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Abstract

We study the rational L.S. category of path components of function space
components for F0-spaces to determine which are finite and which infinite.
Our results include both new cases and extensions of a famous conjecture of
S. Halperin concerning the rational homotopy of F0-spaces.

1 Introduction

Let X be a finite, simply connected complex with finite-dimensional rational ho-
motopy and evenly graded rational cohomology. We refer to the collection of such
spaces X as the class of F0-spaces. Halperin studied this class of spaces extensively
in [4] proving, among other things, that F0-spaces are all rational Poincaré dual-
ity spaces with rational cohomology a complete intersection algebra. The following
long-standing conjecture concerning F0-spaces is due to Halperin, as well.

Conjecture (Halperin [4]) The rational Serre spectral sequence collapses for ev-
ery Q-orientable fibration of the form X ↪→ E → B with X an F0-space.

The Halperin conjecture has been confirmed for homogeneous spaces
X = G/H with rankH=rankG by Shiga and Tezuka [9], when the rational co-
homology of X is generated by three or fewer elements by Lupton [6] and when the
polynomial relations in the rational cohomology of X are monomials by Markl [7].
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Thomas [12] and Meier [8] have observed that the Halperin conjecture can be viewed
as a problem concerning the rational homotopy of function spaces. Let M(X, Y )
denote the space of all continuous functions from X to Y with the compact-open
topology. Given a map f : X → Y let Mf (X, Y ) denote the component of M(X, Y )
containing f .

Theorem 1.1. ( [8, 12]) The Halperin conjecture is true for an F0-space X if and
only if the rational homotopy groups of the identity component M1(X,X) are oddly
graded.

�

Theorem 1.1 provides a link between the Halperin conjecture and the theory of
rational L.S. category. Given a space S, let cat0(S) denote the rational L.S. category
of S, as defined and studied by Félix and Halperin in [2]. Note that M1(X,X) is a
topological monoid with multiplication given by composition of functions. The only
rational H-space with finite rational category is a product of odd spheres. Thus

Theorem 1.2. The Halperin conjecture is true for an F0-space X if and only if
cat0(M1(X,X)) < +∞.

�

By Theorem 1.2, the Halperin conjecture can be interpreted as a special case
of a general problem in the rational homotopy theory of function spaces: namely,
given a map f : X → Y between F0-spaces X and Y , determine whether the
rational category of Mf (X, Y ) is finite or infinite. The purpose of this paper is to
study this problem with an eye toward confirming new special cases of the Halperin
conjecture. More generally, our goal is to discover the extent to which the Halperin
conjecture “extends” to other function space components. In [1], Y. Félix made the
observation that “the category of [function space components] is often infinite”. Our
results indicate that this observation applies, as well, to function space components
for F0-spaces. However, as we shall see, there are important examples where the
Halperin conjecture is generic and the identity component is just one of a class of
components all of finite rational category.

2 Haefliger’s Model for F0-spaces

We describe Haefliger’s model [3] for components of the free and based function
spaces M(X, Y ) and M(X, Y )∗ when X and Y are F0-spaces. In this section and
throughout, all homology, cohomology and homotopy groups are assumed to be
rational.

In [4], Halperin showed that the rational cohomology of an F0-space X is of
the form H∗(X) = Λ(x1, . . . , xn)/(P1, . . . , Pn) where the xi are of even degree and
the Pi = Pi(x1, . . . , xn) form a regular sequence of polynomials in the free algebra
Λ(x1, . . . , xn). His result implies the Sullivan minimal model (MX , dX) for an F0-
space X is a two-stage model. That is,MX = Λ(V0)⊗dXΛ(V1) where dX(V0) = 0 and
dX(V1) ⊂ Λ(V0). Here V0 = Q(x1, . . . , xn) is the evenly graded space of generators,
V1 = Q(y1, . . . , yn) is the oddly graded space of relations and dX(yi) = Pi.
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The simple rational structure of F0-spaces X and Y implies a Sullivan model for
components of M(X, Y ) can be constructed directly from a generalized Postnikov
decomposition of Y (see [10]). Let f : X → Y be a given map and write the minimal
model of Y as MY = Λ(V0) ⊗dY Λ(V1), where V0 is evenly graded and V1 is oddly
graded. Then by [10, Theorem 3.1] there exists a two-stage (non-minimal) model
(Af , df ) for the function space Mf (X, Y ) of the form Af = Λ(Z0)⊗df Λ(Z1), where

Zn
0 =

∞⊕
i=0

H2i(X)⊗ V 2i+n
0 and Zn

1 =
∞⊕
i=0

H2i(X)⊗ V 2i+n
1 .

The same argument gives a model (A∗f , d∗f ) for the based function space component

Mf (X, Y )∗ of the form A∗f = Λ(Z0)⊗d∗
f

Λ(Z1), where here

Z
n

0 =
∞⊕
i>0

H2i(X)⊗ V 2i+n
0 and Z

n

1 =
∞⊕
i>0

H2i(X)⊗ V 2i+n
1 .

To describe the differentials df and d∗f , fix an additive basis {ak|k ∈ I} for H∗(X).
Let {x1, . . . , xn} and {y1, . . . , yn} be bases for V0 and V1, respectively, and suppose
dY (yi) = Pi(x1, . . . , xn). The space Z1 is spanned by elements of the form b ⊗ yi
where b ∈ H∗(X) and |b| < |yi|. If |b| > 0 as well, then b⊗ yi ∈ Z1. We view H∗(X)
as the dual space to H∗(X) and adopt Haefliger’s notation, letting b∩a⊗P = b(a)·P
for P ∈ Λ(Z0). By the proof of [10, Theorem 3.2]

df (b⊗ yi) = b ∩ Pi

 ∑
|ak|<|x1|

ak ⊗ a∗k ⊗ x1 + f∗(x1)⊗ 1, (1)

. . . ,
∑

|ak|<|xn|
ak ⊗ a∗k ⊗ xn + f∗(xn)⊗ 1

 ,
where a∗k ∈ H∗(X) is dual to ak and f∗(xi) is viewed as an element of H∗(X). Note
that the elements ak ⊗ a∗k ⊗ xi lie in the space H∗(X)⊗Λ(Z0). Thus multiplication
is given by (ak ⊗ a∗k ⊗ xi) · (al⊗ a∗l ⊗ xj) = akal⊗ (a∗k ⊗ xi)(a∗l ⊗ xj). If 0 < |b| < |yi|
then

d∗f (b⊗ yi) = b ∩ Pi

 ∑
0<|ak|<|x1|

ak ⊗ a∗k ⊗ x1 + f∗(x1)⊗ 1, (2)

. . . ,
∑

0<|ak|<|xn|
ak ⊗ a∗k ⊗ xn + f∗(xn) ⊗ 1

 .
The following “normalization” lemma is useful for dealing with non-minimal

two-stage models.

Lemma 2.1. Let A = Λ(V0)⊗d Λ(V1) be a two-stage model for a nilpotent complex
X. Suppose there exists a finite-dimensional subspace W0 of V0 such that Λ(W0) is
contained in the image of d. Then there exists a model (A′, d′) for X of the form
A′ = Λ(V ′0) ⊗d′ Λ(V ′1) where V ′0 is a complementary subspace to W0 and V ′1 is a
subspace of V1.
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Proof. The elements of least degree in W0 are the images of elements of V1

under d. We replace (A, d) by a quasi-isomorphic model in which these least degree
elements and an isomorphic subspace of their preimages in V1 have been removed.
The corresponding subspace W0 in the new model has higher connectivity. The
result thus follows by induction. �

Given a model (A, d) for a simply connected space X with A = Λ(V ) let
A+ denote the elements of positive degree and observe that V ∼= A+/A+ · A+.
The projection A+ → A+/A+ · A+ defines a differential Q(d) on V and we have
H∗(V,Q(d)) ∼= π∗(X) [11]. Note that this isomorphism exists as well when X is a
nilpotent complex and (A, d) is a two-stage model, as can be seen by first normal-
izing the model to remove the linear relations in degree one. Solving for the basis
elements a∗k ⊗ xn of Z0 and Z0 in equations (1) and (2) above we obtain formulas
for the linear differentials in the models (Af , df ) and (A∗f , d∗f ).

Lemma 2.2.

Q(df )(b⊗ yj) =
n∑
i=1

∑
|ak|<|xi|

b

(
ak · f∗

(
∂Pj
∂xi

))
a∗k ⊗ xi

Q(d∗f)(b⊗ yj) =
n∑
i=1

∑
0<|ak|<|xi|

b

(
ak · f∗

(
∂Pj
∂xi

))
a∗k ⊗ xi

�

Remark. By Theorem 1.1, the Halperin conjecture is true for an F0-space X
if and only if Q(d1) : Z1 → Z0 is surjective. Thus the first formula of Lemma 2.2
provides another interpretation of the Halperin conjecture in terms of the partial
derivatives of polynomial relations (compare [9]).

3 First Consequences of the Models

We use Lemma 2.2 and results of [2] to prove

Theorem 3.1. Let X and Y be F0-spaces. Then, for any map f : X → Y, if
cat0(Mf (X, Y )) <∞ then cat0(Mf (X, Y )∗) <∞.

Proof. Since Y is simply connected, evaluation at the basepoint of X de-
fines a rational fibration ξ : Mf (X, Y )∗ ↪→ Mf (X, Y ) → Y. By [2, Theorem 6.4]
cat0(Mf (X, Y )∗) ≤ cat0(Mf (X, Y )) + kξ where kξ is the invariant of the fibration ξ
defined on [2, p. 20]. We must show kξ is finite. Let j : Mf (X, Y )∗ → Mf(X, Y ) de-
note the inclusion and consider the induced map j# : H∗(Z,Q(df ))→ H∗(Z,Q(d∗f))

where Z = Z0 ⊕ Z1 and Z = Z0 ⊕ Z1. Clearly, j induces a surjection from Z0 to
Z0. By Lemma 2.2, if Q(df)(b⊗ yj) ∈ Z0 then Q(df )(b⊗ yj) = Q(d∗f )(b⊗ yj) and so

exact elements in Z0 under Q(df) are also exact under Q(d∗f). Thus j# is surjective
in even degrees. But this means that, by definition, kξ is the dimension of a subspace
of π∗(Y ) – a finite-dimensional space. �
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We next define two numeric invariants of the rational homotopy of F0-spaces X.
Let l(X) and u(X) denote, respectively, the bottom and top degrees of the space V0

of even degree generators of the minimal model of X. In other words,

l(X) = min{2n|π2n(X) 6= 0} and u(X) = max{2n|π2n(X) 6= 0}.

Note that l(X) is one more than the rational connectivity of X. The following results
illustrate the significance of the difference u(Y )− l(X) for the rational homotopy of
components of M(X, Y ):

Theorem 3.2. Let X and Y be F0 spaces with u(Y ) ≤ l(X). Then, for any map
f : X → Y , Mf (X, Y )∗ is rationally a product of odd spheres. When f is trivial we
have the decomposition M0(X, Y ) 'Q M0(X, Y )∗ × Y.

Proof. The first statement follows from the fact that, in the model (A∗f , d∗f ) for

Mf (X, Y )∗, the space Z0 is trivial. Thus the minimal model for Mf (X, Y )∗ is just
(Λ(Z1), 0). For the second statement note that, in the model (A0, d0) for M0(X, Y ),
the elements 1∗⊗xi span Z0 and the only nontrivial differentials are the polynomials
d0(1∗ ⊗ yi) = Pi(1

∗ ⊗ x1, . . . , 1
∗ ⊗ xn). �

Theorem 3.3. Let X and Y be F0-spaces and suppose the polynomial relations in
the cohomology of Y are actually monomials. Then the space M0(X, Y ) is formal if
and only if u(Y ) ≤ l(X).

Proof. If u(Y ) ≤ l(X), the result follows from Theorem 3.2. Suppose that
u(Y ) > l(X). Choose nonzero elements a ∈ H l(X)(X) and xi ∈ V0 with |xi| = u(Y ).
Then, in the model (A0, d0), 1∗ ⊗ xi and a∗ ⊗ xi are closed elements of Z0 which
are clearly not exact. By hypothesis, we can find j so that Pj(x1, . . . , xn) = xki for
some k. Taking 1 and a to be elements of our basis for H∗(X), observe that for any
b ∈ H∗(X)

d0(b⊗ yj) = b ∩ (1⊗ 1∗ ⊗ xi + . . .+ a⊗ a∗ ⊗ xi)k.
In particular, d0(1∗⊗ yj) = (1∗⊗xi)k and d0(a∗⊗ yj) = k(1∗⊗xi)k−1(a∗⊗xi). Thus
the element

(1∗ ⊗ xi)(a∗ ⊗ yj)− k(a∗ ⊗ xi)(1∗ ⊗ yj)
represents a nontrivial Massey product in the rational cohomology of M0(X, Y ). �

Remark. Theorem 3.3 implies rational indecomposability results for null-components
as studied integrally by Hansen in [5]. For example, it is easy to see that if
X = S2k × S2n then M0(X,X)∗ is a formal space. However, if k 6= n, M0(X,X) is
not formal by Theorem 3.3. Thus, for k 6= n, M0(X,X) 6'Q X ×M0(X,X)∗.

4 Components of Finite Category

We begin this section by establishing the following partial converse to Theorem 3.1.

Theorem 4.1. Let X and Y be F0-spaces with u(Y ) − l(Y ) < l(X).
Suppose the rational homotopy groups of Mf(X, Y )∗ are oddly graded. Then
cat0(Mf(X, Y )) < +∞.
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Proof. Our first hypothesis assures us that all elements of Z0 have strictly smaller
degree than the elements 1∗ ⊗ xj of Z0. For if ak ∈ H>0(X) then

|a∗k ⊗ xi| ≤ u(Y )− l(X) < l(Y ) ≤ |1∗ ⊗ xj|.

This means that if an element a∗k ⊗ xi appears as a linear summand in a differential
df (b⊗ y) then no term 1∗ ⊗ xj can appear in this same expression. In other words,
if Q(d∗f )(b⊗ y) 6= 0 then df (b⊗ y) ∈ Λ(Z0).

Our second hypothesis implies that Q(d∗f ) : Z1 → Z0 is surjective. Combined

with the above, we see that the subalgebra Λ(Z0) of Af is in the image of df .
By Lemma 2.1 we may replace (Af , df ) by a model (A′f , d′f ) of the form A′f =
Λ(V0) ⊗d′

f
Λ(Z ′1) where Z ′1 is a subspace of Z1 and we view V0 as spanned by the

elements 1∗ ⊗ xi. By equation (1), df (1∗ ⊗ yj) = Pj(1
∗ ⊗ x1, . . . , 1

∗ ⊗ xn). Thus A′f
can be rewritten as (A′f , d′f ) = (MY , dY )⊗d′f Λ(Z ′′1 ) where (MY , dY ) is the minimal
model of Y.

Let (M>m
Y , d>mY ) denote the sub-DGA of (MY , dY ) generated by elements of

product length > m. Since Y has finite rational category, by [2, Theorem 4.7]
(MY , dY ) is a retract of (MY /M>m

Y , d′Y ) for some m. Thus (A′f , d′f ) is a retract of
the DGA (MY /M>m

Y , d′Y )⊗d′
f

Λ(Z ′′1 ). Since Z ′′1 is oddly graded this latter DGA has

finite product length also. Thus (A′f , d′f ) is a retract of a DGA with finite product
length. A second application of [2, Theorem 4.7] implies cat0(Mf(X, Y )) < +∞. �

Theorems 3.2 and 4.1 imply

Corollary 4.2. Let X and Y be F0-spaces with u(Y ) ≤ l(X). Then, for any map
f : X → Y, cat0(Mf (X, Y )) < +∞.

�

Specializing to the case X = Y and f = 1 we recover a well-known special case
of the Halperin conjecture.

Corollary 4.3. Let X be an F0 space whose even rational homotopy is concentrated
in a single degree. Then the Halperin conjecture is true for X. �

When u(Y ) > l(X) there is no general finiteness result for the rational category
of components of Mf (X, Y ), as demonstrated by Theorem 5.1 below. The reason is
that the model (Af , df ) is now complicated by the even degree generators a∗k⊗xi with
l(X) ≤ |a∗k| < |xi|. When the polynomial relations in H∗(Y ) involving generators
of degree > l(X) are relatively simple, we can, however, deduce special cases where
cat0(Mf (X, Y )) < +∞.

Let us fix notation for the remainder of this section as follows: Let V0 with
basis {x1, . . . , xs, z1, . . . zt} be a space of even degree generators of H∗(Y ) where
|xi| ≤ l(X) and |zi| > l(X). Let P1, . . . , Ps+t ∈ Λ(V0) be the polynomial relations
for H∗(Y ). Using Theorem 4.1, we prove

Theorem 4.4. Let X and Y be F0-spaces with u(Y ) − l(Y ) < l(X). Suppose that
for each zj there is a polynomial Pi such that Pi actually lies in Λ(x1, . . . , xs, zj)
and, for each nonzero a ∈ H<|zj |(X), a · f∗(∂Pi

∂zj
) 6= 0. Then cat0(Mf (X, Y )) < +∞.
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Proof. Since Pi ∈ Λ(x1, . . . , xs, zj) by Lemma 2.2 we see that, in the model
(A∗f , d∗f ) for Mf (X, Y )∗,

Q(d∗f )(b⊗ yi) =
∑

0<|ak|<|zj |
b

(
ak · f∗

(
∂Pi
∂zj

))
a∗k ⊗ zj.

Our hypothesis thus implies Q(d∗f ) : Z1 → Z0 is surjective. The result follows from
Theorem 4.1. �

Corollary 4.5. Let X be an F0 space with u(X) < 2l(X). Suppose the polynomials
relations for H∗(X) are of the form Pi = zkjP

′
i where k ≥ 0 |zj| > l(X) and P ′i

involves only variables of degree l(X). Then the Halperin conjecture is true for X.

Proof. Given zj we may clearly find Pi as above with k > 0. Suppose a ∈
H<|zj |(X) is nonzero. Since |a| < |zj| we may view the product a · ∂Pi

∂zj
as an element

of the space Λ(V0)/(P1, . . . , P̂i, . . . , Ps+t). Now if a · ∂Pi
∂zj

= 0 then a ·Pi = 1
k
a ·zj · ∂Pi∂zj

=

0. That is, Pi is a zero-divisor in the space Λ(V0)/(P1, . . . , P̂i, . . . , Ps+t). But this
contradicts the fact that P1, . . . , Ps+t is a regular sequence in Λ(V0). �

To remove the hypothesis u(Y )− l(Y ) < l(X) from Theorem 4.4 we must further
restrict the polynomials involving elements of degree > l(X).

Theorem 4.6. Let X and Y be F0-spaces. Suppose the monomials zn1+1
1 ,

. . . , znt+1
t are among the polynomial relations in H∗(Y ) and that a · f∗(znii ) 6= 0

for all nonzero a ∈ H<|zi|(X). Then cat0(Mf (X, Y )) < +∞.

Proof. We show that the subalgebra Λ(Z0) in the model (Af , df ) is in the image
of df . The result then follows by the proof of Theorem 4.1.

Let Pi = zni+1
i . By equation (1),

df (b⊗ yi) = b ∩
 ∑
|ak|<|zj |

ak ⊗ a∗k ⊗ xi + f∗(zj)⊗ 1

ni+1

.

Let m = max{k|k < |zi| and Hk(X) 6= 0}. Then if b ∈ Hni|zi|−m(X) by degree
considerations

df (b⊗ yi) =
∑
|ak|=m

(ni + 1)b (ak · f∗(znii )) a∗k ⊗ zi.

Thus, by our hypothesis, df maps onto the elements of minimal degree in Z0. As in
the proof of Lemma 2.1, an induction argument now implies Λ(Z0) is in the image
of df . �

The special case X = Y and f = 1 here yields a generalization of the result of
Markl [7].

Corollary 4.7. Let X be an F0-space. Suppose the monomials zni+1
i for |zi| > l(X)

appear among the polynomial relations for H∗(X). Then the Halperin conjecture is
true for X.

�
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5 Components of Infinite Category

We now consider the opposite question to that of §4: namely, when do components
of M(X, Y ) have infinite category? By Theorem 3.1, it suffices to consider the based
function space M(X, Y )∗. Our main result is

Theorem 5.1. Let f : X → Y be a map between F0-spaces. Suppose there exists a
nonzero element a ∈ H∗(X) such that |a| < u(Y ), a2 = 0 and a · f∗(H>0(Y )) = 0.
Then cat0(Mf (X, Y )∗) = +∞.

Proof. Choose an element xi ∈ V0, the space of even generators of the minimal
model of Y , with |xi| = u(Y ). Then a∗⊗ xi ∈ Z0. Since a · f∗(H>0(Y )) = 0, a∗⊗ xi
does not appear in any summand in the expression for Q(d∗f) given by Lemma 2.2.
Thus a∗ ⊗ xi represents an even degree generator of the cohomology of Mf(X, Y )∗.
In fact, since a2 = 0, by equation (2), a∗ ⊗ xi does not appear in any summand of
d∗f . It follows that a∗ ⊗ xi represents a cohomology class with infinite cup-length in
the cohomology of Mf (X, Y )∗. Thus cat0(Mf (X, Y )∗) = +∞ by [2, Corollary 4.10].

�

Félix’s results in [1] applied to F0-spaces X and Y imply that the rational cat-
egory of the spaces of null maps M0(X, Y ) is infinite when dim(X) is less than
the rational connectivity of Y . (Here dim(X) denotes the highest nontrivial degree
in H∗(X).) The following consequence of Theorem 5.1 extends this result to other
components.

Corollary 5.2. Let X and Y be F0-spaces with dim(X) < u(Y ). Then, for any map
f : X → Y, cat0(Mf (X, Y )∗) = +∞.

�

Specializing to null-components we can improve Corollary 5.2 to

Theorem 5.3. Let X and Y be F0-spaces with 1
2
dim(X) + l(X) < u(Y ). Then

cat0(M0(X, Y )∗) = +∞.
Proof. By Theorem 5.1, it suffices to produce a nonzero element a ∈ H∗(X) with

|a| ≤ 1
2
dim(X) + l(X) and a2 = 0. Let x ∈ H l(X)(X) be nonzero and let n > 0 be

the least integer with xn = 0. If (n − 1)l(X) ≤ 1
2
dim(X) + l(X) we let a = xn−1.

Otherwise, we may choose m so that

1

2
dim(X) < |xm| ≤ 1

2
dim(X) + l(X).

By degree considerations, x2m = 0 and so we let a = xm. �

Remark. Observe that dim(X) = 1
2
dim(X) + l(X) if and only if H∗(X) is a

truncated polynomial algebra generated by an element of height two. It is natural
then to consider the spaces M(CP 2, Y ) where u(Y ) = 4. A direct calculation shows
that cat0(M0(CP 2, S4)) < +∞ while cat0(M0(CP 2,HP 4)∗) = +∞. Thus while
the hypotheses of Corollary 5.2 and Theorem 5.3 are not essential, the inequalities
themselves cannot be improved in general.

We conclude with an example which illustrates the dichotomy between compo-
nents of finite and infinite category for the function space of self-maps of a particular
F0-space.
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Theorem 5.4. Let S be a product of even spheres and f : S → S a map. Then
cat0(Mf(S, S)∗) < +∞ if and only if f∗ : πn(S) → πn(S) is an isomorphism for all
n > l(S).

Proof. If f∗ : πn(S) → πn(S) is an isomorphism for all n > l(S) then, in fact,
cat0(Mf(S, S)) < +∞ by Theorem 4.6. Suppose, conversely, that f∗(xi) = 0 for
some even degree xi ∈ π>l(S)(S). Since f∗(xi) = 0, the elements a∗k ⊗ xi ∈ Z0

represent nonzero classes in the cohomology of Mf (S, S)∗. Since a2
k = 0 for all k, by

equation (2), the only relations among these classes are of the form (a∗k⊗xi)·(a∗j⊗xi)
for ak 6= aj. It follows easily that the cohomology of Mf (S, S)∗ has infinite product
length. �
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