Libération
33405 Talence cedex
FRANCE

[^0]: Received by the editors January 1997.
 Communicated by M. Boffa.

