Approximation Theorems for spherical monogenics of complex degree

P. Van Lancker

Abstract

Spherical monogenics of complex degree correspond to local eigenfunctions of the (Atiyah-Singer) Dirac operator on the unit sphere S^{m-1} of \mathbb{R}^m . In this paper we will consider Runge approximation Theorems and some of their consequences for this class of functions.

1 Introduction

Let (e_1, \ldots, e_m) be an orthonormal basis of Euclidean space \mathbb{R}^m endowed with the inner product $\langle x, y \rangle = \sum_{i=1}^m x_i y_i, x, y \in \mathbb{R}^m$. By \mathbb{C}_m we denote the complex 2^m dimensional Clifford algebra over \mathbb{R}^m generated by the relations $e_i^2 = -1$, $i = 1, \ldots, m$ and $e_i e_j + e_j e_i = 0$, $i \neq j$. An element of \mathbb{C}_m is of the form $a = \sum_{A \subset M} a_A e_A$, $a_A \in \mathbb{C}$, $M = \{1, \ldots, m\}$ and $e_{\phi} = e_0 = 1$. The elements $a \in \mathbb{C}_m$ such that $a_A \in \mathbb{R}$ for all $A \subset M$ determine a real subalgebra of \mathbb{C}_m denoted by \mathbb{R}_m ; this is the real Clifford algebra over \mathbb{R}^m generated by the above relations. Conjugation on \mathbb{C}_m is the anti-involution on \mathbb{C}_m given by $\bar{a} = \sum_{A \subset M} \bar{a}_A \bar{e}_A$ where $\bar{e}_A = \bar{e}_{\alpha_h} \ldots \bar{e}_{\alpha_1}$ and $\bar{e}_j = -e_j$, $j = 1, \ldots, m$. Vectors $x \in \mathbb{R}^m$ are identified with Clifford numbers $x = \sum_{j=1}^m x_j e_j$. For vectors $x, y \in \mathbb{R}^m$,

$$xy = x \cdot y + x \wedge y$$

where the inner product and outer product are given by

$$x \cdot y = -\langle x, y \rangle = -\sum_{j=1}^m x_j y_j, \quad x \wedge y = \sum_{i < j} (x_i y_j - x_j y_i) e_{ij}.$$

Received by the editors September 1997.

Bull. Belg. Math. Soc. 6 (1999), 279-293

Communicated by R. Delanghe.

¹⁹⁹¹ Mathematics Subject Classification : 30G35.

A norm $| |_0$ on \mathbb{C}_m is given by $|a|_0^2 = [a\bar{a}]_0$ and satisfies $|a + b|_0 \leq |a|_0 + |b|_0$, $|ab|_0 \leq 2^{\frac{m}{2}} |a|_0 |b|_0$.

Let $\partial_x = \sum_{i=1}^m e_i \partial_{x_i}$ be the Dirac operator on \mathbb{R}^m . In spherical coordinates $x = \rho\omega$, $\rho = |x| = (x_1^2 + \ldots + x_m^2)^{1/2}$ and $\omega \in S^{m-1}$, the Dirac operator admits the polar decomposition $\partial_x = \omega(\partial_\rho + \frac{1}{\rho}\Gamma_\omega)$ where $\Gamma_\omega = -x \wedge \partial_x$ is the spherical Dirac operator on S^{m-1} . In terms of the momentum operators $L_{ij} = x_i \partial_{x_j} - x_j \partial_{x_j}$, $i, j = 1, \ldots, m$ on \mathbb{R}^m the Γ -operator is given by $\Gamma = -\sum_{i < j} e_{ij} L_{ij}$. In [18] we studied spherical monogenics of degree α , ($\alpha \in \mathbb{C}$) on the unit sphere S^{m-1} in \mathbb{R}^m . Let us recall the following

Definition

Let $\Omega \subset S^{m-1}$ be open. A C^1 -function $f : \Omega \to \mathbb{C}_m$ satisfying $(\Gamma + \alpha)f = 0$ in Ω is called a spherical monogenic of order (degree) α in Ω . The right module of this class of functions is denoted by $M^{\alpha}_{(r)}(\Omega)$.

The value $\alpha = \frac{-m+1}{2}$ plays a special role in the scheme presented. The corresponding spherical monogenics are null solutions of the (Atiyah-Singer) Dirac operator $\omega(\Gamma_{\omega} + \frac{-m+1}{2})$ on S^{m-1} used in differential geometry (see [10]). Amongst the operators $\omega(\Gamma + \alpha)$ this particular operator has the special property that it is conformally invariant. The family of operators $\omega(\Gamma + \alpha)$, $\alpha \in \mathbb{C}$, can be regarded as a holomorphic perturbation of the Dirac operator on the sphere. Spherical monogenics of degree $\alpha \neq \frac{-m+1}{2}$ can be regarded as *(local) eigenfunctions* of the (A-S) Dirac operator on S^{m-1} . If e.g. $(\Gamma + \alpha)f = 0$ in Ω , then $\omega(\Gamma + \frac{-m+1}{2})(1 \pm \omega)f = \mp(\alpha + \frac{m-1}{2})(1 \pm \omega)f$ in Ω . If on the other hand $\omega(\Gamma + \frac{-m+1}{2})g = \lambda g$ in Ω , then $(\Gamma \pm (\lambda + \frac{-m+1}{2}))(1 \pm \omega)g = 0$ in Ω . Hence eigenfunctions of the Γ -operator (which is the submanifold Dirac operator on S^{m-1} induced by the Dirac operator on the embedding space \mathbb{R}^m) correspond to eigenfunctions (with shifted eigenvalue) of the Dirac operator on the sphere (see also [3]).

In this paper we prove the following type of Runge approximation Theorems. Let $\Omega, \Omega' \subset S^{m-1}$ be open and let $K \subset S^{m-1}$ be compact. Then $M^{\alpha}_{(r)}(\Omega)$ is dense in $M^{\alpha}_{(r)}(K)$, $K \subset \Omega$ and $M^{\alpha}_{(r)}(\Omega)$ is dense in $M^{\alpha}_{(r)}(\Omega')$, $\Omega' \subset \Omega$ iff $\Omega \setminus K$ and $\Omega \setminus \Omega'$ satisfy some topological condition. As our proof of these Theorems relies on the existence of a Cauchy kernel for the operator $\Gamma + \alpha$, we impose the condition $\alpha \in \mathbb{C} \setminus (\mathbb{N} \cup (-m + 1 - \mathbb{N}))$. As a consequence we solve the equation $(\Gamma + \alpha)f = g$, $g \in C^{\infty}(\Omega)$, Ω open and prove Mittag-Leffler's Theorem for the operator $\Gamma + \alpha$ on S^{m-1} . As a result we solve the inhomogeneous equation $(\Gamma + \alpha)f = g$ in $\Omega, g \in C^{\infty}(\Omega), \Omega \subset S^{m-1}$ open. This leads to Mittag-Leffler's Theorem for the operators $\Gamma + \alpha$.

2 Some introductory Lemmas

The following lemmas of a topological nature are of importance. We list them without proof.

Let $u \in S^{m-1}$. Then we define the ball $B_S(u, \delta) = B(u, \delta) \cap S^{m-1} = \{\omega \in S^{m-1} : \sqrt{2(1 - \langle \omega, u \rangle)} < \delta\}$. Obviously the sets $B_S(u, \delta)$, $0 < \delta \leq 2$, form a fundamental system of connected neighbourhoods of u on S^{m-1} .

Lemma 1. Let $K \subset \Omega \subset S^{m-1}$, K compact and Ω open. Then the following conditions are equivalent:

- (i) $\Omega \setminus K$ has no components of which the closure (in S^{m-1}) is contained in Ω
- (ii) For each component W of $S^{m-1} \setminus K : \overline{W} \cap (S^{m-1} \setminus \Omega) \neq \emptyset$.

Lemma 2. V is a component of $\Omega \setminus K$ satisfying $\overline{V} \subset \Omega$ iff $\partial V \subset K$.

Lemma 3. Let Ω, Ω' be open subsets of S^{m-1} such that $\Omega' \subset \Omega$. Then the following conditions are equivalent:

- (i) $\Omega \setminus \Omega'$ has no components which are closed in S^{m-1}
- (ii) For each component W of $S^{m-1} \setminus \Omega'$: $\overline{W} \cap (S^{m-1} \setminus \Omega) \neq \emptyset$
- (iii) For each component G of $\Omega \setminus \Omega'$: $\overline{G} \cap \partial \Omega \neq \emptyset$.

Lemma 4. Let Ω , Ω' be open subsets of S^{m-1} , $\Omega' \subset \Omega$ and let V be a component of $\Omega \setminus \Omega'$ which is closed in S^{m-1} . Then $\partial V \subset \partial \Omega'$.

Lemma 5. (Exhaustion of open sets on S^{m-1} by means of compacta) Define for $j \in \mathbb{N}_0$:

$$K_j = \{ \omega \in S^{m-1} : d(\omega, S^{m-1} \setminus \Omega) \ge \frac{1}{j} \}$$

$$G_j = \{ \omega \in S^{m-1} : d(\omega, S^{m-1} \setminus \Omega) > \frac{1}{j} \}$$

where $d(\omega,\xi) = |\omega - \xi| = \sqrt{2(1 - \langle \omega, \xi \rangle)}, \ \omega, \xi \in S^{m-1}$. Then:

- (i) $K_j \subset \overset{\circ}{K}_{j+1}, \ \Omega = \cup K_j = \cup \overset{\circ}{K}_j$
- (ii) Each compact set $K \subset \Omega$ is contained in some K_{i_0}
- (iii) Each component of $S^{m-1} \setminus K_j$ contains a component of $S^{m-1} \setminus \Omega$
- (iv) $\Omega \setminus K_i$ has no components of which the closure is contained in Ω
- (v) Put $H_1 = G_2$, $H_j = G_{j+1} \setminus \overline{G}_{j-1}$, $j \ge 2$; then $\{H_j\}_{j\ge 1}$ is a locally finite cover of Ω .

Theorem 6. Let Ω be a proper open subset of S^{m-1} and let $K \subset \Omega$ be compact such that $\Omega \setminus K$ has no components of which the closure is contained in Ω . Then there exists a fundamental system $\{F_i\}$ of compact neighbourhoods of K in Ω such that for each i:

- (i) F_i has piecewise smooth boundary
- (ii) $\Omega \setminus F_i$ has no components whose closure is contained in Ω .

Proof.

Consider the sets

$$K_{j} = \{\omega \in S^{m-1} : d(\omega, K) \leq \frac{1}{j}\} = \bigcup_{\omega \in K} \overline{B}_{S}(\omega, \frac{1}{j})$$

$$G_{j} = \{\omega \in S^{m-1} : d(\omega, K) < \frac{1}{j}\} = \bigcup_{\omega \in K} B_{S}(\omega, \frac{1}{j}), \quad j \in \mathbb{N}_{0}.$$

Each K_j is compact while each G_j is open and $K_{j+1} \subset G_j \subset \overset{\circ}{K}_j$. By compactness of K; $\{G_j\}_{j\in\mathbb{N}_0}$ and $\{K_j\}_{j\in\mathbb{N}_0}$ are fundamental systems of neighbourhoods of K on S^{m-1} . For each j, G_j is an open cover of K and therefore has a finite subcover $\bigcup_{i_j=1}^{n_j} B_S(\xi_{i_j}, \frac{1}{j}) \subset G_j$ covering K. Put $\tilde{K}_j = \bigcup_{i_j=1}^{n_j} \overline{B}_S(\xi_{i_j}, \frac{1}{j})$, then \tilde{K}_j is compact and has piecewise smooth boundary. As $K \subset \tilde{K}_j \subset K_j$, $\{\tilde{K}_j\}_{j \in \mathbb{N}_0}$ is a fundamental system of neighbourhoods of K on S^{m-1} ; since $K_{j_0} \subset \Omega$ for some j_0 , $\{\tilde{K}_j\}_{j \geq j_0}$ is then a fundamental system of neighbourhoods of K in Ω . Consider now an arbitrary K_i , $j \ge j_0$. Since $\Omega \setminus K_i \subset \Omega \setminus K$, each component of $\Omega \setminus K_i$ is contained in a component of $\Omega \setminus K$. As \tilde{K}_j is the union of a finite number of closed balls, $\Omega \setminus \tilde{K}_j$ has only a finite number of components; say W_i^l , $i = 1, \ldots, n_j, 1 \le l \le k_j$ satisfying $\overline{W}_i^l \subset \Omega$. Call Ω_i the components of $\Omega \setminus K$ such that $W_i^l \subset \Omega_i, i = 1, \ldots, n_j$. Suppose now that G is a component of $\Omega \setminus K$ which does not contain any component of $\Omega \setminus \tilde{K}_j$, then $G \cap (\Omega \setminus \tilde{K}_j) = \emptyset$ or $G \subset (\Omega \setminus K) \setminus (\Omega \setminus \tilde{K}_j) = \tilde{K}_j \setminus K \subset \tilde{K}_j$, hence $\overline{G} \subset \Omega$ which contradicts the assumption in the Lemma; therefore each component of $\Omega \setminus K$ contains a component of $\Omega \setminus K_i$. In the same way each component of $\Omega \setminus K$ contains a component of $\Omega \setminus L$ where L is the compact set given by $L = \tilde{K}_j \cup (\bigcup_{i,l} \overline{W}_i^l)$; as $\Omega \setminus L$ and $\Omega \setminus K_i$ have the same components of which the closure is not contained in Ω , it follows that each Ω_i contains a component G_i of $\Omega \setminus K_i$ such that $\overline{G}_i \cap \partial \Omega \neq \emptyset$. Choose in each Ω_i containing a component W_i^l , a set G_i satisfying $\overline{G}_i \cap \partial \Omega \neq \emptyset$ and choose points $a_i \in \overline{G}_i \cap \partial \Omega$, $b_i^l \in W_i^l$. As Ω_i is open and connected, Ω_i is path connected and for each l there is an arc L_i^l in Ω_i connecting a_i and b_i^l . Choose for each $\xi \in L_i^l$ an open ball $B_S(\xi, r_\xi) \subset \Omega_i$, the union of these balls forms an open cover of L_i^l ; as L_i^l is compact, there exists a finite subcover $T_i^l = \bigcup_{j=1}^{N(l,i)} B_S(\xi_j, r_{\xi_j}) \subset \Omega_j$. Put $F_j = \tilde{K}_j \setminus \bigcup_{i,l} T_i^l$, then F_j is compact and has piecewise smooth boundary. Since $T_i^l \cap K = \emptyset$ it follows that $K \subset F_j \subset \tilde{K}_j$. Applying this construction to each $j \ge j_0$ we thus obtain a fundamental system $\{F_j\}_{j\geq j_0}$ of compact neighbourhoods of K in Ω . Call H_{ik} the remaining components of $\Omega \setminus K_i$. Then:

$$\Omega \setminus F_j = \Omega \setminus (\tilde{K}_j \setminus (\bigcup_{i,l} T_i^l)) = (\Omega \setminus \tilde{K}_j) \cup (\bigcup_{i,l} T_i^l) = \bigcup_{i,l} (W_i^l \cup T_i^l \cup G_i) \cup (\bigcup_k H_{jk}) .$$

Put $\tilde{W}_i^l = W_i^l \cup T_i^l \cup G_i$; then \tilde{W}_i^l is connected and $\overline{\tilde{W}}_i^l \cap \partial \Omega \neq \emptyset$. Since each component of $\Omega \setminus F_j$ contains some connected set \tilde{W}_i^l or H_{jk} , $\Omega \setminus F_j$ has no components whose closure is contained in Ω . This proves the Theorem.

The following is proved in [11].

Theorem 7. Let Y be a locally compact Hausdorff space, let X be a closed subset of Y and let K be a connected component of X which is compact. Then there exists a fundamental system of neighbourhoods U of K in Y such that

$$(\partial U) \cap X = \emptyset ,$$

 ∂U denoting the boundary of U in Y.

In particular, this Theorem is valid when we put $Y = \Omega$, $X = \Omega \setminus \Omega'$, $\Omega' \subset \Omega \subset S^{m-1}$; Ω', Ω open.

3 Runge Theorems

The Cauchy kernel for spherical monogenics of complex degree α is denoted by $E_{\alpha}(\xi, \omega)$ and satisfies $(\Gamma + \alpha)E_{\alpha}(\xi, \omega) = \delta(\omega - \xi)\xi$, $\alpha \in \mathbb{C} \setminus (\mathbb{N} \cup (-m + 1 - \mathbb{N}))$ (see also [18]).

Definitions.

(i) Let $K \subset S^{m-1}$ be compact and let μ be a \mathbb{C}_m -valued regular Borel measure on S^{m-1} with support $[\mu]$ contained in K. Then the Cauchy transform $CT_{\alpha}(\mu)$ of the measure μ is defined by:

$$CT_{\alpha}(\mu)(\xi) = \int_{S^{m-1}} d\mu(\omega) E_{\alpha}(\xi, \omega), \quad \omega \in S^{m-1}.$$

By a standard argument $(CT_{\alpha}(\mu)(\xi))(\Gamma_{\xi}-\beta) = 0$ in $S^{m-1}\setminus[\mu]$, $\alpha+\beta = -m+1$. By means of the Riesz Representation Theorem the dual of the right module $C^{0}_{(r)}(K)$ of continuous functions on K can be identified with the left module of \mathbb{C}_{m} -valued regular Borel measures on S^{m-1} having support contained in K and

$$\langle \mu, h \rangle = \int_{S^{m-1}} d\mu(\omega) h(\omega), \quad h \in C^0_{(r)}(K) \;.$$

(ii) Let $K \subset S^{m-1}$ be compact. Then $M^{\alpha}_{(r)}(K)$ consists of the elements f which are null solutions of $\Gamma + \alpha$ in some open neighbourhood of K. On $M^{\alpha}_{(r)}(K)$ we consider two different topologies. First of all, $M^{\alpha}_{(r)}(K)$ is a subspace of $C^0(K)$. The space $C^0(K)$ endowed with the supremum norm $|| f || = \sup_K |f|_0$ is a Banach space and $M^{\alpha}_{(r)}(K)$ can be given the topology inherited from the Banach space $C^0(K)$. In general $M^{\alpha}_{(r)}(K)$ is not a closed subspace of $C^0(K)$. Secondly one can consider $M^{\alpha}_{(r)}(K) = \liminf_{K \subset \Omega} M^{\alpha}_{(r)}(\Omega)$, i.e. $M^{\alpha}_{(r)}(K)$ is given the inductive limit topology determined by the Fréchet modules $M^{\alpha}_{(r)}(\Omega)$, $K \subset \Omega$.

The following Lemma plays an important role in the sequel.

Lemma 8. Let $K \subset S^{m-1}$ be compact and suppose that μ is a \mathbb{C}_m -valued regular Borel measure on S^{m-1} having support contained in K. Then:

$$\int_{S^{m-1}} d\mu(\omega) f(\omega) = 0 \text{ for all } f \in M^{\alpha}_{(r)}(K) \text{ iff } CT_{\alpha}(\mu)(\xi) = 0 \text{ in } S^{m-1} \setminus K.$$

Proof.

(Necessary condition.) Take $\xi \in S^{m-1} \setminus K$ and put $f(\omega) = E_{\alpha}(\xi, \omega)$. Then $f \in M^{\alpha}_{(r)}(K)$, hence $CT_{\alpha}(\mu)(\xi) = 0$ in $S^{m-1} \setminus K$.

(Sufficient condition.) Let $f \in M^{\alpha}_{(r)}(K)$; then $f \in M^{\alpha}_{(r)}(\Omega_f)$ for some open neighbourhood Ω_f of K. Consider a compact neighbourhood K' having piecewise smooth boundary and such that $K \subset \overset{\circ}{K} \subset K' \subset \Omega_f$. By Cauchy's Theorem:

$$f(\omega) = \int_{\partial K'} E_{\alpha}(\xi, \omega) n ds f(\xi), \quad \omega \in K,$$

and by Fubini's Theorem:

$$\int_{S^{m-1}} d\mu(\omega) f(\omega) = \int_{\partial K'} (CT_{\alpha}(\mu))(\xi) n ds f(\xi) = 0 .$$

Lemma 9. Let $\alpha \in \mathbb{C} \setminus (\mathbb{N} \cup (-m+1-\mathbb{N}))$ and put $M_{ij}^{\omega} = L_{ij}^{\omega} - \frac{1}{2}e_{ij}$, $L_{ij}^{\omega} = \omega_i \partial_{\omega_j} - \omega_j \partial_{\omega_i}$ being the momentum operators. Then:

(i) The Γ -operator and M_{ij} -operators commute, i.e. $[\Gamma_{\omega}, M_{ij}^{\omega}] = 0$

(*ii*)
$$M_{ij}^{\omega} E_{\alpha}(\xi, \omega) = -E_{\alpha}(\xi, \omega) \overline{M}_{ij}^{\xi}$$
.

Proof.

(i) See [16].

(ii) Up to a constant $E_{\alpha}(\xi,\omega)$ is given by $\xi C_{\alpha}^{\frac{m}{2}}(-\langle\omega,\xi\rangle) + \omega C_{\alpha-1}^{\frac{m}{2}}(-\langle\omega,\xi\rangle)$ and

$$L_{ij}^{\omega}[\xi C_{\alpha}^{\frac{m}{2}}(-\langle \omega, \xi \rangle) + \omega C_{\alpha-1}^{\frac{m}{2}}(-\langle \omega, \xi \rangle)]$$

= $-(\omega_i \xi_j - \omega_j \xi_i)[\xi C_{\alpha}^{\frac{m}{2}}{}'(-\langle \omega, \xi \rangle) + \omega C_{\alpha-1}^{\frac{m}{2}}{}'(-\langle \omega, \xi \rangle)]$
+ $(\omega_i e_j - \omega_j e_i) C_{\alpha-1}^{\frac{m}{2}}(-\langle \omega, \xi \rangle)$

while

$$\begin{split} & [\xi C_{\alpha}^{\frac{m}{2}}(-\langle\omega,\xi\rangle) + \omega C_{\alpha-1}^{\frac{m}{2}}(-\langle\omega,\xi\rangle)]L_{ij}^{\xi} \\ & = (\omega_i\xi_j - \omega_j\xi_i)[\xi C_{\alpha}^{\frac{m}{2}}'(-\langle\omega,\xi\rangle) + \omega C_{\alpha-1}^{\frac{m}{2}}'(-\langle\omega,\xi\rangle)] + (\xi_i e_j - \xi_j e_i)C_{\alpha}^{\frac{m}{2}}(-\langle\omega,\xi\rangle) , \end{split}$$

where ' denotes derivation with respect to the variable $-\langle \omega, \xi \rangle$. Hence

$$\begin{split} M_{ij}^{\omega}[\xi C_{\alpha}^{\frac{m}{2}}(-\langle\omega,\xi\rangle) + \omega C_{\alpha-1}^{\frac{m}{2}}(-\langle\omega,\xi\rangle)] + [\xi C_{\alpha}^{\frac{m}{2}}(-\langle\omega,\xi\rangle) + \omega C_{\alpha-1}^{\frac{m}{2}}(-\langle\omega,\xi\rangle)]\overline{M}_{ij}^{\xi} \\ &= [\frac{1}{2}[\xi,e_{ij}] + (\xi_i e_j - \xi_j e_i)]C_{\alpha}^{\frac{m}{2}}(-\langle\omega,\xi\rangle) + [\frac{1}{2}[\omega,e_{ij}] + (\omega_i e_j - \omega_j e_i)]C_{\alpha-1}^{\frac{m}{2}}(-\langle\omega,\xi\rangle) \\ &= 0 , \end{split}$$

since $\frac{1}{2}[\omega, e_{ij}] = -\omega_i e_j + \omega_j e_i$.

Lemma 10. Let Ω be an open connected subset of S^{m-1} , let $\xi \in \Omega$ and let $f \in M^{\alpha}_{(r)}(\Omega)$. If $M_{i_1j_1} \dots M_{i_kj_k} f(\omega)|_{\omega=\xi} = 0$ for all couples (i_l, j_l) , $i_l < j_l$, $1 \le i_l, j_l \le m$, $0 \le l \le k$, $k \in \mathbb{N}$, then $f \equiv 0$ in Ω .

Proof.

Extend f to an α -homogeneous null solution \tilde{f} of ∂_x in the connected cone $\mathbb{R}_+\Omega$. By assumption all derivatives of \tilde{f} in ξ vanish. Since \tilde{f} is real analytic in $\mathbb{R}_+\Omega$, $\tilde{f} \equiv 0$ in $\mathbb{R}_+\Omega$.

Definition.

Let
$$\xi \in S^{m-1}$$
 and let $\alpha \in \mathbb{C} \setminus (\mathbb{N} \cup (-m+1-\mathbb{N}))$. Then we define the set
 $R^{\alpha}(\xi) = \{M_{i_1j_1}^{\omega} \dots M_{i_kj_k}^{\omega} E_{\alpha}(\xi, \omega), \ (i_l, j_l) \in \{1, \dots, m\} \times \{1, \dots, m\},$
 $i_l < j_l, \ 0 \le l \le k, \ k \in \mathbb{N}\}$.

In view of Lemma 9(i) the operators M_{ij} and Γ commute; therefore each element of this set belongs to $M^{\alpha}_{(r)}(S^{m-1} \setminus \{\xi\})$.

Consider a set $V = \{\xi^i, \xi^i \in S^{m-1}, i \in I\}$ of points ξ^i on S^{m-1} , then we put:

$$R^{\alpha}(V) = \bigcup_{i \in I} R^{\alpha}(\xi^i)$$

and we call $R^{\alpha}_{(r)}(V)$ the right \mathbb{C}_m -span of the set $R^{\alpha}(V)$, i.e. $R^{\alpha}_{(r)}(V)$ is the space of finite right \mathbb{C}_m -linear combinations of elements of $R^{\alpha}(V)$. Clearly $R^{\alpha}_{(r)}(V)$ is a right \mathbb{C}_m -module of null solutions of $\Gamma + \alpha$ having singularities in the set V.

Theorem 11. Let $K \subset S^{m-1}$ be compact and let $S^{m-1} \setminus K = \bigcup_{i=1}^{\infty} \Omega_i$ be the decomposition of $S^{m-1} \setminus K$ in connected components. Choose in each Ω_i a point ξ^i and put $V = \{\xi^i, i \in \mathbb{N}_0\}$. Then:

 $R^{\alpha}_{(r)}(V)$ is dense in $M^{\alpha}_{(r)}(K)$ with respect to the topology given by the supremum norm on K.

Proof.

Let $C_{(r)}^{0}(K)$ be the right module of \mathbb{C}_m -valued continuous functions on K endowed with the supremum norm on K. Then we have the following inclusions where the supremum norm on K is restricted to the corresponding subspaces of $C_{(r)}^{0}(K)$:

$$R^{\alpha}_{(r)}(V) \subset M^{\alpha}_{(r)}(K) \subset C^0_{(r)}(K) .$$

By the Hahn-Banach Theorem each continuous linear functional on $R^{\alpha}_{(r)}(V)$ can be extended to a continuous linear functional on $M^{\alpha}_{(r)}(K)$ and hence also to $C^{0}_{(r)}(K)$. In view of the Riesz Representation Theorem the dual of $C^{0}_{(r)}(K)$ can be identified with the left module of \mathbb{C}_m -valued regular Borel measures on S^{m-1} having support in K. The space $R^{\alpha}_{(r)}(V)$ will be dense in $M^{\alpha}_{(r)}(K)$ iff the zero functional on $R^{\alpha}_{(r)}(V)$ has only the zero functional on $M^{\alpha}_{(r)}(K)$ as continuous extension. To prove this it is sufficient to prove that each regular Borel measure on S^{m-1} having support in K which annihilates the space $R^{\alpha}_{(r)}(V)$ also annihilates $M^{\alpha}_{(r)}(K)$. Consider such a measure μ . By assumption μ annihilates in particular $R^{\alpha}(\xi^i)$, hence for all couples $(i_l, j_l) \in \{1, \ldots, m\} \times \{1, \ldots, m\}, i_l < j_l, 0 \le l \le k, k \in \mathbb{N}$:

$$\langle \mu(\omega), M_{i_1j_1}^{\omega} \dots M_{i_kj_k}^{\omega} E_{\alpha}(\xi^i, \omega) \rangle = 0$$
.

By Lemma 9(ii):

$$\begin{split} M_{i_1 j_1}^{\omega} \dots M_{i_k j_k}^{\omega} E_{\alpha}(\xi^i, \omega) &= -M_{i_1 j_1}^{\omega} \dots M_{i_{k-1} j_{k-1}}^{\omega} [E_{\alpha}(\xi, \omega) \overline{M}_{i_k j_k}^{\xi}]|_{\xi = \xi^i} \\ &= (-1)^k [E_{\alpha}(\xi, \omega) \overline{M}_{i_1 j_1}^{\xi} \dots \overline{M}_{i_k j_k}^{\xi}]|_{\xi = \xi^i} , \end{split}$$

hence

$$\langle \mu(\omega), E_{\alpha}(\xi, \omega) \rangle \overline{M}_{i_1 j_1}^{\xi} \dots \overline{M}_{i_k j_k}^{\xi}|_{\xi=\xi^i} = 0$$
.

Since $CT_{\alpha}(\mu)(\xi) = \langle \mu(\omega), E_{\alpha}(\xi, \omega) \rangle$ is a right null solution of $\Gamma_{\xi} - \beta$ in $S^{m-1} \setminus K$ ($\alpha + \beta = -m + 1$) one has by Lemma 10 that $CT_{\alpha}(\mu)(\xi) \equiv 0$ in Ω_i , *i* being chosen arbitrarily, hence $CT_{\alpha}(\mu) \equiv 0$ in $S^{m-1} \setminus K$. By Lemma 8 μ annihilates $M^{\alpha}_{(r)}(K)$, q.e.d.

We will now determine under which conditions $M^{\alpha}_{(r)}(\Omega)$ is dense in $M^{\alpha}_{(r)}(K)$, $K \subset \Omega$ compact, Ω open. In view of the previous Theorem such a result will hold when we can choose V such that $V \cap \Omega = \emptyset$. This will only be possible if Ω satisfies some further topological condition with respect to K. This is formulated in the following

Theorem 12. (First Approximation Theorem of Runge)

Let $K \subset \Omega \subset S^{m-1}$, Ω open and K compact. Then the following conditions are equivalent:

(i) $M^{\alpha}_{(r)}(\Omega)$ is dense in $M^{\alpha}_{(r)}(K) = \lim \operatorname{ind}_{K \subset \Omega} M^{\alpha}_{(r)}(\Omega)$

(ii) $\Omega \setminus K$ has no components of which the closure (in S^{m-1}) is contained in Ω .

Proof.

(ii) \Rightarrow (i) First of all we prove that $M_{(r)}^{\alpha}(\Omega)$ is dense in $M_{(r)}^{\alpha}(K)$ for \sup_{K} . Let G_i , $i \in \mathbb{N}_0$ be the components of $S^{m-1} \setminus K$. By the topological condition on $\Omega \setminus K$ and Lemma 1: $\overline{G}_i \cap (S^{m-1} \setminus \Omega) \neq \emptyset$. Choose for all $i \in \mathbb{N}_0$ points $\xi^i \in \overline{G}_i \cap (S^{m-1} \setminus \Omega) \subset \overline{G}_i \cap (S^{m-1} \setminus K) = G_i$ and put $V = \{\xi^i, i \in \mathbb{N}_0\}$. By the previous Theorem $R_{(r)}^{\alpha}(V)$ is dense in $M_{(r)}^{\alpha}(K)$ for \sup_{K} . Since $V \subset S^{m-1} \setminus \Omega$, $R_{(r)}^{\alpha}(V)$ is a subspace of $M_{(r)}^{\alpha}(\Omega)$; thus $M_{(r)}^{\alpha}(\Omega)$ is dense in $M_{(r)}^{\alpha}(K)$ for \sup_{K} .

Let $f \in M_{(r)}^{\alpha}(K)$; then there is an open set Ω_f , $K \subset \Omega_f \subset \Omega$ such that $f \in M_{(r)}^{\alpha}(\Omega_f)$. In view of Theorem 6 one can always find a compact set F_{i_0} , $K \subset F_{i_0} \subset \Omega_f$ such that $\Omega \setminus F_{i_0}$ has no components of which the closure is contained in Ω . Hence there is a sequence $(f_i)_{i \in \mathbb{N}_0}$, $f_i \in M_{(r)}^{\alpha}(\Omega)$ such that $f_i \to f$ in $\sup_{F_{i_0}}$ and thus $f_i \to f$ in the Fréchet module $M_{(r)}^{\alpha}(\mathring{F}_{i_0})$. As the inductive limit topology on $M_{(r)}^{\alpha}(K)$ is the strongest locally convex topology on $M_{(r)}^{\alpha}(K)$ which is weaker than the topology on any $M_{(r)}^{\alpha}(\Omega)$, $K \subset \Omega$, the sequence $(f_i)_{i \in \mathbb{N}_0}$ converges to f in $\liminf_{K \subset \Omega} M_{(r)}^{\alpha}(\Omega)$. (i) \Rightarrow (ii) Suppose that W is a component of $\Omega \setminus K$ such that $\overline{W} \subset \Omega$; by Lemma

(i) \Rightarrow (ii) Suppose that W is a component of $\Omega \setminus K$ such that $W \subset \Omega$; by Lemma 2, $\partial W \subset K$. Take a fixed point $\nu \in W$ and consider the function $f(\omega) = E_{\alpha}(\nu, \omega)$; then $f \in M^{\alpha}_{(r)}(K)$. By assumption there is a compact set $F, K \subset \mathring{F} \subset F \subset \Omega \setminus \{\nu\}$ and a sequence of functions $(f_j)_{j \in \mathbb{N}_0}, f_j \in M^{\alpha}_{(r)}(\Omega)$ such that $f_j \to f$ for \sup_F . Since $\partial W \subset K \subset \mathring{F}$ and $\nu \in W \setminus F$ it follows that $\overline{W} \setminus \mathring{F} = W \setminus \mathring{F}$ is a non empty compact subset of W. Therefore one can always find a compact set C which covers $\overline{W} \setminus \mathring{F}$

and has piecewise smooth boundary ∂C contained in $W \setminus (\overline{W} \setminus \mathring{F}) = W \setminus (W \setminus \mathring{F}) = W \cap \mathring{F} \subset \mathring{F}$. For all $\omega \in \overline{W} \setminus \mathring{F}$:

$$(f_i - f_j)(\omega) = \int_{\partial C} E_{\alpha}(\xi, \omega) n ds (f_i - f_j)(\xi) \; .$$

Hence

$$\sup_{\omega \in \overline{W} \setminus \mathring{F}} |(f_i - f_j)(\omega)|_0 \le A(\partial C) \sup_{\omega \in \overline{W} \setminus \mathring{F}, \ \xi \in \partial C} |E_\alpha(\xi, \omega)|_0 \sup_{\xi \in \partial C} |(f_i - f_j)(\xi)|_0 ,$$

 $A(\partial C)$ denoting the area of ∂C . Since $\overline{W} \setminus \overset{\circ}{F}$ and ∂C are compact and $\partial C \subset F$ there is a constant $K(\overline{W}, F, \partial C)$ such that

$$\sup_{\omega \in \overline{W} \setminus \overset{\circ}{F}} |(f_i - f_j)(\omega)|_0 \le K \sup_{\omega \in F} |(f_i - f_j)(\omega)|_0 .$$

From $F \cup \overline{W} \subset F \cup (\overline{W} \setminus \overset{\circ}{F})$ it follows that

$$\sup_{\omega \in F \cup \overline{W}} |(f_i - f_j)(\omega)|_0 \le (1 + K) \sup_{\omega \in F} |(f_i - f_j)(\omega)|_0$$

Since $(f_i)_{i\in\mathbb{N}_0}$ is a Cauchy sequence in $M^{\alpha}_{(r)}(F)$ for \sup_F , $(f_i)_{i\in\mathbb{N}_0}$ is also Cauchy in $M^{\alpha}_{(r)}(F\cup\overline{W})$ for $\sup_{F\cup\overline{W}}$. Consequently there is an \tilde{f} such that $f_i \to \tilde{f}$ for $\sup_{F\cup\overline{W}}$ and $\tilde{f} \in M^{\alpha}_{(r)}(\mathring{F}\cup W)$ where $\tilde{f}|_F = f$. Since $\mathring{F} \cap W \neq \emptyset$ there is a component G of \mathring{F} such that $G\cap W \neq \emptyset$, therefore $G\cup W$ is connected and \tilde{f} is the unique extension of f to the region $G\cup W$; but $\nu \in W$ which leads to a contradiction (f is singular in $\nu)$.

Theorem 13. (Second Approximation Theorem of Runge)

Let Ω, Ω' be open subsets of $S^{m-1}, \Omega' \subset \Omega$. Then the following conditions are equivalent:

- (i) $M^{\alpha}_{(r)}(\Omega)$ is dense in $M^{\alpha}_{(r)}(\Omega')$ in the sense of Fréchet modules
- (ii) $\Omega \setminus \Omega'$ has no components which are closed in the topology on S^{m-1} .

Proof.

(ii) \Rightarrow (i) Consider the exhaustion of Ω' by means of the compact sets

$$K'_{j} = \{ \omega \in S^{m-1} : d(\omega, S^{m-1} \setminus \Omega') \ge \frac{1}{j} \}, \quad j \in \mathbb{N}_{0}$$

The space $M_{(r)}^{\alpha}(\Omega)$ will be dense in $M_{(r)}^{\alpha}(\Omega')$ in the sense of Fréchet modules if for each $j \in \mathbb{N}_0$ the space $M_{(r)}^{\alpha}(\Omega)$ is dense in $M_{(r)}^{\alpha}(K'_j)$ for $\sup_{K'_j}$. Choose an arbitrary fixed $j \in \mathbb{N}_0$; then $S^{m-1} \setminus \Omega' \subset S^{m-1} \setminus K'_j$ and by Lemma 5 each component of $S^{m-1} \setminus K'_j$ contains some component G_i of $S^{m-1} \setminus \Omega'$. By assumption and Lemma 3: $\overline{G}_i \cap (S^{m-1} \setminus \Omega) \neq \emptyset$ for each component G_i of $S^{m-1} \setminus \Omega'$. Choose for each component G_i , $i \in I$ points $\xi^i \in \overline{G}_i \cap (S^{m-1} \setminus \Omega) \subset \overline{G}_i \cap (S^{m-1} \setminus \Omega') = \overline{G}_i \cap (\cup_{j \in I} G_j) = G_i$ and put $V = \{\xi^i, i \in I\}$, then V intersects each component of $S^{m-1} \setminus K'_j$. By Theorem 11 the space $R^{\alpha}_{(r)}(V)$ is dense in $M^{\alpha}_{(r)}(K'_j)$ for $\sup_{K'_j}$. The particular choice of points ξ^i shows that $R^{\alpha}_{(r)}(V) \subset M^{\alpha}_{(r)}(\Omega)$; since j was chosen arbitrary, this proves the first part.

(i) \Rightarrow (ii) Suppose that $\Omega \setminus \Omega'$ has some compact component V. By Theorem 7 there exists an open U such that $V \subset U \subset \overline{U} \subset \Omega$ and $\partial U \subset \Omega'$. Choose for each $\xi \in \partial U$ a ball $B_S(\xi, r_{\xi}) \subset \Omega'$. By compactness of ∂U there exists a finite number of $\xi^i \in \partial U$, $i = 1, \ldots, N$ such that $\partial U \subset \bigcup_{i=1}^N B_S(\xi^i, r_{\xi^i})$. Put $U_1 = U \cup (\bigcup_{i=1}^N B_S(\xi^i, r_{\xi^i}))$ and $U_2 = U \cup (\bigcup_{i=1}^N B_S(\xi^i, \frac{r_{\xi^i}}{2}))$; then U_1 has piecewise smooth boundary $\partial U_1 \subset \Omega'$ and $V \subset U_2 \subset \overline{U}_2 \subset U_1$. Choose a fixed point $\xi \in V$ and put $f(\omega) = E_{\alpha}(\xi, \omega)$; then $f \in M^{\alpha}_{(r)}(\Omega')$. By assumption there is a sequence $(f_j)_{j \in \mathbb{N}_0}$ in $M^{\alpha}_{(r)}(\Omega)$ such that $f_j \to f$ uniformly on each compact subset of Ω' , in particular $f_j \to f$ for $\sup_{\partial U_1} U$.

$$\sup_{\omega \in \overline{U}_2} |f_i(\omega) - f_j(\omega)|_0 = \sup_{\omega \in \overline{U}_2} |\int_{\partial U_1} E_\alpha(\xi, \omega) n ds (f_i - f_j)(\xi)|_0 \to 0, \text{ inf}(i, j) \to \infty ,$$

thus $(f_i)_{i\in\mathbb{N}_0}$ is a Cauchy sequence in the Fréchet space $M^{\alpha}_{(r)}(U_2)$. Call W the connected component of U_2 which contains V and let $\zeta \in \partial V$; since W is open, $B_S(\zeta, \delta) \subset W$ for sufficiently small δ . By Lemma 4, $\partial V \subset \partial \Omega'$, hence $B_S(\zeta, \delta) \cap \Omega' \neq \emptyset$ or $W \cap \Omega' \neq \emptyset$. Therefore there is a component G of Ω' such that $W \cap G \neq \emptyset$; this implies that $W \cup G$ is connected. As each closed subset of $W \cup G$ can be written as the union of a closed subset of W and G, $(f_j)_{j\in\mathbb{N}_0}$ is a Cauchy sequence in $M^{\alpha}_{(r)}(W \cup G)$. By the principle of analytic continuation $f_j \to f = E_{\alpha}(\xi, \omega)$ in $M^{\alpha}_{(r)}(W \cup G)$, a contradiction $(\xi \in V \subset W)$.

4 The equation $(\Gamma + \alpha)f = g$

We will first determine the global solutions of $(\Gamma + \alpha)f = g$, $\alpha \in \mathbb{C}$, g belonging to $C^{\infty}(S^{m-1})$ or $\mathcal{E}'(S^{m-1})$. Of course the situation is quite different when $\alpha \in$ $\mathbb{N} \cup (-m + 1 - \mathbb{N})$ because in this case the kernel of the operator $\Gamma + \alpha$ consists precisely of the classical inner and outer spherical monogenics. Next we will consider the equation $(\Gamma + \alpha)f = g$, $g \in C^{\infty}(\Omega)$, $\Omega \subset S^{m-1}$ open. In case g has compact support contained in Ω , the problem is reduced to the global case by extending g to a C^{∞} -function on S^{m-1} equal to zero in $S^{m-1} \setminus \Omega$. However in case $g \in C^{\infty}(\Omega)$ the problem is not so straightforward and requires Runge's Theorem.

4.1 The case $\Omega = S^{m-1}$

Let us repeat the following expansions in terms of spherical monogenics given in [17].

(i)

$$\delta(\omega - \xi) = \frac{1}{A_m} \sum_{k=0}^{\infty} [K_k(\omega, \xi) - \omega K_k(\omega, \xi)\xi]$$

(ii)

$$\frac{\pi}{A_m \sin \pi \alpha} K_\alpha(-\omega,\xi) = \frac{1}{A_m} \sum_{k=0}^{\infty} \left[\frac{K_k(\omega,\xi)}{\alpha-k} - \frac{\omega K_k(\omega,\xi)\xi}{\alpha+k+m-1} \right],$$

$$\alpha \in \mathbb{C} \setminus (\mathbb{N} \cup (-m+1-\mathbb{N}))$$

(Mittag-Leffler expansion)

(iii)

$$PV\left[\frac{\pi}{A_m \sin \pi \alpha} K_\alpha(-\omega,\xi), \alpha = k\right] = \frac{1}{A_m} \sum_{\substack{l=0\\l \neq k}}^{\infty} \frac{K_l(\omega,\xi)}{k-l} - \frac{1}{A_m} \sum_{\substack{l=0\\l \neq k}}^{\infty} \frac{\omega K_l(\omega,\xi)\xi}{k+l+m-1}\right] + k \in \mathbb{N}$$

where the series converge in $\mathcal{E}'(S^{m-1})$. The principal value $PV[f, z = z_0]$ of f in z_0 is defined to be the value in z_0 of the regular part of f. In [13] the following Theorem was proved.

Theorem 14. (Characterisation of the spaces $C^{\infty}(S^{m-1})$ and $\mathcal{E}'(S^{m-1})$ in terms of spherical monogenics)

- (i) $g(\omega) = \sum_{k=0}^{\infty} P_k(\omega) + Q_k(\omega) \in C^{\infty}(S^{m-1})$ implies for all $s \in \mathbb{N}$ the existence of a constant $c_s > 0$ such that $\sup_{\omega \in S^{m-1}} \{|P_k(\omega)|_0, |Q_k(\omega)|_0\} \le c_s(1+k)^{-s}$ for each $k \in \mathbb{N}$. Conversely, let $(P_k, Q_k)_{k \in \mathbb{N}}$ be a sequence of spherical monogenics which satisfies the above estimate, then $g(\omega) = \sum_{k=0}^{\infty} P_k(\omega) + Q_k(\omega) \in C^{\infty}(S^{m-1})$.
- (ii) $S(\omega) = \sum_{k=0}^{\infty} P_k(\omega) + Q_k(\omega) \in \mathcal{E}'(S^{m-1})$ implies for all $s \in \mathbb{N}$ the existence of a constant $d_s > 0$ such that $\sup_{\omega \in S^{m-1}} \{ |P_k(\omega)|_0, |Q_k(\omega)|_0 \} \leq d_s (1+k)^s$ for each $k \in \mathbb{N}$.

Conversely, let $(P_k, Q_k)_{k \in \mathbb{N}}$ be a sequence of spherical monogenics which satisfies the above estimate, then $S(\omega) = \sum_{k=0}^{\infty} P_k(\omega) + Q_k(\omega) \in \mathcal{E}'(S^{m-1}).$

By means of this Theorem and the decompositions above one can easily prove the following

Theorem 15.

Let $g = \sum_{k=0}^{\infty} P_k + Q_k \in C^{\infty}(S^{m-1})$ and $S = \sum_{k=0}^{\infty} P_k + Q_k \in \mathcal{E}'(S^{m-1})$. Then: (i) In case $\alpha \in \mathbb{C} \setminus (\mathbb{N} \cup (-m+1-\mathbb{N}))$

1. the equation $(\Gamma + \alpha)f = g$ has a unique solution $f \in C^{\infty}(S^{m-1})$ given by

$$f(\omega) = \sum_{k=0}^{\infty} \frac{P_k(\omega)}{\alpha - k} + \frac{Q_k(\omega)}{\alpha + k + m - 1}$$
$$= \int_{S^{m-1}} \frac{\pi}{A_m \sin \pi \alpha} K_\alpha(-\omega, \xi) g(\xi) dS(\xi)$$

where the series converges in $C^{\infty}(S^{m-1})$, 2. the equation $(\Gamma + \alpha)T = S$ has a unique solution $T \in \mathcal{E}'(S^{m-1})$ given by

$$T(\omega) = \sum_{k=0}^{\infty} \frac{P_k(\omega)}{\alpha - k} + \frac{Q_k(\omega)}{\alpha + k + m - 1}$$

where the series converges in $\mathcal{E}'(S^{m-1})$.

(*ii*) In case $\alpha = k \in \mathbb{N}$

1. the equation $(\Gamma + k)f = g$ has a solution iff $P_k(\omega) = 0$. In this case the unique solution $f \in C^{\infty}(S^{m-1})$ such that P(k)(f) = 0 is given by

$$f(\omega) = \sum_{\substack{l=0\\l\neq k}}^{\infty} \frac{P_l(\omega)}{k-l} + \sum_{l=0}^{\infty} \frac{Q_l(\omega)}{k+l+m-1}$$
$$= \int_{S^{m-1}} PV[\frac{\pi}{A_m \sin \pi \alpha} K_\alpha(-\omega,\xi), \alpha = k]g(\xi)dS(\xi)$$

where the series converges in $C^{\infty}(S^{m-1})$. The total solution space is then given by $\{f(\omega) + P_k(\omega), P_k \in M^+(k)\},\$

2. the equation $(\Gamma + k)T = S$ has a solution iff $P_k(\omega) = 0$. In this case the unique solution $f \in \mathcal{E}'(S^{m-1})$ such that P(k)(f) = 0 is given by

$$T(\omega) = \sum_{\substack{l=0\\l\neq k}}^{\infty} \frac{P_l(\omega)}{k-l} + \sum_{l=0}^{\infty} \frac{Q_l(\omega)}{k+l+m-1}$$

where the series converges in $\mathcal{E}'(S^{m-1})$. The total solution space is then given by $\{T(\omega) + P_k(\omega), P_k \in M^+(k)\}$.

Proof.

Follows from applying Γ under the summation symbol and the decompositions above. The uniqueness in (i) follows from the fact that a global C^{∞} -or distributional null solution of $\Gamma + \alpha$, $\alpha \in \mathbb{C} \setminus (\mathbb{N} \cup (-m + 1 - \mathbb{N}))$ must be identical zero.

4.2 The general case $g \in C^{\infty}(\Omega)$

Consider the locally finite cover $(H_j)_{j \in \mathbb{N}_0}$ of Ω (see Lemma 5). Let $(\phi_j)_{j \in \mathbb{N}_0}$ be a partition of unity subordinate to this cover; then $\phi_j \in \mathcal{D}(H_j, \mathbb{R})$ and

$$g(\omega) = \sum_{j=1}^{\infty} \phi_j g(\omega)$$
 in $C^{\infty}(\Omega)$

Since $\phi_j g$ is C^{∞} on S^{m-1} and has support contained in H_j , the function

$$g_j(\omega) = \int_{S^{m-1}} \frac{\pi}{A_m \sin \pi \alpha} K_\alpha(-\omega, \xi)(\phi_j g)(\xi) dS(\xi)$$

is C^{∞} on S^{m-1} and satisfies $(\Gamma + \alpha)g_j = \phi_j g$. Hence $(\Gamma + \alpha)g_j = 0$ in G_{j-1} $(G_{j-1} \cap H_j = \emptyset)$, thus $g_j \in M^{\alpha}_{(r)}(K_{j-2})$. In view of Lemma 5 we can apply Runge's Theorem 12 which ensures the existence of a sequence $(h_j)_{j\geq 3}$ in $M^{\alpha}_{(r)}(\Omega)$ such that

$$\sup_{\omega \in K_{j-2}} |(g_j - h_j)(\omega)|_0 < 2^{-j}.$$

Therefore the series $g_1 + g_2 + \sum_{j=3}^{\infty} (g_j - h_j)$ converges in the compact open topology on $C^0(\Omega)$ to an element $f \in C^0(\Omega)$. Moreover $f \in C^{\infty}(\Omega)$; this can be seen as follows: consider an arbitrary ball $\overline{B}_S(u, \delta) \subset \Omega$; for l sufficiently large $\overline{B}_S(u, \delta) \subset \mathring{K}_l$ and the

finite sum $g_1 + g_2 + \sum_{j=3}^{l+1} (g_j - h_j) \in C^{\infty}(B_S(u, \delta))$ while by Weierstrass' Theorem for spherical monogenics of complex degree:

$$\sum_{j=l+2}^{\infty} (g_j - h_j) \in M^{\alpha}_{(r)}(B_S(u,\delta))$$

Hence $f \in C^{\infty}(\Omega)$ and for each $\omega \in \Omega$:

$$(\Gamma_{\omega} + \alpha)f(\omega) = \sum_{j=1}^{\infty} (\Gamma_{\omega} + \alpha)g_j(\omega) = \sum_{j=1}^{\infty} \phi_j g(\omega) = g(\omega) .$$

We thus proved the following

Theorem 16. Let $\alpha \in \mathbb{C} \setminus (\mathbb{N} \cup (-m+1-\mathbb{N}))$ and let $g \in C^{\infty}(\Omega)$, $\Omega \subset S^{m-1}$ open. Then the equation $(\Gamma + \alpha)f = g$ has a solution $f \in C^{\infty}(\Omega)$.

We can now prove the following important Theorem.

Theorem 17. (*Mittag-Leffler's Theorem for the operator* $\Gamma + \alpha$)

Let $\alpha \in \mathbb{C} \setminus (\mathbb{N} \cup (-m+1-\mathbb{N}))$. Let $\Omega \subset S^{m-1}$ be open and let $(V_i)_{i \in I}$ be an open cover of Ω . Suppose that for each $j, k \in I$ such that $V_j \cap V_k \neq \emptyset$ there is a $f_{jk} \in M^{\alpha}_{(r)}(V_j \cap V_k)$ satisfying the cocycle condition:

(i)
$$f_{jk} = -f_{kj}$$
 in $V_k \cap V_j$

(ii) $f_{jk} + f_{kl} + f_{lj} = 0$ in $V_k \cap V_j \cap V_l$.

Then there exists a family of functions $(f_i)_{i \in I}$, $f_i \in M^{\alpha}_{(r)}(V_i)$ such that $f_k - f_j = f_{kj}$ in $V_k \cap V_j$.

Proof.

First of all remark that the following C^{∞} -equivalent of this problem always has a solution. Let $\phi_{jk} \in C^{\infty}(V_j \cap V_k)$ satisfy:

(i)
$$\phi_{jk} = -\phi_{kj} \text{ in } V_k \cap V_j$$

(ii) $\phi_{jk} + \phi_{kl} + \phi_{lj} = 0 \text{ in } V_j \cap V_k \cap V_l$

then there exists a family of functions $(\phi_i)_{i \in I}$, $\phi_i \in C^{\infty}(V_i)$ such that $\phi_k - \phi_j = \phi_{kj}$ in $V_k \cap V_j$ for all $k, j \in I$.

To see this, let $(\psi_i)_{i \in I}$ be a partition of unity subordinate to the cover $(V_i)_{i \in I}$ and define

$$\phi_j(\omega) = \sum_k \psi_k(\omega)\phi_{kj}(\omega), \quad \omega \in V_i;$$

then $\phi_i \in C^{\infty}(V_i)$ and in $V_i \cap V_k$:

$$\phi_j(\omega) - \phi_k(\omega) = \sum_l \psi_l(\omega) [\phi_{lj}(\omega) - \phi_{lk}(\omega)]$$
$$= \sum_l \psi_l(\omega) \phi_{kj}(\omega)$$
$$= \phi_{kj} .$$

Therefore one can always find functions $h_j \in C^{\infty}(V_j)$ such that $h_j - h_k = f_{jk}$ in $V_j \cap V_k$ for all $j, k \in I$. Define $h|_{V_i} = (\Gamma + \alpha)h_i$, $i \in I$; then h is well defined $((\Gamma + \alpha)h_j = (\Gamma + \alpha)h_k$ in $V_j \cap V_k)$ and $h \in C^{\infty}(\Omega)$. By the previous Theorem 16 there is a $g \in C^{\infty}(\Omega)$ such that $(\Gamma + \alpha)g = h$ in Ω . Put $f_i = h_i - g$ in V_i , then $(\Gamma + \alpha)f_i = 0$ in V_i and $f_j - f_k = (h_j - g) - (h_k - g) = h_j - h_k = f_{jk}$ in $V_j \cap V_k$.

References

- F. Brackx, R. Delanghe and F. Sommen: *Clifford Analysis*, Pitman, London, 1982.
- [2] D. M. J. Calderbank: Clifford analysis for Dirac operators on manifolds with boundary, Report MPI 96-131.
- [3] J. Cnops: Dirac operators on the sphere and hyperboloid, preprint.
- [4] S. R. Deans: Gegenbauer transforms via the Radon transform, SIAM J. Math. Anal. 10, 1979, pp. 577-585.
- [5] R. Delanghe, F. Sommen, V. Souček: *Clifford analysis and spinor valued functions*, Kluwer Acad. Publ., Dordrecht, 1992.
- [6] L. Durand, P. M. Fishbane and L. M. Simmons, Jr. : Expansion formulas and addition theorems for Gegenbauer functions, J. Math. Phys. 17, 1976, pp. 1933-1948.
- [7] A. Erdélyi, W. Magnus, F. Oberhettinger, F. Tricomi: Higher Transcendental Functions, Mc Graw-hill, New York, 1953.
- [8] J. Gilbert and M. Murray: Clifford algebras and Dirac operators in harmonic analysis, Cambridge University Press, 1991.
- [9] D. Hestenes, G. Sobczyck: Clifford Algebra to Geometric calculus, Reidel, Dordrecht, 1984.
- [10] N. J. Hitchin: *Harmonic spinors*, Adv. Math. 14, 1974, pp. 1-55.
- [11] R. Narasimhan: Complex Analysis in One Variable, Birkhäuser, Boston, 1985.
- [12] J. Ryan: Dirac Operators on Spheres and Hyperbolae, Preprint.
- [13] J. Ryan: Clifford analysis and Hardy 2-spaces on spheres and hyperbolae, Preprint.
- [14] F. Sommen: Spherical monogenic functions and analytic functionals on the unit sphere, Tokyo Math. J. 4, 1981, pp. 427-456.
- [15] F. Sommen: Monogenic functions on surfaces, J. Reine Angew. Math. 361, 1985, pp. 145-161.
- [16] F. Sommen, P. Van Lancker: Homogeneous monogenic functions in Euclidean space, Integral Transforms and Special Functions, Vol. 7, No 3–4, 1998, pp. 285–298.
- [17] N. Van Acker: Clifford-differentiaaloperatoren en randwaardentheorie van de nuloplossingen ervan op de sfeer en de Lie-sfeer, Ph. D. thesis, University of Gent, 1992.

- [18] P. Van Lancker: *Clifford Analysis on the Sphere*, V. Dietrich et al. (eds.), Clifford Algebras and Their Applications in Mathematical Physics, Kluwer Acad. Publ., 1998, pp. 201–215.
- [19] P. Van Lancker: Clifford Analysis on the Unit Sphere, Ph. D. thesis, University of Gent, 1996.
- [20] P. Van Lancker: The Kerzman-Stein Theorem on the Sphere, preprint.
- [21] P. Van Lancker: *Taylor and Laurent series on the Sphere*, to appear in Complex Variables.

University of Gent, Department of Mathematical Analysis, Galglaan 2, 9000 GENT (Belgium)