Approximation Theorems for spherical monogenics of complex degree

P. Van Lancker

Abstract

Spherical monogenics of complex degree correspond to local eigenfunctions of the (Atiyah-Singer) Dirac operator on the unit sphere S^{m-1} of \mathbb{R}^{m}. In this paper we will consider Runge approximation Theorems and some of their consequences for this class of functions.

1 Introduction

Let $\left(e_{1}, \ldots, e_{m}\right)$ be an orthonormal basis of Euclidean space \mathbb{R}^{m} endowed with the inner product $\langle x, y\rangle=\sum_{i=1}^{m} x_{i} y_{i}, x, y \in \mathbb{R}^{m}$. By \mathbb{C}_{m} we denote the complex 2^{m} dimensional Clifford algebra over \mathbb{R}^{m} generated by the relations $e_{i}^{2}=-1, i=$ $1, \ldots, m$ and $e_{i} e_{j}+e_{j} e_{i}=0, i \neq j$. An element of \mathbb{C}_{m} is of the form $a=$ $\sum_{A \subset M} a_{A} e_{A}, a_{A} \in \mathbb{C}, M=\{1, \ldots, m\}$ and $e_{\phi}=e_{0}=1$. The elements $a \in \mathbb{C}_{m}$ such that $a_{A} \in \mathbb{R}$ for all $A \subset M$ determine a real subalgebra of \mathbb{C}_{m} denoted by \mathbb{R}_{m}; this is the real Clifford algebra over \mathbb{R}^{m} generated by the above relations. Conjugation on \mathbb{C}_{m} is the anti-involution on \mathbb{C}_{m} given by $\bar{a}=\sum_{A \subset M} \bar{a}_{A} \bar{e}_{A}$ where $\bar{e}_{A}=\bar{e}_{\alpha_{h}} \ldots \bar{e}_{\alpha_{1}}$ and $\bar{e}_{j}=-e_{j}, j=1, \ldots, m$. Vectors $x \in \mathbb{R}^{m}$ are identified with Clifford numbers $x=\sum_{j=1}^{m} x_{j} e_{j}$. For vectors $x, y \in \mathbb{R}^{m}$,

$$
x y=x \cdot y+x \wedge y
$$

where the inner product and outer product are given by

$$
x \cdot y=-\langle x, y\rangle=-\sum_{j=1}^{m} x_{j} y_{j}, \quad x \wedge y=\sum_{i<j}\left(x_{i} y_{j}-x_{j} y_{i}\right) e_{i j} .
$$

[^0]A norm $\left.\left|\left.\right|_{0}\right.$ on \mathbb{C}_{m} is given by $| a\right|_{0} ^{2}=[a \bar{a}]_{0}$ and satisfies $|a+b|_{0} \leq|a|_{0}+|b|_{0}$, $|a b|_{0} \leq 2^{\frac{m}{2}}|a|_{0}|b|_{0}$.
Let $\partial_{x}=\sum_{i=1}^{m} e_{i} \partial_{x_{i}}$ be the Dirac operator on \mathbb{R}^{m}. In spherical coordinates $x=$ $\rho \omega, \rho=|x|=\left(x_{1}^{2}+\ldots+x_{m}^{2}\right)^{1 / 2}$ and $\omega \in S^{m-1}$, the Dirac operator admits the polar decomposition $\partial_{x}=\omega\left(\partial_{\rho}+\frac{1}{\rho} \Gamma_{\omega}\right)$ where $\Gamma_{\omega}=-x \wedge \partial_{x}$ is the spherical Dirac operator on S^{m-1}. In terms of the momentum operators $L_{i j}=x_{i} \partial_{x_{j}}-x_{j} \partial_{x_{j}}, i, j=1, \ldots, m$ on \mathbb{R}^{m} the Γ-operator is given by $\Gamma=-\sum_{i<j} e_{i j} L_{i j}$. In [18] we studied spherical monogenics of degree $\alpha,(\alpha \in \mathbb{C})$ on the unit sphere S^{m-1} in \mathbb{R}^{m}. Let us recall the following

Definition

Let $\Omega \subset S^{m-1}$ be open. A C^{1}-function $f: \Omega \rightarrow \mathbb{C}_{m}$ satisfying $(\Gamma+\alpha) f=0$ in Ω is called a spherical monogenic of order (degree) α in Ω. The right module of this class of functions is denoted by $M_{(r)}^{\alpha}(\Omega)$.
The value $\alpha=\frac{-m+1}{2}$ plays a special role in the scheme presented. The corresponding spherical monogenics are null solutions of the (Atiyah-Singer) Dirac operator $\omega\left(\Gamma_{\omega}+\right.$ $\frac{-m+1}{2}$) on S^{m-1} used in differential geometry (see [10]). Amongst the operators $\omega(\Gamma+\alpha)$ this particular operator has the special property that it is conformally invariant. The family of operators $\omega(\Gamma+\alpha), \alpha \in \mathbb{C}$, can be regarded as a holomorphic perturbation of the Dirac operator on the sphere. Spherical monogenics of degree $\alpha \neq \frac{-m+1}{2}$ can be regarded as (local) eigenfunctions of the (A-S) Dirac operator on S^{m-1}. If e.g. $(\Gamma+\alpha) f=0$ in Ω, then $\omega\left(\Gamma+\frac{-m+1}{2}\right)(1 \pm \omega) f=\mp\left(\alpha+\frac{m-1}{2}\right)(1 \pm \omega) f$ in Ω. If on the other hand $\omega\left(\Gamma+\frac{-m+1}{2}\right) g=\lambda g$ in Ω, then $\left(\Gamma \pm\left(\lambda+\frac{-m+1}{2}\right)\right)(1 \pm \omega) g=0$ in Ω. Hence eigenfunctions of the Γ-operator (which is the submanifold Dirac operator on S^{m-1} induced by the Dirac operator on the embedding space \mathbb{R}^{m}) correspond to eigenfunctions (with shifted eigenvalue) of the Dirac operator on the sphere (see also [3]).

In this paper we prove the following type of Runge approximation Theorems. Let $\Omega, \Omega^{\prime} \subset S^{m-1}$ be open and let $K \subset S^{m-1}$ be compact. Then $M_{(r)}^{\alpha}(\Omega)$ is dense in $M_{(r)}^{\alpha}(K), K \subset \Omega$ and $M_{(r)}^{\alpha}(\Omega)$ is dense in $M_{(r)}^{\alpha}\left(\Omega^{\prime}\right), \Omega^{\prime} \subset \Omega$ iff $\Omega \backslash K$ and $\Omega \backslash \Omega^{\prime}$ satisfy some topological condition. As our proof of these Theorems relies on the existence of a Cauchy kernel for the operator $\Gamma+\alpha$, we impose the condition $\alpha \in \mathbb{C} \backslash(\mathbb{N} \cup(-m+$ $1-\mathbb{N})$). As a consequence we solve the equation $(\Gamma+\alpha) f=g, g \in C^{\infty}(\Omega), \Omega$ open and prove Mittag-Leffler's Theorem for the operator $\Gamma+\alpha$ on S^{m-1}. As a result we solve the inhomogeneous equation $(\Gamma+\alpha) f=g$ in $\Omega, g \in C^{\infty}(\Omega), \Omega \subset S^{m-1}$ open. This leads to Mittag-Leffler's Theorem for the operators $\Gamma+\alpha$.

2 Some introductory Lemmas

The following lemmas of a topological nature are of importance. We list them without proof.

Let $u \in S^{m-1}$. Then we define the ball $B_{S}(u, \delta)=B(u, \delta) \cap S^{m-1}=\left\{\omega \in S^{m-1}\right.$: $\sqrt{2(1-\langle\omega, u\rangle)}<\delta\}$. Obviously the sets $B_{S}(u, \delta), 0<\delta \leq 2$, form a fundamental system of connected neighbourhoods of u on S^{m-1}.
Lemma 1. Let $K \subset \Omega \subset S^{m-1}, K$ compact and Ω open. Then the following conditions are equivalent:
(i) $\Omega \backslash K$ has no components of which the closure (in S^{m-1}) is contained in Ω
(ii) For each component W of $S^{m-1} \backslash K: \bar{W} \cap\left(S^{m-1} \backslash \Omega\right) \neq \emptyset$.

Lemma 2. V is a component of $\Omega \backslash K$ satisfying $\bar{V} \subset \Omega$ iff $\partial V \subset K$.
Lemma 3. Let Ω, Ω^{\prime} be open subsets of S^{m-1} such that $\Omega^{\prime} \subset \Omega$. Then the following conditions are equivalent:
(i) $\Omega \backslash \Omega^{\prime}$ has no components which are closed in S^{m-1}
(ii) For each component W of $S^{m-1} \backslash \Omega^{\prime}: \bar{W} \cap\left(S^{m-1} \backslash \Omega\right) \neq \emptyset$
(iii) For each component G of $\Omega \backslash \Omega^{\prime}: \bar{G} \cap \partial \Omega \neq \emptyset$.

Lemma 4. Let Ω, Ω^{\prime} be open subsets of $S^{m-1}, \Omega^{\prime} \subset \Omega$ and let V be a component of $\Omega \backslash \Omega^{\prime}$ which is closed in S^{m-1}. Then $\partial V \subset \partial \Omega^{\prime}$.

Lemma 5. (Exhaustion of open sets on S^{m-1} by means of compacta)
Define for $j \in \mathbb{N}_{0}$:

$$
\begin{aligned}
& K_{j}=\left\{\omega \in S^{m-1}: d\left(\omega, S^{m-1} \backslash \Omega\right) \geq \frac{1}{j}\right\} \\
& G_{j}=\left\{\omega \in S^{m-1}: d\left(\omega, S^{m-1} \backslash \Omega\right)>\frac{1}{j}\right\}
\end{aligned}
$$

where $d(\omega, \xi)=|\omega-\xi|=\sqrt{2(1-\langle\omega, \xi\rangle)}, \omega, \xi \in S^{m-1}$. Then:
(i) $K_{j} \subset \stackrel{\circ}{K}_{j+1}, \Omega=\cup K_{j}=\cup \stackrel{\circ}{K}_{j}$
(ii) Each compact set $K \subset \Omega$ is contained in some $K_{j_{0}}$
(iii) Each component of $S^{m-1} \backslash K_{j}$ contains a component of $S^{m-1} \backslash \Omega$
(iv) $\Omega \backslash K_{j}$ has no components of which the closure is contained in Ω
(v) Put $H_{1}=G_{2}, H_{j}=G_{j+1} \backslash \bar{G}_{j-1}, j \geq 2$; then $\left\{H_{j}\right\}_{j \geq 1}$ is a locally finite cover of Ω.

Theorem 6. Let Ω be a proper open subset of S^{m-1} and let $K \subset \Omega$ be compact such that $\Omega \backslash K$ has no components of which the closure is contained in Ω. Then there exists a fundamental system $\left\{F_{i}\right\}$ of compact neighbourhoods of K in Ω such that for each i :
(i) F_{i} has piecewise smooth boundary
(ii) $\Omega \backslash F_{i}$ has no components whose closure is contained in Ω.

Proof.
Consider the sets

$$
\begin{aligned}
K_{j} & =\left\{\omega \in S^{m-1}: d(\omega, K) \leq \frac{1}{j}\right\}=\cup_{\omega \in K} \bar{B}_{S}\left(\omega, \frac{1}{j}\right) \\
G_{j} & =\left\{\omega \in S^{m-1}: d(\omega, K)<\frac{1}{j}\right\}=\cup_{\omega \in K} B_{S}\left(\omega, \frac{1}{j}\right), \quad j \in \mathbb{N}_{0}
\end{aligned}
$$

Each K_{j} is compact while each G_{j} is open and $K_{j+1} \subset G_{j} \subset \stackrel{\circ}{K}{ }_{j}$. By compactness of $K ;\left\{G_{j}\right\}_{j \in \mathbb{N}_{0}}$ and $\left\{K_{j}\right\}_{j \in \mathbb{N}_{0}}$ are fundamental systems of neighbourhoods of K on S^{m-1}. For each j, G_{j} is an open cover of K and therefore has a finite subcover $\cup_{i_{j}=1}^{n_{j}} B_{S}\left(\xi_{i_{j}}, \frac{1}{j}\right) \subset G_{j}$ covering K. Put $\tilde{K}_{j}=\cup_{i_{j}=1}^{n_{j}} \bar{B}_{S}\left(\xi_{i_{j}}, \frac{1}{j}\right)$, then \tilde{K}_{j} is compact and has piecewise smooth boundary. As $K \subset \tilde{K}_{j} \subset K_{j},\left\{\tilde{K}_{j}\right\}_{j \in \mathbb{N}_{0}}$ is a fundamental system of neighbourhoods of K on S^{m-1}; since $K_{j_{0}} \subset \Omega$ for some $j_{0},\left\{\tilde{K}_{j}\right\}_{j \geq j_{0}}$ is then a fundamental system of neighbourhoods of K in Ω. Consider now an arbitrary $\tilde{K}_{j}, j \geq j_{0}$. Since $\Omega \backslash \tilde{K}_{j} \subset \Omega \backslash K$, each component of $\Omega \backslash \tilde{K}_{j}$ is contained in a component of $\Omega \backslash K$. As \tilde{K}_{j} is the union of a finite number of closed balls, $\Omega \backslash \tilde{K}_{j}$ has only a finite number of components; say $W_{i}^{l}, i=1, \ldots, n_{j}, 1 \leq l \leq k_{j}$ satisfying $\bar{W}_{i}^{l} \subset \Omega$. Call Ω_{i} the components of $\Omega \backslash K$ such that $W_{i}^{l} \subset \Omega_{i}, i=1, \ldots, n_{j}$. Suppose now that G is a component of $\Omega \backslash K$ which does not contain any component of $\Omega \backslash \tilde{K}_{j}$, then $G \cap\left(\Omega \backslash \tilde{K}_{j}\right)=\emptyset$ or $G \subset(\Omega \backslash K) \backslash\left(\Omega \backslash \tilde{K}_{j}\right)=\tilde{K}_{j} \backslash K \subset \tilde{K}_{j}$, hence $\bar{G} \subset \Omega$ which contradicts the assumption in the Lemma; therefore each component of $\Omega \backslash K$ contains a component of $\Omega \backslash \tilde{K}_{j}$. In the same way each component of $\Omega \backslash K$ contains a component of $\Omega \backslash L$ where L is the compact set given by $L=\tilde{K}_{j} \cup\left(\cup_{i, l} \bar{W}_{i}^{l}\right)$; as $\Omega \backslash L$ and $\Omega \backslash \tilde{K}_{j}$ have the same components of which the closure is not contained in Ω, it follows that each Ω_{i} contains a component G_{i} of $\Omega \backslash \tilde{K}_{j}$ such that $\bar{G}_{i} \cap \partial \Omega \neq \emptyset$. Choose in each Ω_{i} containing a component W_{i}^{l}, a set G_{i} satisfying $\bar{G}_{i} \cap \partial \Omega \neq \emptyset$ and choose points $a_{i} \in \bar{G}_{i} \cap \partial \Omega, b_{i}^{l} \in W_{i}^{l}$. As Ω_{i} is open and connected, Ω_{i} is path connected and for each l there is an arc L_{i}^{l} in Ω_{i} connecting a_{i} and b_{i}^{l}. Choose for each $\xi \in L_{i}^{l}$ an open ball $B_{S}\left(\xi, r_{\xi}\right) \subset \Omega_{i}$, the union of these balls forms an open cover of L_{i}^{l}; as L_{i}^{l} is compact, there exists a finite subcover $T_{i}^{l}=\cup_{j=1}^{N(l, i)} B_{S}\left(\xi_{j}, r_{\xi_{j}}\right) \subset \Omega_{j}$. Put $F_{j}=\tilde{K}_{j} \backslash \cup_{i, l} T_{i}^{l}$, then F_{j} is compact and has piecewise smooth boundary. Since $T_{i}^{l} \cap K=\emptyset$ it follows that $K \subset F_{j} \subset \tilde{K}_{j}$. Applying this construction to each $j \geq j_{0}$ we thus obtain a fundamental system $\left\{F_{j}\right\}_{j \geq j_{0}}$ of compact neighbourhoods of K in Ω. Call $H_{j k}$ the remaining components of $\Omega \backslash \tilde{K}_{j}$. Then:

$$
\Omega \backslash F_{j}=\Omega \backslash\left(\tilde{K}_{j} \backslash\left(\cup_{i, l} T_{i}^{l}\right)\right)=\left(\Omega \backslash \tilde{K}_{j}\right) \cup\left(\cup_{i, l} T_{i}^{l}\right)=\cup_{i, l}\left(W_{i}^{l} \cup T_{i}^{l} \cup G_{i}\right) \cup\left(\cup_{k} H_{j k}\right) .
$$

Put $\tilde{W}_{i}^{l}=W_{i}^{l} \cup T_{i}^{l} \cup G_{i}$; then \tilde{W}_{i}^{l} is connected and $\tilde{W}_{i}^{l} \cap \partial \Omega \neq \emptyset$. Since each component of $\Omega \backslash F_{j}$ contains some connected set \tilde{W}_{i}^{l} or $H_{j k}, \Omega \backslash F_{j}$ has no components whose closure is contained in Ω. This proves the Theorem.

The following is proved in [11].
Theorem 7. Let Y be a locally compact Hausdorff space, let X be a closed subset of Y and let K be a connected component of X which is compact. Then there exists a fundamental system of neighbourhoods U of K in Y such that

$$
(\partial U) \cap X=\emptyset,
$$

∂U denoting the boundary of U in Y.
In particular, this Theorem is valid when we put $Y=\Omega, X=\Omega \backslash \Omega^{\prime}, \Omega^{\prime} \subset \Omega \subset$ $S^{m-1} ; \Omega^{\prime}, \Omega$ open.

3 Runge Theorems

The Cauchy kernel for spherical monogenics of complex degree α is denoted by $E_{\alpha}(\xi, \omega)$ and satisfies $(\Gamma+\alpha) E_{\alpha}(\xi, \omega)=\delta(\omega-\xi) \xi, \alpha \in \mathbb{C} \backslash(\mathbb{N} \cup(-m+1-\mathbb{N})$) (see also [18]).

Definitions.

(i) Let $K \subset S^{m-1}$ be compact and let μ be a \mathbb{C}_{m}-valued regular Borel measure on S^{m-1} with support $[\mu]$ contained in K. Then the Cauchy transform $C T_{\alpha}(\mu)$ of the measure μ is defined by:

$$
C T_{\alpha}(\mu)(\xi)=\int_{S^{m-1}} d \mu(\omega) E_{\alpha}(\xi, \omega), \quad \omega \in S^{m-1}
$$

By a standard argument $\left(C T_{\alpha}(\mu)(\xi)\right)\left(\Gamma_{\xi}-\beta\right)=0$ in $S^{m-1} \backslash[\mu], \alpha+\beta=-m+1$. By means of the Riesz Representation Theorem the dual of the right module $C_{(r)}^{0}(K)$ of continuous functions on K can be identified with the left module of \mathbb{C}_{m}-valued regular Borel measures on S^{m-1} having support contained in K and

$$
\langle\mu, h\rangle=\int_{S^{m-1}} d \mu(\omega) h(\omega), \quad h \in C_{(r)}^{0}(K) .
$$

(ii) Let $K \subset S^{m-1}$ be compact. Then $M_{(r)}^{\alpha}(K)$ consists of the elements f which are null solutions of $\Gamma+\alpha$ in some open neighbourhood of K. On $M_{(r)}^{\alpha}(K)$ we consider two different topologies. First of all, $M_{(r)}^{\alpha}(K)$ is a subspace of $C^{0}(K)$. The space $C^{0}(K)$ endowed with the supremum norm $\|f\|=\sup _{K}|f|_{0}$ is a Banach space and $M_{(r)}^{\alpha}(K)$ can be given the topology inherited from the Banach space $C^{0}(K)$. In general $M_{(r)}^{\alpha}(K)$ is not a closed subspace of $C^{0}(K)$. Secondly one can consider $M_{(r)}^{\alpha}(K)=\operatorname{limind}_{K \subset \Omega} M_{(r)}^{\alpha}(\Omega)$, i.e. $M_{(r)}^{\alpha}(K)$ is given the inductive limit topology determined by the Fréchet modules $M_{(r)}^{\alpha}(\Omega), K \subset$ Ω.

The following Lemma plays an important role in the sequel.
Lemma 8. Let $K \subset S^{m-1}$ be compact and suppose that μ is a \mathbb{C}_{m}-valued regular Borel measure on S^{m-1} having support contained in K. Then:

$$
\int_{S^{m-1}} d \mu(\omega) f(\omega)=0 \text { for all } f \in M_{(r)}^{\alpha}(K) \text { iff } C T_{\alpha}(\mu)(\xi)=0 \text { in } S^{m-1} \backslash K
$$

Proof.

(Necessary condition.) Take $\xi \in S^{m-1} \backslash K$ and put $f(\omega)=E_{\alpha}(\xi, \omega)$. Then $f \in$ $M_{(r)}^{\alpha}(K)$, hence $C T_{\alpha}(\mu)(\xi)=0$ in $S^{m-1} \backslash K$.
(Sufficient condition.) Let $f \in M_{(r)}^{\alpha}(K)$; then $f \in M_{(r)}^{\alpha}\left(\Omega_{f}\right)$ for some open neighbourhood Ω_{f} of K. Consider a compact neighbourhood K^{\prime} having piecewise smooth boundary and such that $K \subset \stackrel{\circ}{K}^{\prime} \subset K^{\prime} \subset \Omega_{f}$. By Cauchy's Theorem:

$$
f(\omega)=\int_{\partial K^{\prime}} E_{\alpha}(\xi, \omega) n d s f(\xi), \quad \omega \in K
$$

and by Fubini's Theorem:

$$
\int_{S^{m-1}} d \mu(\omega) f(\omega)=\int_{\partial K^{\prime}}\left(C T_{\alpha}(\mu)\right)(\xi) n d s f(\xi)=0
$$

Lemma 9. Let $\alpha \in \mathbb{C} \backslash(\mathbb{N} \cup(-m+1-\mathbb{N}))$ and put $M_{i j}^{\omega}=L_{i j}^{\omega}-\frac{1}{2} e_{i j}, L_{i j}^{\omega}=$ $\omega_{i} \partial_{\omega_{j}}-\omega_{j} \partial_{\omega_{i}}$ being the momentum operators. Then:
(i) The Γ-operator and $M_{i j}$-operators commute, i.e. $\left[\Gamma_{\omega}, M_{i j}^{\omega}\right]=0$
(ii) $M_{i j}^{\omega} E_{\alpha}(\xi, \omega)=-E_{\alpha}(\xi, \omega) \bar{M}_{i j}^{\xi}$.

Proof.
(i) See [16].
(ii) Up to a constant $E_{\alpha}(\xi, \omega)$ is given by $\xi C_{\alpha}^{\frac{m}{2}}(-\langle\omega, \xi\rangle)+\omega C_{\alpha-1}^{\frac{m}{2}}(-\langle\omega, \xi\rangle)$ and

$$
\begin{aligned}
L_{i j}^{\omega} & {\left[\xi C_{\alpha}^{\frac{m}{2}}(-\langle\omega, \xi\rangle)+\omega C_{\alpha-1}^{\frac{m}{2}}(-\langle\omega, \xi\rangle)\right] } \\
= & -\left(\omega_{i} \xi_{j}-\omega_{j} \xi_{i}\right)\left[\xi C_{\alpha}^{\frac{m}{2} \prime}(-\langle\omega, \xi\rangle)+\omega C_{\alpha-1}^{\frac{m}{2}}{ }^{\prime}(-\langle\omega, \xi\rangle)\right] \\
& +\left(\omega_{i} e_{j}-\omega_{j} e_{i}\right) C_{\alpha-1}^{\frac{m}{2}}(-\langle\omega, \xi\rangle)
\end{aligned}
$$

while

$$
\begin{aligned}
& {\left[\xi C_{\alpha}^{\frac{m}{2}}(-\langle\omega, \xi\rangle)+\omega C_{\alpha-1}^{\frac{m}{2}}(-\langle\omega, \xi\rangle)\right] L_{i j}^{\xi}} \\
& \quad=\left(\omega_{i} \xi_{j}-\omega_{j} \xi_{i}\right)\left[\xi C_{\alpha}^{\frac{m}{2}}(-\langle\omega, \xi\rangle)+\omega C_{\alpha-1}^{\frac{m}{2}}(-\langle\omega, \xi\rangle)\right]+\left(\xi_{i} e_{j}-\xi_{j} e_{i}\right) C_{\alpha}^{\frac{m}{2}}(-\langle\omega, \xi\rangle),
\end{aligned}
$$

where ' denotes derivation with respect to the variable $-\langle\omega, \xi\rangle$. Hence

$$
\begin{aligned}
& M_{i j}^{\omega}\left[\xi C_{\alpha}^{\frac{m}{2}}(-\langle\omega, \xi\rangle)+\omega C_{\alpha-1}^{\frac{m}{2}}(-\langle\omega, \xi\rangle)\right]+\left[\xi C_{\alpha}^{\frac{m}{2}}(-\langle\omega, \xi\rangle)+\omega C_{\alpha-1}^{\frac{m}{2}}(-\langle\omega, \xi\rangle)\right] \bar{M}_{i j}^{\xi} \\
& \quad=\left[\frac{1}{2}\left[\xi, e_{i j}\right]+\left(\xi_{i} e_{j}-\xi_{j} e_{i}\right)\right] C_{\alpha}^{\frac{m}{2}}(-\langle\omega, \xi\rangle)+\left[\frac{1}{2}\left[\omega, e_{i j}\right]+\left(\omega_{i} e_{j}-\omega_{j} e_{i}\right)\right] C_{\alpha-1}^{\frac{m}{2}}(-\langle\omega, \xi\rangle) \\
& \quad=0,
\end{aligned}
$$

since $\frac{1}{2}\left[\omega, e_{i j}\right]=-\omega_{i} e_{j}+\omega_{j} e_{i}$.
Lemma 10. Let Ω be an open connected subset of S^{m-1}, let $\xi \in \Omega$ and let $f \in$ $M_{(r)}^{\alpha}(\Omega)$. If $\left.M_{i_{1} j_{1}} \ldots M_{i_{k} j_{k}} f(\omega)\right|_{\omega \equiv \xi}=0$ for all couples $\left(i_{l}, j_{l}\right), i_{l}<j_{l}, 1 \leq i_{l}, j_{l} \leq$ $m, 0 \leq l \leq k, k \in \mathbb{N}$, then $f \equiv 0$ in Ω.

Proof.
Extend f to an α-homogeneous null solution \tilde{f} of ∂_{x} in the connected cone $\mathbb{R}_{+} \Omega$. By assumption all derivatives of \tilde{f} in ξ vanish. Since \tilde{f} is real analytic in $\mathbb{R}_{+} \Omega, \tilde{f} \equiv 0$ in $\mathbb{R}_{+} \Omega$.

Definition.

Let $\xi \in S^{m-1}$ and let $\alpha \in \mathbb{C} \backslash(\mathbb{N} \cup(-m+1-\mathbb{N}))$. Then we define the set

$$
\begin{gathered}
R^{\alpha}(\xi)=\left\{M_{i_{1} j_{1}}^{\omega} \ldots M_{i_{k} j_{k}}^{\omega} E_{\alpha}(\xi, \omega),\left(i_{l}, j_{l}\right) \in\{1, \ldots, m\} \times\{1, \ldots, m\}\right. \\
\left.i_{l}<j_{l}, 0 \leq l \leq k, k \in \mathbb{N}\right\}
\end{gathered}
$$

In view of Lemma 9(i) the operators $M_{i j}$ and Γ commute; therefore each element of this set belongs to $M_{(r)}^{\alpha}\left(S^{m-1} \backslash\{\xi\}\right)$.
Consider a set $V=\left\{\xi^{i}, \xi^{i} \in S^{m-1}, i \in I\right\}$ of points ξ^{i} on S^{m-1}, then we put:

$$
R^{\alpha}(V)=\cup_{i \in I} R^{\alpha}\left(\xi^{i}\right)
$$

and we call $R_{(r)}^{\alpha}(V)$ the right \mathbb{C}_{m}-span of the set $R^{\alpha}(V)$, i.e. $R_{(r)}^{\alpha}(V)$ is the space of finite right \mathbb{C}_{m}-linear combinations of elements of $R^{\alpha}(V)$. Clearly $R_{(r)}^{\alpha}(V)$ is a right \mathbb{C}_{m}-module of null solutions of $\Gamma+\alpha$ having singularities in the set V.

Theorem 11. Let $K \subset S^{m-1}$ be compact and let $S^{m-1} \backslash K=\cup_{i=1}^{\infty} \Omega_{i}$ be the decomposition of $S^{m-1} \backslash K$ in connected components. Choose in each Ω_{i} a point ξ^{i} and put $V=\left\{\xi^{i}, i \in \mathbb{N}_{0}\right\}$. Then:
$R_{(r)}^{\alpha}(V)$ is dense in $M_{(r)}^{\alpha}(K)$ with respect to the topology given by the supremum norm on K.

Proof.
Let $C_{(r)}^{0}(K)$ be the right module of \mathbb{C}_{m}-valued continuous functions on K endowed with the supremum norm on K. Then we have the following inclusions where the supremum norm on K is restricted to the corresponding subspaces of $C_{(r)}^{0}(K)$:

$$
R_{(r)}^{\alpha}(V) \subset M_{(r)}^{\alpha}(K) \subset C_{(r)}^{0}(K)
$$

By the Hahn-Banach Theorem each continuous linear functional on $R_{(r)}^{\alpha}(V)$ can be extended to a continuous linear functional on $M_{(r)}^{\alpha}(K)$ and hence also to $C_{(r)}^{0}(K)$. In view of the Riesz Representation Theorem the dual of $C_{(r)}^{0}(K)$ can be identified with the left module of \mathbb{C}_{m}-valued regular Borel measures on S^{m-1} having support in K. The space $R_{(r)}^{\alpha}(V)$ will be dense in $M_{(r)}^{\alpha}(K)$ iff the zero functional on $R_{(r)}^{\alpha}(V)$ has only the zero functional on $M_{(r)}^{\alpha}(K)$ as continuous extension. To prove this it is sufficient to prove that each regular Borel measure on S^{m-1} having support in K which annihilates the space $R_{(r)}^{\alpha}(V)$ also annihilates $M_{(r)}^{\alpha}(K)$. Consider such a measure μ. By assumption μ annihilates in particular $R^{\alpha}\left(\xi^{i}\right)$, hence for all couples $\left(i_{l}, j_{l}\right) \in\{1, \ldots, m\} \times\{1, \ldots, m\}, i_{l}<j_{l}, 0 \leq l \leq k, k \in \mathbb{N}$:

$$
\left\langle\mu(\omega), M_{i_{1} j_{1}}^{\omega} \ldots M_{i_{k} j_{k}}^{\omega} E_{\alpha}\left(\xi^{i}, \omega\right)\right\rangle=0 .
$$

By Lemma 9(ii):

$$
\begin{aligned}
M_{i_{1} j_{1}}^{\omega} \ldots M_{i_{k} j_{k}}^{\omega} E_{\alpha}\left(\xi^{i}, \omega\right) & =-\left.M_{i_{1} j_{1}}^{\omega} \ldots M_{i_{k-1} j_{k-1}}^{\omega}\left[E_{\alpha}(\xi, \omega) \bar{M}_{i_{k} j_{k}}^{\xi}\right]\right|_{\xi=\xi^{i}} \\
& =\left.(-1)^{k}\left[E_{\alpha}(\xi, \omega) \bar{M}_{i_{1} j_{1}}^{\xi} \ldots \bar{M}_{i_{k} j_{k}}^{\xi}\right]\right|_{\xi=\xi^{i}},
\end{aligned}
$$

hence

$$
\left.\left\langle\mu(\omega), E_{\alpha}(\xi, \omega)\right\rangle \bar{M}_{i_{1} j_{1}}^{\xi} \ldots \bar{M}_{i_{k} j_{k}}^{\xi}\right|_{\xi=\xi^{i}}=0 .
$$

Since $C T_{\alpha}(\mu)(\xi)=\left\langle\mu(\omega), E_{\alpha}(\xi, \omega)\right\rangle$ is a right null solution of $\Gamma_{\xi}-\beta$ in $S^{m-1} \backslash K(\alpha+$ $\beta=-m+1$) one has by Lemma 10 that $C T_{\alpha}(\mu)(\xi) \equiv 0$ in Ω_{i}, i being chosen arbitrarily, hence $C T_{\alpha}(\mu) \equiv 0$ in $S^{m-1} \backslash K$. By Lemma 8μ annihilates $M_{(r)}^{\alpha}(K)$, q.e.d.

We will now determine under which conditions $M_{(r)}^{\alpha}(\Omega)$ is dense in $M_{(r)}^{\alpha}(K), K \subset$ Ω compact, Ω open. In view of the previous Theorem such a result will hold when we can choose V such that $V \cap \Omega=\emptyset$. This will only be possible if Ω satisfies some further topological condition with respect to K. This is formulated in the following

Theorem 12. (First Approximation Theorem of Runge)
Let $K \subset \Omega \subset S^{m-1}$, Ω open and K compact. Then the following conditions are equivalent:
(i) $M_{(r)}^{\alpha}(\Omega)$ is dense in $M_{(r)}^{\alpha}(K)=\lim \operatorname{ind}_{K \subset \Omega} M_{(r)}^{\alpha}(\Omega)$
(ii) $\Omega \backslash K$ has no components of which the closure (in S^{m-1}) is contained in Ω.

Proof.
(ii) \Rightarrow (i) First of all we prove that $M_{(r)}^{\alpha}(\Omega)$ is dense in $M_{(r)}^{\alpha}(K)$ for $\sup _{K}$. Let $G_{i}, i \in \mathbb{N}_{0}$ be the components of $S^{m-1} \backslash K$. By the topological condition on $\Omega \backslash K$ and Lemma 1: $\bar{G}_{i} \cap\left(S^{m-1} \backslash \Omega\right) \neq \emptyset$. Choose for all $i \in \mathbb{N}_{0}$ points $\xi^{i} \in \bar{G}_{i} \cap\left(S^{m-1} \backslash \Omega\right) \subset$ $\bar{G}_{i} \cap\left(S^{m-1} \backslash K\right)=G_{i}$ and put $V=\left\{\xi^{i}, i \in \mathbb{N}_{0}\right\}$. By the previous Theorem $R_{(r)}^{\alpha}(V)$ is dense in $M_{(r)}^{\alpha}(K)$ for $\sup _{K}$. Since $V \subset S^{m-1} \backslash \Omega, R_{(r)}^{\alpha}(V)$ is a subspace of $M_{(r)}^{\alpha}(\Omega)$; thus $M_{(r)}^{\alpha}(\Omega)$ is dense in $M_{(r)}^{\alpha}(K)$ for $\sup _{K}$.
Let $f \in M_{(r)}^{\alpha}(K)$; then there is an open set $\Omega_{f}, K \subset \Omega_{f} \subset \Omega$ such that $f \in M_{(r)}^{\alpha}\left(\Omega_{f}\right)$. In view of Theorem 6 one can always find a compact set $F_{i_{0}}, K \subset F_{i_{0}} \subset \Omega_{f}$ such that $\Omega \backslash F_{i_{0}}$ has no components of which the closure is contained in Ω. Hence there is a sequence $\left(f_{i}\right)_{i \in \mathbb{N}_{0}}, f_{i} \in M_{(r)}^{\alpha}(\Omega)$ such that $f_{i} \rightarrow f$ in $\sup _{F_{i_{0}}}$ and thus $f_{i} \rightarrow f$ in the Fréchet module $M_{(r)}^{\alpha}\left(\stackrel{\circ}{F}_{i_{0}}\right)$. As the inductive limit topology on $M_{(r)}^{\alpha}(K)$ is the strongest locally convex topology on $M_{(r)}^{\alpha}(K)$ which is weaker than the topology on any $M_{(r)}^{\alpha}(\Omega), K \subset \Omega$, the sequence $\left(f_{i}\right)_{i \in \mathbb{N}_{0}}$ converges to f in $\operatorname{limind}_{K \subset \Omega} M_{(r)}^{\alpha}(\Omega)$.
(i) \Rightarrow (ii) Suppose that W is a component of $\Omega \backslash K$ such that $\bar{W} \subset \Omega$; by Lemma $2, \partial W \subset K$. Take a fixed point $\nu \in W$ and consider the function $f(\omega)=E_{\alpha}(\nu, \omega)$; then $f \in M_{(r)}^{\alpha}(K)$. By assumption there is a compact set $F, K \subset \stackrel{\circ}{F} \subset F \subset \Omega \backslash\{\nu\}$ and a sequence of functions $\left(f_{j}\right)_{j \in \mathbb{N}_{0}}, f_{j} \in M_{(r)}^{\alpha}(\Omega)$ such that $f_{j} \rightarrow f$ for $\sup _{F}$. Since $\partial W \subset K \subset \stackrel{\circ}{F}$ and $\nu \in W \backslash F$ it follows that $\bar{W} \backslash \stackrel{\circ}{F}=W \backslash \stackrel{\circ}{F}$ is a non empty compact subset of W. Therefore one can always find a compact set C which covers $\bar{W} \backslash \stackrel{\circ}{F}$
and has piecewise smooth boundary ∂C contained in $W \backslash(\bar{W} \backslash \stackrel{\circ}{F})=W \backslash(W \backslash \stackrel{\circ}{F})=$ $W \cap \stackrel{\circ}{F} \subset \stackrel{\circ}{F}$. For all $\omega \in \bar{W} \backslash \stackrel{\circ}{F}$:

$$
\left(f_{i}-f_{j}\right)(\omega)=\int_{\partial C} E_{\alpha}(\xi, \omega) n d s\left(f_{i}-f_{j}\right)(\xi)
$$

Hence

$$
\sup _{\omega \in \bar{W} \backslash \stackrel{\circ}{F}}\left|\left(f_{i}-f_{j}\right)(\omega)\right|_{0} \leq A(\partial C) \sup _{\omega \in \bar{W} \backslash F, \xi \in \partial C}\left|E_{\alpha}(\xi, \omega)\right|_{0} \sup _{\xi \in \partial C}\left|\left(f_{i}-f_{j}\right)(\xi)\right|_{0},
$$

$A(\partial C)$ denoting the area of ∂C. Since $\bar{W} \backslash \stackrel{\circ}{F}$ and ∂C are compact and $\partial C \subset F$ there is a constant $K(\bar{W}, F, \partial C)$ such that

$$
\sup _{\omega \in \bar{W} \backslash \stackrel{\circ}{F}}\left|\left(f_{i}-f_{j}\right)(\omega)\right|_{0} \leq K \sup _{\omega \in F}\left|\left(f_{i}-f_{j}\right)(\omega)\right|_{0} .
$$

From $F \cup \bar{W} \subset F \cup(\bar{W} \backslash \stackrel{\circ}{F})$ it follows that

$$
\sup _{\omega \in F \cup \bar{W}}\left|\left(f_{i}-f_{j}\right)(\omega)\right|_{0} \leq(1+K) \sup _{\omega \in F}\left|\left(f_{i}-f_{j}\right)(\omega)\right|_{0} .
$$

Since $\left(f_{i}\right)_{i \in \mathbb{N}_{0}}$ is a Cauchy sequence in $M_{(r)}^{\alpha}(F)$ for $\sup _{F},\left(f_{i}\right)_{i \in \mathbb{N}_{0}}$ is also Cauchy in $M_{(r)}^{\alpha}(F \cup \bar{W})$ for $\sup _{F \cup \bar{W}}$. Consequently there is an \tilde{f} such that $f_{i} \rightarrow \tilde{f}$ for $\sup _{F \cup \bar{W}}$ and $\tilde{f} \in M_{(r)}^{\alpha}(\stackrel{\circ}{F} \cup W)$ where $\left.\tilde{f}\right|_{F}=f$. Since $\stackrel{\circ}{F} \cap W \neq \emptyset$ there is a component G of $\stackrel{\circ}{F}$ such that $G \cap W \neq \emptyset$, therefore $G \cup W$ is connected and \tilde{f} is the unique extension of f to the region $G \cup W$; but $\nu \in W$ which leads to a contradiction (f is singular in ν).

Theorem 13. (Second Approximation Theorem of Runge)
Let Ω, Ω^{\prime} be open subsets of $S^{m-1}, \Omega^{\prime} \subset \Omega$. Then the following conditions are equivalent:
(i) $M_{(r)}^{\alpha}(\Omega)$ is dense in $M_{(r)}^{\alpha}\left(\Omega^{\prime}\right)$ in the sense of Fréchet modules
(ii) $\Omega \backslash \Omega^{\prime}$ has no components which are closed in the topology on S^{m-1}.

Proof.
(ii) \Rightarrow (i) Consider the exhaustion of Ω^{\prime} by means of the compact sets

$$
K_{j}^{\prime}=\left\{\omega \in S^{m-1}: d\left(\omega, S^{m-1} \backslash \Omega^{\prime}\right) \geq \frac{1}{j}\right\}, \quad j \in \mathbb{N}_{0}
$$

The space $M_{(r)}^{\alpha}(\Omega)$ will be dense in $M_{(r)}^{\alpha}\left(\Omega^{\prime}\right)$ in the sense of Fréchet modules if for each $j \in \mathbb{N}_{0}$ the space $M_{(r)}^{\alpha}(\Omega)$ is dense in $M_{(r)}^{\alpha}\left(K_{j}^{\prime}\right)$ for $\sup _{K_{j}^{\prime}}$. Choose an arbitrary fixed $j \in \mathbb{N}_{0}$; then $S^{m-1} \backslash \Omega^{\prime} \subset S^{m-1} \backslash K_{j}^{\prime}$ and by Lemma 5 each component of $S^{m-1} \backslash K_{j}^{\prime}$ contains some component G_{i} of $S^{m-1} \backslash \Omega^{\prime}$. By assumption and Lemma 3: $\bar{G}_{i} \cap\left(S^{m-1} \backslash \Omega\right) \neq \emptyset$ for each component G_{i} of $S^{m-1} \backslash \Omega^{\prime}$. Choose for each component $G_{i}, i \in I$ points $\xi^{i} \in \bar{G}_{i} \cap\left(S^{m-1} \backslash \Omega\right) \subset \bar{G}_{i} \cap\left(S^{m-1} \backslash \Omega^{\prime}\right)=\bar{G}_{i} \cap\left(\cup_{j \in I} G_{j}\right)=G_{i}$ and
put $V=\left\{\xi^{i}, i \in I\right\}$, then V intersects each component of $S^{m-1} \backslash K_{j}^{\prime}$. By Theorem 11 the space $R_{(r)}^{\alpha}(V)$ is dense in $M_{(r)}^{\alpha}\left(K_{j}^{\prime}\right)$ for $\sup _{K_{j}^{\prime}}$. The particular choice of points ξ^{i} shows that $R_{(r)}^{\alpha}(V) \subset M_{(r)}^{\alpha}(\Omega)$; since j was chosen arbitrary, this proves the first part.
(i) \Rightarrow (ii) Suppose that $\Omega \backslash \Omega^{\prime}$ has some compact component V. By Theorem 7 there exists an open U such that $V \subset U \subset \bar{U} \subset \Omega$ and $\partial U \subset \Omega^{\prime}$. Choose for each $\xi \in \partial U$ a ball $B_{S}\left(\xi, r_{\xi}\right) \subset \Omega^{\prime}$. By compactness of ∂U there exists a finite number of $\xi^{i} \in \partial U, i=1, \ldots, N$ such that $\partial U \subset \cup_{i=1}^{N} B_{S}\left(\xi^{i}, r_{\xi^{i}}\right)$. Put $U_{1}=U \cup\left(\cup_{i=1}^{N} B_{S}\left(\xi^{i}, r_{\xi^{i}}\right)\right)$ and $U_{2}=U \cup\left(\cup_{i=1}^{N} B_{S}\left(\xi^{i}, \frac{r_{\xi^{i}}}{2}\right)\right)$; then U_{1} has piecewise smooth boundary $\partial U_{1} \subset \Omega^{\prime}$ and $V \subset U_{2} \subset \bar{U}_{2} \subset U_{1}$. Choose a fixed point $\xi \in V$ and put $f(\omega)=E_{\alpha}(\xi, \omega)$; then $f \in M_{(r)}^{\alpha}\left(\Omega^{\prime}\right)$. By assumption there is a sequence $\left(f_{j}\right)_{j \in \mathbb{N}_{0}}$ in $M_{(r)}^{\alpha}(\Omega)$ such that $f_{j} \rightarrow f$ uniformly on each compact subset of Ω^{\prime}, in particular $f_{j} \rightarrow f$ for $\sup _{\partial U_{1}}$. Hence

$$
\sup _{\omega \in \overline{\bar{U}_{2}}}\left|f_{i}(\omega)-f_{j}(\omega)\right|_{0}=\sup _{\omega \in \overline{\bar{U}_{2}}}\left|\int_{\partial U_{1}} E_{\alpha}(\xi, \omega) n d s\left(f_{i}-f_{j}\right)(\xi)\right|_{0} \rightarrow 0, \inf (i, j) \rightarrow \infty
$$

thus $\left(f_{i}\right)_{i \in \mathbb{N}_{0}}$ is a Cauchy sequence in the Fréchet space $M_{(r)}^{\alpha}\left(U_{2}\right)$. Call W the connected component of U_{2} which contains V and let $\zeta \in \partial V$; since W is open, $B_{S}(\zeta, \delta) \subset W$ for sufficiently small δ. By Lemma $4, \partial V \subset \partial \Omega^{\prime}$, hence $B_{S}(\zeta, \delta) \cap \Omega^{\prime} \neq$ \emptyset or $W \cap \Omega^{\prime} \neq \emptyset$. Therefore there is a component G of Ω^{\prime} such that $W \cap G \neq \emptyset$; this implies that $W \cup G$ is connected. As each closed subset of $W \cup G$ can be written as the union of a closed subset of W and $G,\left(f_{j}\right)_{j \in \mathbb{N}_{0}}$ is a Cauchy sequence in $M_{(r)}^{\alpha}(W \cup G)$. By the principle of analytic continuation $f_{j} \rightarrow f=E_{\alpha}(\xi, \omega)$ in $M_{(r)}^{\alpha}(W \cup G)$, a contradiction $(\xi \in V \subset W)$.

4 The equation $(\Gamma+\alpha) f=g$

We will first determine the global solutions of $(\Gamma+\alpha) f=g, \alpha \in \mathbb{C}, g$ belonging to $C^{\infty}\left(S^{m-1}\right)$ or $\mathcal{E}^{\prime}\left(S^{m-1}\right)$. Of course the situation is quite different when $\alpha \in$ $\mathbb{N} \cup(-m+1-\mathbb{N})$ because in this case the kernel of the operator $\Gamma+\alpha$ consists precisely of the classical inner and outer spherical monogenics. Next we will consider the equation $(\Gamma+\alpha) f=g, g \in C^{\infty}(\Omega), \Omega \subset S^{m-1}$ open. In case g has compact support contained in Ω, the problem is reduced to the global case by extending g to a C^{∞}-function on S^{m-1} equal to zero in $S^{m-1} \backslash \Omega$. However in case $g \in C^{\infty}(\Omega)$ the problem is not so straightforward and requires Runge's Theorem.

4.1 The case $\Omega=S^{m-1}$

Let us repeat the following expansions in terms of spherical monogenics given in [17].

$$
\begin{equation*}
\delta(\omega-\xi)=\frac{1}{A_{m}} \sum_{k=0}^{\infty}\left[K_{k}(\omega, \xi)-\omega K_{k}(\omega, \xi) \xi\right] \tag{i}
\end{equation*}
$$

(ii)

$$
\begin{gathered}
\frac{\pi}{A_{m} \sin \pi \alpha} K_{\alpha}(-\omega, \xi)=\frac{1}{A_{m}} \sum_{k=0}^{\infty}\left[\frac{K_{k}(\omega, \xi)}{\alpha-k}-\frac{\omega K_{k}(\omega, \xi) \xi}{\alpha+k+m-1}\right], \\
\alpha \in \mathbb{C} \backslash(\mathbb{N} \cup(-m+1-\mathbb{N}))
\end{gathered}
$$

(Mittag-Leffler expansion)
(iii)

$$
\begin{gathered}
\left.P V\left[\frac{\pi}{A_{m} \sin \pi \alpha} K_{\alpha}(-\omega, \xi), \alpha=k\right]=\frac{1}{A_{m}} \sum_{\substack{l=0 \\
l \neq k}}^{\infty} \frac{K_{l}(\omega, \xi)}{k-l}-\frac{1}{A_{m}} \sum_{l=0}^{\infty} \frac{\omega K_{l}(\omega, \xi) \xi}{k+l+m-1}\right], \\
k \in \mathbb{N}
\end{gathered}
$$

where the series converge in $\mathcal{E}^{\prime}\left(S^{m-1}\right)$. The principal value $P V\left[f, z=z_{0}\right]$ of f in z_{0} is defined to be the value in z_{0} of the regular part of f. In [13] the following Theorem was proved.

Theorem 14. (Characterisation of the spaces $C^{\infty}\left(S^{m-1}\right)$ and $\mathcal{E}^{\prime}\left(S^{m-1}\right)$ in terms of spherical monogenics)
(i) $g(\omega)=\sum_{k=0}^{\infty} P_{k}(\omega)+Q_{k}(\omega) \in C^{\infty}\left(S^{m-1}\right)$ implies for all $s \in \mathbb{N}$ the existence of a constant $c_{s}>0$ such that $\sup _{\omega \in S^{m-1}}\left\{\left|P_{k}(\omega)\right|_{0},\left|Q_{k}(\omega)\right|_{0}\right\} \leq c_{s}(1+k)^{-s}$ for each $k \in \mathbb{N}$.
Conversely, let $\left(P_{k}, Q_{k}\right)_{k \in \mathbb{N}}$ be a sequence of spherical monogenics which satisfies the above estimate, then $g(\omega)=\sum_{k=0}^{\infty} P_{k}(\omega)+Q_{k}(\omega) \in C^{\infty}\left(S^{m-1}\right)$.
(ii) $S(\omega)=\sum_{k=0}^{\infty} P_{k}(\omega)+Q_{k}(\omega) \in \mathcal{E}^{\prime}\left(S^{m-1}\right)$ implies for all $s \in \mathbb{N}$ the existence of a constant $d_{s}>0$ such that $\sup _{\omega \in S^{m-1}}\left\{\left|P_{k}(\omega)\right|_{0},\left|Q_{k}(\omega)\right|_{0}\right\} \leq d_{s}(1+k)^{s}$ for each $k \in \mathbb{N}$.
Conversely, let $\left(P_{k}, Q_{k}\right)_{k \in \mathbb{N}}$ be a sequence of spherical monogenics which satisfies the above estimate, then $S(\omega)=\sum_{k=0}^{\infty} P_{k}(\omega)+Q_{k}(\omega) \in \mathcal{E}^{\prime}\left(S^{m-1}\right)$.
By means of this Theorem and the decompositions above one can easily prove the following

Theorem 15.

Let $g=\sum_{k=0}^{\infty} P_{k}+Q_{k} \in C^{\infty}\left(S^{m-1}\right)$ and $S=\sum_{k=0}^{\infty} P_{k}+Q_{k} \in \mathcal{E}^{\prime}\left(S^{m-1}\right)$. Then:
(i) In case $\alpha \in \mathbb{C} \backslash(\mathbb{N} \cup(-m+1-\mathbb{N}))$

1. the equation $(\Gamma+\alpha) f=g$ has a unique solution $f \in C^{\infty}\left(S^{m-1}\right)$ given by

$$
\begin{aligned}
f(\omega) & =\sum_{k=0}^{\infty} \frac{P_{k}(\omega)}{\alpha-k}+\frac{Q_{k}(\omega)}{\alpha+k+m-1} \\
& =\int_{S^{m-1}} \frac{\pi}{A_{m} \sin \pi \alpha} K_{\alpha}(-\omega, \xi) g(\xi) d S(\xi)
\end{aligned}
$$

where the series converges in $C^{\infty}\left(S^{m-1}\right)$,
2. the equation $(\Gamma+\alpha) T=S$ has a unique solution $T \in \mathcal{E}^{\prime}\left(S^{m-1}\right)$ given by

$$
T(\omega)=\sum_{k=0}^{\infty} \frac{P_{k}(\omega)}{\alpha-k}+\frac{Q_{k}(\omega)}{\alpha+k+m-1}
$$

where the series converges in $\mathcal{E}^{\prime}\left(S^{m-1}\right)$.
(ii) In case $\alpha=k \in \mathbb{N}$

1. the equation $(\Gamma+k) f=g$ has a solution iff $P_{k}(\omega)=0$. In this case the unique solution $f \in C^{\infty}\left(S^{m-1}\right)$ such that $P(k)(f)=0$ is given by

$$
\begin{aligned}
f(\omega) & =\sum_{\substack{l=0 \\
l \neq k}}^{\infty} \frac{P_{l}(\omega)}{k-l}+\sum_{l=0}^{\infty} \frac{Q_{l}(\omega)}{k+l+m-1} \\
& =\int_{S^{m-1}} P V\left[\frac{\pi}{A_{m} \sin \pi \alpha} K_{\alpha}(-\omega, \xi), \alpha=k\right] g(\xi) d S(\xi)
\end{aligned}
$$

where the series converges in $C^{\infty}\left(S^{m-1}\right)$. The total solution space is then given by $\left\{f(\omega)+P_{k}(\omega), P_{k} \in M^{+}(k)\right\}$,
2. the equation $(\Gamma+k) T=S$ has a solution iff $P_{k}(\omega)=0$. In this case the unique solution $f \in \mathcal{E}^{\prime}\left(S^{m-1}\right)$ such that $P(k)(f)=0$ is given by

$$
T(\omega)=\sum_{\substack{l=0 \\ l \neq k}}^{\infty} \frac{P_{l}(\omega)}{k-l}+\sum_{l=0}^{\infty} \frac{Q_{l}(\omega)}{k+l+m-1}
$$

where the series converges in $\mathcal{E}^{\prime}\left(S^{m-1}\right)$. The total solution space is then given by $\left\{T(\omega)+P_{k}(\omega), P_{k} \in M^{+}(k)\right\}$.

Proof.
Follows from applying Γ under the summation symbol and the decompositions above. The uniqueness in (i) follows from the fact that a global C^{∞}-or distributional null solution of $\Gamma+\alpha, \alpha \in \mathbb{C} \backslash(\mathbb{N} \cup(-m+1-\mathbb{N}))$ must be identical zero.

4.2 The general case $g \in C^{\infty}(\Omega)$

Consider the locally finite cover $\left(H_{j}\right)_{j \in \mathbb{N}_{0}}$ of Ω (see Lemma 5). Let $\left(\phi_{j}\right)_{j \in \mathbb{N}_{0}}$ be a partition of unity subordinate to this cover; then $\phi_{j} \in \mathcal{D}\left(H_{j}, \mathbb{R}\right)$ and

$$
g(\omega)=\sum_{j=1}^{\infty} \phi_{j} g(\omega) \text { in } C^{\infty}(\Omega)
$$

Since $\phi_{j} g$ is C^{∞} on S^{m-1} and has support contained in H_{j}, the function

$$
g_{j}(\omega)=\int_{S^{m-1}} \frac{\pi}{A_{m} \sin \pi \alpha} K_{\alpha}(-\omega, \xi)\left(\phi_{j} g\right)(\xi) d S(\xi)
$$

is C^{∞} on S^{m-1} and satisfies $(\Gamma+\alpha) g_{j}=\phi_{j} g$. Hence $(\Gamma+\alpha) g_{j}=0$ in $G_{j-1}\left(G_{j-1} \cap\right.$ $H_{j}=\emptyset$), thus $g_{j} \in M_{(r)}^{\alpha}\left(K_{j-2}\right)$. In view of Lemma 5 we can apply Runge's Theorem 12 which ensures the existence of a sequence $\left(h_{j}\right)_{j \geq 3}$ in $M_{(r)}^{\alpha}(\Omega)$ such that

$$
\sup _{\omega \in K_{j-2}}\left|\left(g_{j}-h_{j}\right)(\omega)\right|_{0}<2^{-j} .
$$

Therefore the series $g_{1}+g_{2}+\sum_{j=3}^{\infty}\left(g_{j}-h_{j}\right)$ converges in the compact open topology on $C^{0}(\Omega)$ to an element $f \in C^{0}(\Omega)$. Moreover $f \in C^{\infty}(\Omega)$; this can be seen as follows: consider an arbitrary ball $\bar{B}_{S}(u, \delta) \subset \Omega$; for l sufficiently large $\bar{B}_{S}(u, \delta) \subset \stackrel{\circ}{K}_{l}$ and the
finite sum $g_{1}+g_{2}+\sum_{j=3}^{l+1}\left(g_{j}-h_{j}\right) \in C^{\infty}\left(B_{S}(u, \delta)\right)$ while by Weierstrass' Theorem for spherical monogenics of complex degree:

$$
\sum_{j=l+2}^{\infty}\left(g_{j}-h_{j}\right) \in M_{(r)}^{\alpha}\left(B_{S}(u, \delta)\right)
$$

Hence $f \in C^{\infty}(\Omega)$ and for each $\omega \in \Omega$:

$$
\left(\Gamma_{\omega}+\alpha\right) f(\omega)=\sum_{j=1}^{\infty}\left(\Gamma_{\omega}+\alpha\right) g_{j}(\omega)=\sum_{j=1}^{\infty} \phi_{j} g(\omega)=g(\omega) .
$$

We thus proved the following
Theorem 16. Let $\alpha \in \mathbb{C} \backslash(\mathbb{N} \cup(-m+1-\mathbb{N}))$ and let $g \in C^{\infty}(\Omega), \Omega \subset S^{m-1}$ open. Then the equation $(\Gamma+\alpha) f=g$ has a solution $f \in C^{\infty}(\Omega)$.

We can now prove the following important Theorem.
Theorem 17. (Mittag-Leffler's Theorem for the operator $\Gamma+\alpha$)
Let $\alpha \in \mathbb{C} \backslash(\mathbb{N} \cup(-m+1-\mathbb{N}))$. Let $\Omega \subset S^{m-1}$ be open and let $\left(V_{i}\right)_{i \in I}$ be an open cover of Ω. Suppose that for each $j, k \in I$ such that $V_{j} \cap V_{k} \neq \emptyset$ there is a $f_{j k} \in M_{(r)}^{\alpha}\left(V_{j} \cap V_{k}\right)$ satisfying the cocycle condition:
(i) $f_{j k}=-f_{k j}$ in $V_{k} \cap V_{j}$
(ii) $f_{j k}+f_{k l}+f_{l j}=0$ in $V_{k} \cap V_{j} \cap V_{l}$.

Then there exists a family of functions $\left(f_{i}\right)_{i \in I}, f_{i} \in M_{(r)}^{\alpha}\left(V_{i}\right)$ such that $f_{k}-f_{j}=f_{k j}$ in $V_{k} \cap V_{j}$.
Proof.
First of all remark that the following C^{∞}-equivalent of this problem always has a solution. Let $\phi_{j k} \in C^{\infty}\left(V_{j} \cap V_{k}\right)$ satisfy:
(i) $\phi_{j k}=-\phi_{k j}$ in $V_{k} \cap V_{j}$
(ii) $\phi_{j k}+\phi_{k l}+\phi_{l j}=0$ in $V_{j} \cap V_{k} \cap V_{l}$;
then there exists a family of functions $\left(\phi_{i}\right)_{i \in I}, \phi_{i} \in C^{\infty}\left(V_{i}\right)$ such that $\phi_{k}-\phi_{j}=\phi_{k j}$ in $V_{k} \cap V_{j}$ for all $k, j \in I$.
To see this, let $\left(\psi_{i}\right)_{i \in I}$ be a partition of unity subordinate to the cover $\left(V_{i}\right)_{i \in I}$ and define

$$
\phi_{j}(\omega)=\sum_{k} \psi_{k}(\omega) \phi_{k j}(\omega), \quad \omega \in V_{i}
$$

then $\phi_{j} \in C^{\infty}\left(V_{j}\right)$ and in $V_{j} \cap V_{k}$:

$$
\begin{aligned}
\phi_{j}(\omega)-\phi_{k}(\omega) & =\sum_{l} \psi_{l}(\omega)\left[\phi_{l j}(\omega)-\phi_{l k}(\omega)\right] \\
& =\sum_{l} \psi_{l}(\omega) \phi_{k j}(\omega) \\
& =\phi_{k j} .
\end{aligned}
$$

Therefore one can always find functions $h_{j} \in C^{\infty}\left(V_{j}\right)$ such that $h_{j}-h_{k}=f_{j k}$ in $V_{j} \cap V_{k}$ for all $j, k \in I$. Define $\left.h\right|_{V_{i}}=(\Gamma+\alpha) h_{i}, i \in I$; then h is well defined $\left((\Gamma+\alpha) h_{j}=(\Gamma+\alpha) h_{k}\right.$ in $\left.V_{j} \cap V_{k}\right)$ and $h \in C^{\infty}(\Omega)$. By the previous Theorem 16 there is a $g \in C^{\infty}(\Omega)$ such that $(\Gamma+\alpha) g=h$ in Ω. Put $f_{i}=h_{i}-g$ in V_{i}, then $(\Gamma+\alpha) f_{i}=0$ in V_{i} and $f_{j}-f_{k}=\left(h_{j}-g\right)-\left(h_{k}-g\right)=h_{j}-h_{k}=f_{j k}$ in $V_{j} \cap V_{k}$.

References

[1] F. Brackx, R. Delanghe and F. Sommen: Clifford Analysis, Pitman, London, 1982.
[2] D. M. J. Calderbank: Clifford analysis for Dirac operators on manifolds with boundary, Report MPI 96-131.
[3] J. Cnops: Dirac operators on the sphere and hyperboloid, preprint.
[4] S. R. Deans: Gegenbauer transforms via the Radon transform, SIAM J. Math. Anal. 10, 1979, pp. 577-585.
[5] R. Delanghe, F. Sommen, V. Souček: Clifford analysis and spinor valued functions, Kluwer Acad. Publ., Dordrecht, 1992.
[6] L. Durand, P. M. Fishbane and L. M. Simmons, Jr. : Expansion formulas and addition theorems for Gegenbauer functions, J. Math. Phys. 17, 1976, pp. 1933-1948.
[7] A. Erdélyi, W. Magnus, F. Oberhettinger, F. Tricomi: Higher Transcendental Functions, Mc Graw-hill, New York, 1953.
[8] J. Gilbert and M. Murray: Clifford algebras and Dirac operators in harmonic analysis, Cambridge University Press, 1991.
[9] D. Hestenes, G. Sobczyck: Clifford Algebra to Geometric calculus, Reidel, Dordrecht, 1984.
[10] N. J. Hitchin: Harmonic spinors, Adv. Math. 14, 1974, pp. 1-55.
[11] R. Narasimhan: Complex Analysis in One Variable, Birkhäuser, Boston, 1985.
[12] J. Ryan: Dirac Operators on Spheres and Hyperbolae, Preprint.
[13] J. Ryan: Clifford analysis and Hardy 2-spaces on spheres and hyperbolae, Preprint.
[14] F. Sommen: Spherical monogenic functions and analytic functionals on the unit sphere, Tokyo Math. J. 4, 1981, pp. 427-456.
[15] F. Sommen: Monogenic functions on surfaces, J. Reine Angew. Math. 361, 1985, pp. 145-161.
[16] F. Sommen, P. Van Lancker: Homogeneous monogenic functions in Euclidean space, Integral Transforms and Special Functions, Vol. 7, No 3-4, 1998, pp. 285-298.
[17] N. Van Acker: Clifford-differentiaaloperatoren en randwaardentheorie van de nuloplossingen ervan op de sfeer en de Lie-sfeer, Ph. D. thesis, University of Gent, 1992.
[18] P. Van Lancker: Clifford Analysis on the Sphere, V. Dietrich et al. (eds.), Clifford Algebras and Their Applications in Mathematical Physics, Kluwer Acad. Publ., 1998, pp. 201-215.
[19] P. Van Lancker: Clifford Analysis on the Unit Sphere, Ph. D. thesis, University of Gent, 1996.
[20] P. Van Lancker: The Kerzman-Stein Theorem on the Sphere, preprint.
[21] P. Van Lancker: Taylor and Laurent series on the Sphere, to appear in Complex Variables.

University of Gent,
Department of Mathematical Analysis,
Galglaan 2,
9000 GENT (Belgium)

[^0]: Received by the editors September 1997.
 Communicated by R. Delanghe.
 1991 Mathematics Subject Classification : 30G35.

