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1 Introduction

The concept of ”crossed coproduct” appeared as a dual version of the usual crossed
product for Hopf algebras and it was used in several papers (for instance, in [8] it
gives rise, together with the crossed product, to the so-called ”bicrossproduct”). In
[4] were studied cleft coextensions, a dual notion for that of cleft extension, and
it was proved that a cleft coextension is isomorphic to a crossed coproduct (and,
another caracterization, a cleft coextension is a Galois coextension with normal
basis).

In this paper, we continue the study performed in [5] and [4] on crossed coprod-
ucts and cleft coextensions. Our main source of inspiration was Doi’s paper [7]; our
results are dual to those obtained by Doi. A few remarks are in order:
1) In his paper, Doi uses the cohomology groups introduced by Sweedler in [11]; we
use here the dual objects, also introduced by Doi in [6].
2) In Doi’s paper, the centre of an algebra was used. Following the philosophy
of dualization, we were led, naturally, to the use of a dual object, the ”cocentre”
of a coalgebra. This object was introduced recently, in [13], and is slightly more
complicated than its dual version.

The main results of this paper are the following:
1) If H is a Hopf algebra and C a coalgebra, then there exists a bijection between
the set of isomorphism classes of H-cleft coextensions of C and the set of the equiv-
alence classes of crossed cosystems for H over C .
2) if H is a commutative Hopf algebra, C a coalgebra , Z(C) the cocentre of C ,
D/C an H-cleft coextension , φ : D → H a fixed cosection, (ψ, α) the correspond-
ing crossed cosystem, then there exists a bijection between the cohomology group
Coalg − H2(Z(C), H) and the set of the equivalence classes of all those crossed
cosystems for H over C which have ψ as a weak coaction.
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2 Preliminaries

Throughout k is a fixed field. All coalgebras, algebras, vector spaces and unadorned
⊗, Hom, etc., are over k. We refer to [10] for details on coalgebras and Hopf algebras.

We recall now some constructions from [5] and [4].

Definition 2.1. Let H be a Hopf algebra and C a coalgebra. A k-linear map

ψ : C → H⊗C , ψ(c) =
∑
c1⊗c2 is called a weak coaction if the following conditions

are satisfied: ∑
c1 ⊗ (c2)1 ⊗ (c2)2 =

∑
(c1)1(c2)

1 ⊗ (c1)2 ⊗ (c2)2 (1)∑
c1εC(c2) = εC(c)1H (2)∑

εH(c1)c2 = c (3)

for any c ∈ C.

In the above conditions, let α : C → H ⊗ H be a k-linear map, with notation
α(c) =

∑
α1(c)⊗ α2(c), satisfying the following conditions:

(CU)
∑
εH(α1(c))α2(c) = εC(c)1H =

∑
α1(c)εH(α2(c))

(C)
∑

(c1)
1α1(c2)⊗ α1((c1)2)(α2(c2))1 ⊗ α2((c1)2)(α2(c2))2 =

=
∑

α1(c1)(α1(c2))1 ⊗ α2(c1)(α1(c2))2 ⊗ α2(c2)

(TC)
∑

(c1)1α1(c2)⊗ ((c1)
2)1α2(c2)⊗ ((c1)2)2 =

=
∑

α1(c1)((c2)1)1 ⊗ α2(c1)((c2)
1)2 ⊗ (c2)

2

for any c ∈ C . Then we can construct the crossed coproduct C >/α H, which is a
coalgebra, with C ⊗H as the underlying linear space and the structures

∆α : C ⊗H → C ⊗H ⊗ C ⊗H

∆α(c⊗ h) =
∑

c1 ⊗ (c2)1α1(c3)h1 ⊗ (c2)2 ⊗ α2(c3)h2

and
εα : C ⊗H → k

εα(c⊗ h) = εC(c)εH(h)

Definition 2.2. If C >/α H is a crossed coproduct and α is convolution invertible,
we shall say that (ψ, α) is a crossed cosystem for H over C.

Definition 2.3. If H is a Hopf algebra and C a coalgebra, a right H-coextension of
C is a pair (D, p), where D is a right H-module coalgebra, p : D → C a surjective
coalgebra map, and Ker(p) = DH+, where H+ = Ker(εH). We shall denote a
coextension by D/C.

Definition 2.4. An H-coextension D/C is called a cleft coextension if there exists
a k-linear map φ : D → H, convolution invertible and which is moreover a right
H-module homomorphism (such a map is called a cointegral).
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Lemma 2.5. If D/C is an H-cleft coextension, then there exists a cointegral φ′ :
D → H which is counitary, i.e. εH ◦ φ′ = εD.

Definition 2.6. A unitary cointegral is called a cosection of D.

Remark 2.7. If C >/α H is a crossed coproduct, then the map

π : C >/α H → C, π(c⊗ h) = εH(h)c

is a surjective coalgebra homomorphism.

Proposition 2.8. Let D/C be an H-coextension. Then the following statements
are equivalent:
(i) D/C is a cleft coextension.
(ii) D is isomorphic to a crossed coproduct C >/α H, with the cocycle α convolution
invertible, such that, if we identify D to C >/α H, the map p : D → C equals the
map π defined in the previous remark.
More exactly, let φ : D→ H be a crossed cosection, let

ψ : C → H ⊗ C, ψ(c) =
∑

φ(c1)φ
−1(c3)⊗ c2

α : C → H ⊗H, α(c) =
∑

φ(c1)φ
−1(c3)1 ⊗ φ(c2)φ

−1(c3)2

where, for c ∈ C , we denoted c = p(c).
Then ψ and α are well defined, (ψ, α) is a crossed cosystem for H over C (we shall
say that it corresponds to φ) and D is isomorphic to C >/α H, such that, if we
identify D to C >/α H, then p = π.

Definition 2.9. Let H be a Hopf algebra and C a coalgebra. Two crossed cosystems
(ψ, α) and (ϕ, β) are called equivalent (and we shall write (ψ, α) ∼ (ϕ, β)) if there
exists a k-linear map v : C → H, convolution invertible, with εH ◦ v = εC , such that:∑

c−1 ⊗ c0 =
∑

v(c1)(c2)1v−1(c3)⊗ (c2)
2 (4)∑

β1(c)⊗ β2(c) =
∑

v(c1)(c2)
1α1(c3)v

−1(c4)1 ⊗ v((c2)
2)α2(c3)v

−1(c4)2 (5)

for any c ∈ C, where we denoted ϕ : C → H⊗C, ϕ(c) =
∑
c−1⊗c0, ψ : C → H⊗C,

ψ(c) =
∑
c1 ⊗ c2.

Remark 2.10. The above relation is an equivalence relation.

We recall now from [13] some facts about the cocentre of a coalgebra. If D
is a coalgebra, it can be defined the cocentre (Z(D), 1d) of D, where Z(D) is a
cocommutative coalgebra and 1d : D → Z(D) is a surjective coalgebra map, which
satisfies the equality ∑

1d(d1)⊗ d2 =
∑

1d(d2)⊗ d1

for all d ∈ D. The cocentre satisfies the following universal property: for any
coalgebra H and any coalgebra map f : D → H, which satisfies the condition∑
f(d1) ⊗ d2 =

∑
f(d2) ⊗ d1 for all d ∈ D, there exists a unique coalgebra map

g : Z(D) → H such that f = g ◦1d (see [13], Cor.2.3). From this universal property,
the cocentre of a coalgebra is unique up to isomorphism.
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3 Equivalence of crossed copr oducts

In what follows, H will be a Hopf algebra.

Lemma 3.1. Let D/C be an H-cleft coextension, φ and γ two cosections for D,
(ψ, α) and (ϕ, β) the crossed cosystems corresponding to φ and γ respectively. Then
we have (ψ, α) ∼ (ϕ, β).

Proof: Define u : D → H, u = γ ∗ φ−1 We prove first that DH+ ⊂ Ker(u),
and for this it is enough to show that u(ch) = 0 for c ∈ D and h ∈ H+. D is a
right H-module coalgebra , so we have that

∑
(ch)1 ⊗ (ch)2 =

∑
c1h1 ⊗ c2h2. From

[4], Lemma 2.3, we know that φ−1(ch) = S(h)φ−1(c). Hence we obtain u(ch) = 0,
by applying the above formulae, h ∈ H+, and the fact that γ is a right module
homomorphism. We can define now v : C → H, v(c) =

∑
γ(c1)φ−1(c2). With the

same proof we can define w : C → H, w(c) =
∑
φ(c1)γ

−1(c2). It is easy to see that
w = v−1 in (Hom(C,H), ∗). Then (εH ◦ v)(c) = εH(φ−1(c)), because εH ◦ γ = εD.

We know εH ◦ φ = εD; multiplying by convolution with εH ◦ φ−1, we obtain
εD(c) = εH(φ−1(c)) for each c ∈ D, hence εH ◦ v = εC . Now, for any c ∈ D, we have
(denoting ψ(c) =

∑
c1 ⊗ c2) that∑

γ(c1)(c2)1v−1(c3)⊗ (c2)2 =∑
γ(c1)φ

−1(c2)φ(c3)φ−1(c5)φ(c6)γ−1(c7)⊗ c4 =∑
γ(c1)γ

−1(c3)⊗ c2 = ϕ(c)

and∑
v(c1)(c2)1α1(c3)v−1(c4)1 ⊗ v((c2)

2)α2(c3)v
−1(c4)2 =∑

γ(c1)φ
−1(c2)φ(c3)φ−1(c5)φ(c6)φ−1(c8)1φ(c9)1γ

−1(c10)1⊗

⊗v(c4)φ(c7)φ
−1(c8)2φ(c9)2γ

−1(c10)2 =

∑
γ(c1)γ

−1(c4)1 ⊗ v(c2)φ(c3)γ
−1(c4)2 =∑

γ(c1)γ
−1(c5)1 ⊗ γ(c2)φ−1(c3)φ(c4)γ−1(c5)2 =∑

γ(c1)γ
−1(c3)1 ⊗ γ(c2)γ−1(c3)2 = β(c)

Hence, v gives the equivalence between (ψ, α) and (ϕ, β).

Corollary 3.2. Each H-cleft coextension D/C determines a unique equivalence
class of crossed cosystems for H over C, which will be denoted by (D/C).

Let now H be a Hopf algebra, C a coalgebra,

ψ : C → H ⊗C, ψ(c) =
∑

c1 ⊗ c2

a weak coaction, C >/α H a crossed coproduct.
We know that π : C >/α H → C , π(c ⊗ h) = εH(h)c is a surjective coalgebra ho-
momorphism. Let E be a coalgebra , let θ : E → C be a coalgebra homomorphism,
γ : E → H convolution invertible, with εH ◦ γ = εE and

(a)
∑
θ(e)1 ⊗ θ(e)2 =

∑
γ(e1)γ−1(e3)⊗ θ(e2)
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(b)
∑
α1(θ(e))⊗ α2(θ(e)) =

∑
γ(e1)γ−1(e3)1 ⊗ γ(e2)γ

−1(e3)2

for any e ∈ E.

Proposition 3.3. In the above situation , the map Θ : E → C >/α H,
Θ(e) =

∑
θ(e1) ⊗ γ(e2) is a coalgebra homomorphism , and π ◦Θ = θ.

Proof: Θ(e1)⊗Θ(e2) =
∑
θ(e1)⊗ γ(e2)⊗ θ(e3)⊗ γ(e4)

The comultiplication on C >/α H is

∆(c⊗ h) =
∑
c1 ⊗ (c2)

1α1(c3)h1 ⊗ (c2)2 ⊗ α2(c3)h2, so:∑
Θ(e)1 ⊗Θ(e)2 =

∑
θ(e1)⊗ θ(e2)1α1(θ(e3))γ(e4)1 ⊗ θ(e2)

2 ⊗ α2(θ(e3))γ(e4)2

(because θ is a coalgebra homomorphism)

=
∑
θ(e1)⊗ γ(e2)γ

−1(e4)γ(e5)γ
−1(e7)1γ(e8)1 ⊗ θ(e3)⊗ γ(e6)γ−1(e7)2γ(e8)2

(using (a) and (b))

=
∑
θ(e1)⊗ γ(e2)⊗ θ(e3)⊗ γ(e4)

Then ε(Θ(e)) =
∑
ε(θ(e1))ε(γ(e2)) = εH(γ(e)) = εE(e), so Θ is a coalgebra homo-

morphism. Finally,
π(Θ(e)) =

∑
εH(γ(e2))θ(e1) =

∑
εE(e2)θ(e1) = θ(e).

Definition 3.4. Let H be a Hopf algebra , C a coalgebra , ψ : C → H⊗C a left weak
coaction. Let E be a coalgebra, π : E → C a surjective coalgebra homomorphism .
We shall say that ψ is an E-inner coaction if there exists γ : E → H , convolution
invertible , such that∑
π(e)1 ⊗ π(e)2 =

∑
γ(e1)γ

−1(e3)⊗ π(e2) for any e ∈ E.

Remark 3.5. If E = C and π = id , we obtain the notion of ”inner coaction”.

Example 3.6. Let H be a Hopf algebra , C a coalgebra , (ψ, α) a crossed cosystem
for H over C ; let E = C >/α H , π : E → C , π(c ⊗ h) = ε(h)c , γ : E → H ,
γ(c⊗ h) = ε(c)h.
We know from [4], Proposition 2.1., that γ is convolution invertible and

γ−1(c⊗ h) =
∑

S(α−1
1 (c)h)α−1

2 (c).

We show that ψ is a C >/α H-inner coaction.∑
π(c⊗ h)1 ⊗ π(c⊗ h)2 = ε(h)

∑
c1 ⊗ c2∑

γ((c⊗ h)1)γ−1((c⊗ h)3)⊗ π((c⊗ h)2) =∑
(c1)

1α1(c2)h1γ
−1([(c1)

2 ⊗ α2(c2)h2]2)⊗ π([(c1)
2 ⊗ α2(c2)h2]1) =∑

(c1)
1α1(c2)h1γ

−1((((c1)
2)2)2 ⊗ α2(((c1)2)3α2(c2)2h3)⊗

⊗π(((c1)
2)1 ⊗ (((c1)

2)2)1α1(((c1)2)3)α2(c2)1h2) =

∑
(c1)

1α1(c2)h1γ
−1(((c1)

2)2 ⊗ α2(c2)h2)⊗ ((c1)2)1 =

ε(h)
∑

(c1)1α1(c2)S(α2(c2))S(α−1
1 (((c1)

2)2))α−1
2 (((c1)2)2)⊗ ((c1)2)1 =
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ε(h)
∑

(c1)
1(c2)1α1(c3)S(α2(c3))S(α−1

1 ((c2)2))α−1
2 ((c2)

2)⊗ (c1)2

(using the definition of the weak coaction for c1)

= ε(h)
∑
c1 ⊗ c2

where the last equality follows after some computations, but applying first for c = c2

the following relation (which is Lemma 1.4. in [4]):∑
c1 ⊗ α−1

1 (c2)⊗ α−1
2 (c2) =

=
∑

α1(c1)(α−1
1 (c2))1α

−1
1 (c3)⊗ (α2(c1))1(α−1

1 (c2))2α
−1
2 (c3)⊗ (α2(c1))2α

−1
2 (c2)

Remark 3.7. If D/C is a right H-coextension for C, we shall denote in the sequel
by π : D → C the surjective coalgebra homomorphism with Ker(π) = DH+.

Definition 3.8. Let D/C and D′/C two right H-coextensions. We shall say that
they are isomorphic if there exists a right H-module coalgebra isomorphism f : D →
D′ such that π′ ◦ f = π. We shall denote by [D/C] the equivalence class of D/C.

Proposition 3.9. Two H-cleft coextensions D/C and D′/C are isomorphic if and
only if (D/C) = (D′/C) ; thus the assignement [D/C] → (D/C) determines a bi-
jection between the isomorphism classes of H-cleft coextensions of C and the equiv-
alence classes of crossed cosystems for H over C.

Proof: Let f : D → D′ a module coalgebra isomorphism with π′ ◦ f = π, let
φ′ : D′ → H a co-section of D′, let φ = φ′ ◦ f ; obviously φ is a right comodule
homomorphism , εH ◦ φ = εC and φ is convolution invertible with inverse φ−1 =
φ
′−1 ◦ f , hence φ is a cosection for D.

Let (ψ, α) and (ψ′, α′) be the crossed cosystems corresponding to φ and φ′

respectively , i.e. for any c ∈ D we have

ψ : C → H ⊗C, ψ(π(c)) =
∑

φ(c1)φ−1(c3)⊗ π(c2)

α : C → H ⊗H, α(π(c)) =
∑

φ(c1)φ−1(c3)1 ⊗ φ(c2)φ−1(c3)2

(and the corresponding relations for ψ′ and α′).
Since f is surjective, for any c′ ∈ D′ there exists c ∈ D with f(c) = c′, hence

ψ′(π′(c′)) =
∑
φ′(f(c1))φ′−1(f(c3))⊗ π′(f(c2)) =∑

φ(c1)φ
−1(c3)⊗ π(c2) = ψ(π(c))

But π′(c′) = π(c), hence ψ = ψ′; with an analogous proof, we obtain α = α′, there-
fore (D/C) = (D′/C).

Conversely, let φ, φ′ cosections for D and D′ respectively, let (ψ, α) and (ϕ, β) the
corresponding crossed cosystems. From (D/C) = (D′/C) we obtain (ψ, α) ∼ (ϕ, β),
so the relations (4) and (5) are satisfied.
Let γ : D → H , γ = (v ◦ π) ∗ φ. It is easy to see that γ is convolution invertible
with inverse γ−1(c) =

∑
φ−1(c1)v−1(π(c2)), and εH ◦ γ = εD.

From (4) we obtain ϕ(x) =
∑
v(x1)(x2)

1v−1(x3) ⊗ (x2)
2 for any x ∈ C , where

ψ(x) =
∑
x1 ⊗ x2. Then, if we take c ∈ D with π(c) = x, we obtain

ϕ(π(c)) =
∑

γ(c1)γ−1(c3)⊗ π(c2)
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for any c ∈ C , because ψ(π(c)) =
∑
φ(c1)φ

−1(c3)⊗ π(c2).
In the same way, from (5) we obtain :

β(π(c)) =
∑
v(π(c1))φ(c2)φ

−1(c4)α1(π(c5))v
−1(π(c6))1⊗

⊗v(π(c3))α2(π(c5))v
−1(π(c6))2

=
∑
v(π(c1))φ(c2)φ−1(c4)φ(c5)φ−1(c7)1v

−1(π(c8))1⊗

⊗v(π(c3))φ(c6)φ
−1(c7)2v

−1(π(c8))2

(from α(π(c)) =
∑
φ(c1)φ−1(c3)1 ⊗ φ(c2)φ−1(c3)2, for c5 instead of c)

=
∑
v(π(c1))φ(c2)φ−1(c5)1v

−1(π(c6))1 ⊗ v(π(c3))φ(c4)φ
−1(c5)2v

−1(π(c6))2

=
∑
γ(c1)γ

−1(c3)1 ⊗ γ(c2)γ−1(c3)2

for any c ∈ D.

Now we shall apply Proposition 3.3 for the crossed coproduct C >/β H. We take
E = D, θ = π, γ = γ in Proposition 3.3, and one can see that the relations proved
above are just (a) and (b) in Proposition 3.3. Then the map Θ : D → C >/β H,
Θ(c) =

∑
π(c1) ⊗ γ(c2) is a coalgebra homomorphism, with p ◦ Θ = π, where

p : C >/β H → C , p(c ⊗ h) = εH(h)c.
We prove now that Θ is a right H-module homomorphism.

We have first π(ch) = π(ch−cε(h)1+cε(h)1) = π(c(h−ε(h)1))+π(c)ε(h) = π(c)ε(h),
because c(h− ε(h)1) ∈ DH+ = Kerπ. Then

γ(ch) =
∑
v(π(c1h1))φ(c2h2) =

∑
v(π(c1))φ(c2h)

=
∑
v(π(c1))φ(c2)h = γ(c)h

where the last equality holds because φ is a right module homomorphism. Hence

Θ(ch) =
∑
π(c1h1) ⊗ γ(c2h2) =

∑
π(c1)⊗ γ(c2)h

= (
∑
π(c1)⊗ γ(c2))h = Θ(c)h, q.e.d.

Now, define f : C >/α H → C >/β H, f(x⊗ h) =
∑
x1 ⊗ v(x2)h

Because v is convolution invertible, f is bijective with inverse

g : C >/β H → C >/α H, g(x⊗ h) =
∑

x1 ⊗ v−1(x2)h.

We know from [4] that the map

F : D→ C >/α H, F (c) =
∑

π(c1)⊗ φ(c2)

is a coalgebra isomorphism; it is also a module homomorphism. Then

(f ◦ F )(c) =
∑

π(c1)⊗ v(π(c2))φ(c3) = Θ(c),

so Θ is bijective, hence an isomorphism of H-module coalgebras.
Let

F ′ : D′ → C >/β H, F ′(c) =
∑

π(c1)⊗ φ′(c2),

and
µ : D→ D′, µ = F

′−1 ◦Θ.
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We obtain that µ is a module coalgebra isomorphism. From π′ ◦ F ′−1 = p and
p ◦Θ = π, we obtain π′ ◦ µ = π , hence D/C and D′/C are isomorphic.
Thus, we proved that the map [D/C] → (D/C) is well-defined and injective, and
we shall prove now that it is surjective. Let (ψ0, α0) be a crossed cosystem, ψ0(c) =∑
c1⊗ c2. From [4] we know that C >/α0 H/C is a cleft coextension, and let (ψ, α)

be the crossed cosystem associated to this cleft coextension, with the cosection
γ : C >/α0 H → H, γ(c⊗ h) = ε(c)h. For c ∈ C , let
c⊗ 1 ∈ C >/α0 H; then we have π(c⊗ 1) = c, where

π : C >/α0 H → C ,π(c⊗ h) = ε(h)c. Hence

ψ(c) =
∑
γ((c⊗ 1)1)γ−1((c⊗ 1)3)⊗ π((c⊗ 1)2)

=
∑

(c1)1α1(c2)γ
−1(((c1)

2)2 ⊗ α2(c2))⊗ ((c1)2)1

=
∑

(c1)1α1(c2)S(α2(c2))S(α−1
1 (((c1)2)2))α

−1
2 (((c1)

2)2)⊗ ((c1)
2)1

=
∑
c1 ⊗ c2

where the last equality follows from the proof of the Example 3.6.
Hence ψ = ψ0; in the same way we can prove that α = α0, so that the map is
surjective.

Definition 3.10. If D/C is an H-cleft coextension such that there exists a cosection
φ : D → H which is a coalgebra homomorphism, then φ is called an algebraic
cosection and the coextension D/C is called H-smash.

Lemma 3.11. In the situation of Prop.2.8, we have : φ is an algebraic co-section
if and only if α is a trivial cocycle, i.e. α(x) = ε(x)1H ⊗ 1H for any x ∈ C (and in
this case C is an H-comodule coalgebra).

Proof: Suppose that φ is a coalgebra homomorphism; then

α(c) =
∑

[φ(c1)φ
−1(c2)]1 ⊗ [φ(c1)2φ

−1(c2)]2 = εD(c)1H ⊗ 1H = εD(c)1H ⊗ 1H .

Conversely, suppose that α is trivial ; then∑
φ(c1)φ

−1(c3)1 ⊗ φ(c2)φ
−1(c3)2 = εD(c)1H ⊗ 1H for any c ∈ D.

Multiplying by convolution with the map

ψ : D → H ⊗H, ψ(c) =
∑

φ(c)1 ⊗ φ(c)2

we obtain
∑
φ(c1)⊗φ(c2) =

∑
φ(c)1⊗φ(c)2, that is φ is a coalgebra homomorphism.

Proposition 3.12. Let D/C be an H-cleft coextension and (ψ, α) a crossed cosys-
tem associated to D/C; then the following statements are equivalent:
(i) D/C is H-smash
(ii) (D/C) is the equivalence class of a crossed cosystem (φ, β) for which β(c) =
ε(c)1H ⊗ 1H for any c ∈ C.
(iii) There exists v : C → H, k-linear, convolution invertible, with εH ◦ v = εC , such
that

α(c) =
∑

(c1)1v(c2)v
−1(c3)1 ⊗ v((c1)

2)v−1(c3)2 (6)

for any c ∈ C, where ψ(c) =
∑
c1 ⊗ c2.
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Proof: (i)⇒ (ii) is obvious, from Lemma 3.11 and Lemma 3.1.
(ii)⇒ (iii) We have (ψ, α) ∼ (ϕ, β), with β(c) = ε(c)1H ⊗ 1H . Hence, there exists
v : C → H , k-linear, convolution invertible, with εH ◦ v = εC, such that∑

c1 ⊗ c2 =
∑

v(c1)(c2)−1v
−1(c3)⊗ (c2)0 (7)

α(c) =
∑

v(c1)(c2)−1β1(c3)v−1(c4)1 ⊗ v((c2)0)β2(c3)v−1(c4)2 (8)

where ψ(c) =
∑
c1 ⊗ c2 and ϕ(c) =

∑
c−1 ⊗ c0.

Since β(c) = εC(c)1H ⊗ 1H , (8) becomes:

α(c) =
∑
v(c1)(c2)−1v

−1(c3)1 ⊗ v((c2)0)v−1(c3)2 =∑
v(c1)(c2)−1v

−1(c3)v(c4)v
−1(c5)1 ⊗ v((c2)0)v

−1(c5)2 =∑
(c1)

1v(c2)v
−1(c3)1 ⊗ v((c1)

2)v−1(c3)2

which is exactly (iii), where for the last equality we used (7).
(iii) ⇒ (i) Using the map v given in (iii), define γ : C >/α H → H, γ(c ⊗ h) =
v−1(c)h. We have

εH ◦ v = εC ⇒ εH ◦ v−1 = εC ⇒ εH ◦ γ = εC>/αH

γ((c⊗ h)g) = γ(c ⊗ hg) = v−1(c)hg = (v−1(c)h)g = γ(c⊗ h)g

hence γ is a right H-module map.
Now we shall prove that γ is a coalgebra map.∑
γ(c⊗ h)1 ⊗ γ(c⊗ h)2 =

∑
v−1(c)1h1 ⊗ v−1(c)2h2∑

γ((c⊗ h)1)⊗ γ((c⊗ h)2) =∑
γ(c1 ⊗ (c2)

1α1(c3)h1)⊗ γ((c2)2 ⊗ α2(c3)h2) =∑
v−1(c1)(c2)1α1(c3)h1 ⊗ v−1((c2)2)α2(c3)h2 =∑
v−1(c1)(c2)1(c3)

1v(c4)v
−1(c5)1h1 ⊗ v−1((c2)2)v((c3)

2)v−1(c5)2h2

(using (6))

=
∑
v−1(c1)(c2)1v(c3)v

−1(c4)1h1 ⊗ v−1(((c2)2)1)v(((c2)
2)2)v−1(c4)2h2

(using (1))
=
∑
v−1(c1)(c2)1v(c3)v

−1(c4)1h1 ⊗ ε((c2)
2)v−1(c4)2h2 =∑

v−1(c1)v(c2)v
−1(c3)1h1 ⊗ v−1(c3)2h2 =∑

v−1(c)1h1 ⊗ v−1(c)2h2,

hence γ is a coalgebra map.
We prove now that γ is convolution invertible. Define w : C >/α H → H, by
w(c⊗h) = ε(h)v−1(c). It is easy to see that w is convolution invertible, with inverse
w−1(c⊗ h) = ε(h)v(c). Let γ0 : C >/α H → H , γ0(c⊗ h) = ε(c)h.
By [4], γ0 is convolution invertible, and it is easy to see that γ = w ∗ γ0. Therefore
γ is convolution invertible. The conclusion is that γ is an algebraic cosection, hence
C >/α H/C is H-smash. By Proposition 2.8, we have D ' C >/α H, therefore D/C
is also H-smash.

Remark 3.13. Let D/C be an H-coextension and let φ : D → H be a cosection.
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Then we have ∑
φ(c1)⊗ π(c2) =

∑
π(c1)

1φ(c2)⊗ π(c1)
2

where ψ(π(c)) =
∑
π(c)1 ⊗ π(c)2 =

∑
φ(c1)φ

−1(c3)⊗ π(c2) (as in Proposition 2.8).

Proof:
∑
π(c1)

1φ(c2) ⊗ π(c1)
2 =∑

φ(c1)φ
−1(c3)φ(c4)⊗ π(c2) =

∑
φ(c1)⊗ π(c2)

Remark 3.14. In the same conditions, the weak coaction ψ of H on C is trivial
(i.e. ψ(x) = 1⊗ x for any x ∈ C) if and only if

∑
φ(c1)⊗ π(c2) =

∑
φ(c2)⊗ π(c1)

for any c ∈ D.

Proof: Suppose that ψ is trivial. Then
∑
π(c)1 ⊗ π(c)2 = 1⊗ π(c); we have∑

π(c)1φ(c2)⊗ π(c1)
2 =

∑
φ(c1)⊗ π(c2) (the above remark). Hence∑

φ(c1)⊗ π(c2) =
∑

1Hφ(c2)⊗ π(c1) =
∑
φ(c2)⊗ π(c1) q.e.d.

Conversely, we have:∑
π(c)1 ⊗ π(c)2 =

∑
π(c1)

1φ(c2)φ−1(c3)⊗ π(c1)
2

=
∑
φ(c1)φ

−1(c3)⊗ π(c2)

=
∑
φ(c2)φ

−1(c3)⊗ π(c1)

(because
∑
φ(c1)⊗ π(c2) =

∑
φ(c2)⊗ π(c1))

= 1H ⊗ π(c)

for any c ∈ D, hence ψ(x) = 1H ⊗ x for any x ∈ C .

Definition 3.15. A cleft coextension D/C is called H-twisted if there exists a co-
section φ : D → H such that

∑
φ(c1)⊗ π(c2) =

∑
φ(c2)⊗ π(c1) for any c ∈ D.

Proposition 3.16. Let D/C be an H-coextension and let (ψ, α) be a crossed cosys-
tem associated to D/C. Then the following statements are equivalent:
1) D/C is H-twisted
2) D/C is the equivalence class of a crossed cosystem (ϕ, β) for which ϕ(x) = 1H⊗x
for any x ∈ C.
3) There exists v : C → H, k-linear, convolution invertible, with εH ◦ v = εC such
that

ψ(c) =
∑

v(c1)v
−1(c3) ⊗ c2 (9)

for any c ∈ C (this means that ψ is C-inner with respect to id : C → C).

Proof: 1)⇒ 2) Follows immediately from Remark 3.14 and Lemma 3.1
2) ⇒ 3) We have (ψ, α) ∼ (ϕ, β), with ϕ(x) = 1H ⊗ x for any x ∈ C . So, there
exists v : C → H, k-linear, convolution invertible, with εH ◦ v = εC such that, if we
denote ψ(c) =

∑
c1⊗ c2, ϕ(c) =

∑
c−1⊗ c0, we have the relations (7) and (8) which

appeared in the proof of Proposition 3.12.
Since ϕ(c) = 1H ⊗ c =

∑
c−1 ⊗ c0, (7) becomes

ψ(c) =
∑
v(c1)(c2)−1v

−1(c3)⊗ (c2)0 =
∑
v(c1)v

−1(c3)⊗ c2

and this is just the relation (9).
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3)⇒ 1) Let v : C → H be a k-linear map, convolution invertible, with εH ◦ v = εC ,
such that ψ(c) =

∑
v(c1)v

−1(c3)⊗c2. We consider the map γ : C >/α H → H which
appeared in the proof of Proposition 3.12, that is γ(c ⊗ h) = v−1(c)h. We proved
there that γ is a cosection, and it is easy to see that the proof remains valid here.
Now, we show that∑

γ((c⊗ h)1)⊗ π((c⊗ h)2) =
∑

γ((c⊗ h)2)⊗ π((c⊗ h)1)

where π : C >/α H → C , π(c⊗ h) = ε(h)c. We have:∑
γ((c⊗ h)1)⊗ π((c⊗ h)2) =

=
∑
γ(c1 ⊗ (c2)1α1(c3)h1)⊗ π((c2)

2 ⊗ α2(c3)h2)

=
∑
v−1(c1)(c2)1α1(c3)h1 ⊗ ε(α2(c3))ε(h2)(c2)2

=
∑
v−1(c1)(c2)1h⊗ (c2)2

=
∑
v−1(c1)v(c2)v

−1(c4)h⊗ c3

(using (9))

=
∑
v−1(c2)h⊗ c1∑

γ((c⊗ h)2)⊗ π((c⊗ h)1)

=
∑
v−1((c2)2)α2(c3)h2 ⊗ ε((c2)

1)ε(α1(c3))ε(h1)c1

=
∑
v−1(c2)h⊗ c1

The conclusion is that C >/α H is H-twisted, and since C >/α H/C is isomorphic
to D, we obtain that D/C is H-twisted, q.e.d.

4 The case when H is commutative

From now on, H will be a commutative Hopf algebra.

Let π : D → C be a cleft coextension, φ : D → H a cosection and (ψ, α) the
associated crossed cosystem. Define f : D → H ⊗ C by

f(c) =
∑

φ−1(c1)φ(c3)⊗ π(c2)

We shall prove that Kerπ ⊆ Kerf . Let c ∈ D, h ∈ H+; it is enough to show that
f(ch) = 0. We have π(ch) = ε(h)π(c), φ is a right H-module homomorphism and
(see [4]) φ−1(ch) = S(h)φ−1(c), so

f(ch) =
∑
φ−1(c1h1)φ(c3h2)⊗ π(c2)

=
∑
S(h1)φ

−1(c1)φ(c3)h2 ⊗ π(c2)

=
∑
S(h1)h2φ

−1(c1)φ(c3)⊗ π(c2)

(because H is commutative)

=
∑
ε(h)φ−1(c1)φ(c3)⊗ π(c2) = 0, q.e.d.

Hence, we have proved the following

Lemma 4.1. There exists a k-linear map F : C → H ⊗ C, with
F (π(c)) =

∑
φ−1(c1)φ(c3)⊗ π(c2) for any c ∈ D.
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Now, if C is a coalgebra, Z(C) the cocentre of C , let 1d : C → Z(C) be the
canonical (surjective) coalgebra homomorphism.
Hence

∑
1d(c1)⊗ c2 =

∑
1d(c2)⊗ c1 for any c ∈ C .

Lemma 4.2. In the above situation, we have:∑
φ(c1)φ−1(c3)⊗ 1d(π(c2))⊗ π(c4) =

∑
φ(c2)φ

−1(c4)⊗ 1d(π(c3))⊗ π(c1)

for any c ∈ D.

Proof: Let ϕ ∈ C∗, and define fϕ : D → H, fϕ(c) =
∑
φ−1(c1)φ(c3)ϕ(π(c2)). It

follows that fϕ ∗ φ−1(c) =
∑
φ−1(c1)ϕ(π(c2)) for any c ∈ D.

We have the map F : C → H ⊗ C , with F (π(c)) =
∑
φ−1(c1)φ(c3) ⊗ π(c2) for any

c ∈ D, so in this way we obtain a k-linear map gϕ : C → H with fϕ(c) = gϕ(π(c))
for any c ∈ D. Hence∑
φ(c1)φ

−1(c3)ϕ(π(c4))⊗ 1d(π(c2))

=
∑
φ(c1)gϕ(π(c3))φ

−1(c4)⊗ 1d(π(c2))

=
∑
φ(c1)gϕ(π(c2))φ

−1(c4)⊗ 1d(π(c3))

(because
∑

1d(x1)⊗ x2 =
∑

1d(x2)⊗ x1 for any x ∈ C)

=
∑
φ(c1)φ

−1(c2)φ(c4)ϕ(π(c3))φ
−1(c6)⊗ 1d(π(c5))

=
∑
φ(c2)φ

−1(c4)ϕ(π(c1))⊗ 1d(π(c3))

Since this equality is valid for any ϕ ∈ C∗, we obtain∑
φ(c1)φ

−1(c3)⊗ 1d(π(c2))⊗ π(c4) =
∑
φ(c2)φ−1(c4) ⊗ 1d(π(c3))⊗ π(c1).

Proposition 4.3. In the above situation, if we denote ψ : C → H ⊗ C,

ψ(π(c)) =
∑
φ(c1)φ−1(c3)⊗ π(c2) for any c ∈ D, then there exists a k-linear

map ψ : Z(C)→ H ⊗ Z(C) with ψ(1d(c)) =
∑
φ(c1)φ

−1(c3)⊗ 1d(π(c2)) for

any c ∈ C.

Proof: By [13], p.544, Z(C) = e−Ce(C), where Ce = Ccop ⊗ C . By Proposition
(2.2) of [13] the canonical map

θ : C → e−Ce(C)⊗ C

is given by
θ(c) =

∑
1d(c1)⊗ c2

(for the definition of e−Ce(C) and the canonical map, we refer to [12]). By [12], 1.4,
if W is a k-linear space and α : C →W ⊗C is a Ce-right comodule homomorphism,
then there exists a unique k-linear map u : e−Ce(C)→ W such that α = (u⊗ I) ◦ θ.
We shall take here W = H⊗Z(C); then, for c ∈ C , we denote ψ(c) =

∑
c1⊗ c2 and

we take α : C → [H ⊗ Z(C)]⊗ C ,

α(c) =
∑

(c1)
1 ⊗ 1d((c1)2)⊗ c2
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The Ce-right comodule structure of C is given by

ρC : C → C ⊗Ce, ρC(c) =
∑

c2 ⊗ (c1 ⊗ c3)

(see [13], p.538). The Ce-right comodule structure of H ⊗ Z(C)⊗ C is given by

ρ : H ⊗ Z(C)⊗ C → (H ⊗ Z(C)⊗ C)⊗Ce

ρ(h⊗ 1d(c)⊗ d) =
∑

h ⊗ 1d(c)⊗ d2 ⊗ d1 ⊗ d3

We shall prove that α is a Ce-right comodule homomorphism; to see this, it is enough
to show that ρ ◦ α = (α ⊗ I) ◦ ρC and then, by computation, it is enough to prove
that ∑

(c1)1 ⊗ 1d((c1)2)⊗ c2 =
∑

(c2)1 ⊗ 1d((c2)2)⊗ c1

for any c ∈ C , or equivalently∑
π(c1)

1 ⊗ 1d(π(c1)
2)⊗ π(c2) =

∑
π(c2)

1 ⊗ 1d(π(c2)
2)⊗ π(c1)

for any c ∈ D. But, for any c ∈ D, ψ(π(c)) =
∑
φ(c1)φ

−1(c3) ⊗ π(c2), hence the
required equality follows using Lemma 4.2.
Therefore, there exists a unique k-linear map u : Z(C) → H ⊗ Z(C) with α =
(u⊗ I) ◦ θ.
We have (u⊗ I)(θ(c)) =

∑
u(1d(c1))⊗ c2 for any c ∈ C . By applying I ⊗ ε we

obtain u(1d(c)) =
∑
φ(c1)φ

−1(c3)⊗ 1d(π(c2)) and now we can define ψ = u.

Proposition 4.4. In the above situation, ψ defines a H-left comodule structure on
Z(C), and with this structure Z(C) becomes a (cocommutative) H-comodule coalge-
bra.

Proof: We shall prove first that ψ is a comodule structure; to see this, it is
enough to prove that∑

(1d(c))1 ⊗ (1d(c)2)1 ⊗ (1d(c)2)2 =
∑

(1d(c)1)1 ⊗ (1d(c)1)2 ⊗ 1d(c)2

for any c ∈ C . We have:∑
(1d(c))1 ⊗ (1d(c)2)1 ⊗ (1d(c)2)2 =

∑
c1 ⊗ 1d(c2)1 ⊗ 1d(c2)2 =∑

c1 ⊗ (c2)1 ⊗ 1d((c2)2)

(because
∑

1d(c)1 ⊗ 1d(c)2 = ψ(1d(c)) =
∑
c1 ⊗ 1d(c2))

For c ∈ C , the condition (TC) is∑
(c1)

1α1(c2) ⊗ ((c1)2)1α2(c2)⊗ ((c1)
2)2 =∑

α1(c1)((c2)1)1 ⊗ α2(c1)((c2)
1)2 ⊗ (c2)

2

Now, taking ϕ ∈ C∗ and applying ϕ on the last position in the previous equality, we
obtain two functions defined on C with values in H⊗H; multiplying by convolution
to the left with α−1, we obtain, finally:∑
c1 ⊗ (c2)1 ⊗ (c2)2 =

∑
α1(c1)((c2)1)1α

−1
1 (c3)⊗ α2(c1)((c2)

1)2α
−1
2 (c3)⊗ (c2)

2

Then
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∑
c1 ⊗ (c2)1 ⊗ 1d((c2)2)

=
∑
α1(c1)(1d(c2)

1)1α
−1
1 (c3)⊗ α2(c1)(1d(c2)

1)2α
−1
2 (c3)⊗ 1d(c2)2

(because
∑

1d(x)1 ⊗ 1d(x)2 =
∑
x1 ⊗ 1d(x2))

=
∑
α1(c1)(1d(c3)

1)1α
−1
1 (c2)⊗ α2(c1)(1

d(c3)
1)2α

−1
2 (c2)⊗ 1d(c3)2

(because
∑

1d(x1)⊗ x2 =
∑

1d(x2)⊗ x1)

=
∑

(1d(c)1)1 ⊗ (1d(c)1)2 ⊗ 1d(c)2

where the last equality follows because H is commutative.
Now, the fact that Z(C) is a H-comodule coalgebra follows immediately, using the
relations:∑

(1d(c))1 ⊗ (1d(c))2 =
∑

1d(c1)⊗ 1d(c2) and∑
1d(c)1 ⊗ 1d(c)2 =

∑
c1 ⊗ 1d(c2)

for any c ∈ C .

Lemma 4.5. In the above situation, if φ′ is another cosection, then the coaction of
H on Z(C) induced by φ′ (it is a strong coaction) is just ψ, i.e. the coaction induced
by φ.

Proof: Let (ϕ, β) be the crossed cosystem induced by φ′. From Lemma 3.1 we
know that (ψ, α) ∼ (ϕ, β), so there exists v : C → H , k-linear and convolution
invertible such that ϕ(c) =

∑
v(c1)(c2)

1v−1(c3)⊗ (c2)2 for any c ∈ C , where ψ(c) =∑
c1 ⊗ c2. Therefore it is enough to prove that∑

v(c1)(c2)
1v−1(c3)⊗ 1d((c2)

2) =
∑

c1 ⊗ 1d(c2)

for any c ∈ C , and this follows immediately, using the relations∑
1d(c)1 ⊗ 1d(c)2 =

∑
c1 ⊗ 1d(c2)∑

1d(c1)⊗ c2 =
∑

1d(c2)⊗ c1

and the fact that H is commutative.

Remark 4.6. By Proposition 3.9 and the proof of Lemma 4.5 it follows that if D′/C
is a cleft coextension isomorphic to D/C, then the coaction of H on Z(C) induced
by D′/C equals the one induced by D/C. Hence, an isomorphism class of cleft
coextensions [D/C] gives a unique left H-comodule coalgebra structure on Z(C).

Now, letH be a commutative Hopf algebra, B a cocommutative left H-comodule
coalgebra with structure map ρ : B → H⊗B, ρ(b) =

∑
b1⊗b2. In [6] the cohomology

groups Coalg − Hn(B,H) were defined; they are dual to the cohomology groups
introduced by Sweedler in [11]. In the sequel, we use only Coalg − H2(B,H). If
v : B → H is k-linear and convolution invertible, define a (k-linear and convolution
invertible) map D1(v) : B → H ⊗H, by

D1(v)(b) =
∑

(b1)1v(b2)v
−1(b3)1 ⊗ v((b1)

2)v−1(b3)2

Then Coalg−H2(B,H) = Z2(B,H)/B2(B,H), where
Z2(B,H) =

= {α : B → H ⊗H, k − linear, convolution invertible, with (CU) and (C)}
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B2(B,H) =

= {D1(v)/v : B → H, k − linear, convolution invertible, with εH ◦ v = εB}.

Proposition 4.7. Let H be a commutative Hopf algebra , D/C a cleft coextension,
φ : D → H a cosection and (ψ, α) the corresponding crossed cosystem. If Γ :
Z(C)→ H ⊗H, let γ : C → H ⊗H, γ(c) = Γ(1d(c)). Then:

1) If Γ ∈ Z2(Z(C), H), then (ψ, α ∗ γ) is a crossed cosystem for H over C.

2) Conversely, if α′ : C → H ⊗H is k-linear and convolution invertible, and (ψ, α′)
is a crossed cosystem for H over C ( with the same ψ), then there exists Γ ∈
Z2(Z(C), H) such that α′ = α ∗ γ.

3) If Γ,Γ′ ∈ Z2(Z(C), H), then (ψ, α ∗ γ) ∼ (ψ, α ∗ γ′) if and only if Γ and Γ′ are
cohomologous, i.e. there exists v : Z(C)→ H , k-linear, convolution invertible, with
εH ◦ v = εZ(C) , such that Γ−1 ∗ Γ′ = D1(v).

4) The map Γ 7→ (ψ, α ∗ γ) induces a bijection between Coalg − H2(Z(C), H) and
the set of the equivalence classes of all those crossed cosystems for H over C which
have ψ as weak coaction.

Proof: 1) Follows after a tedious (but straightforward) computation.
2) Define γ : C → H ⊗H, γ = α−1 ∗ α′. It is enough to show that
there exists Γ ∈ Z2(Z(C), H) such that Γ(1d(c)) = γ(c) for any c ∈ C .

We had ψ : C → H ⊗ C , ψ(π(c)) =
∑
φ(c1)φ−1(c3)⊗ π(c2) for any c ∈ D and

F : C → H ⊗ C , F (π(c)) =
∑
φ−1(c1)φ(c3)⊗ π(c2) for any c ∈ D. If c ∈ C we

denote ψ(c) =
∑
c1 ⊗ c2 and F (c) =

∑
c−1 ⊗ c0. Then, if c ∈ D and d = π(c), we

have:∑
d1(d2)−1 ⊗ (d2)0 =

∑
φ(c1)φ

−1(c5)φ−1(c2)φ(c4)⊗ π(c3) =

1⊗ π(c) = 1⊗ d
(because H is commutative).

Hence∑
x1(x2)−1 ⊗ (x2)0 = 1⊗ x (*)

for any x ∈ C .

We have seen before that, since (ψ, α) is a crossed cosystem, we have∑
c1 ⊗ (c2)1 ⊗ (c2)2 =

∑
α1(c1)((c2)1)1α

−1
1 (c3)⊗ α2(c1)((c2)

1)2α
−1
2 (c3)⊗ (c2)

2

But (ψ, α′) is also a crossed cosystem, then∑
α1(c1)((c2)1)1α

−1
1 (c3)⊗ α2(c1)((c2)

1)2α
−1
2 (c3)⊗ (c2)2 =

=
∑
α′1(c1)((c2)1)1α

′−1
1 (c3)⊗ α′2(c1)((c2)

1)2α
′−1
2 (c3)⊗ (c2)2 (**)

for any c ∈ C .

Now, let ϕ ∈ C∗ ; we shall prove that
∑
ϕ(c1)γ(c2) =

∑
ϕ(c2)γ(c1) for any c ∈ C .∑

ϕ(c1)γ(c2) =
∑
ϕ(c1)α−1

1 (c2)α′1(c3)⊗ α−1
2 (c2)α

′
2(c3)
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=
∑
α−1

1 (c1)α1(c2)((c3)1)1(((c3)2)−1)1ϕ(((c3)2)0)α
−1
1 (c4)α

′
1(c5)⊗

⊗α−1
2 (c1)α2(c2)((c3)1)2(((c3)2)−1)2α

−1
2 (c4)α′2(c5)

(applying (*) for (c1)1((c1)2)1 instead of x )

=
∑
α−1

1 (c1)α1(c2)((c3)1)1α
−1
1 (c4)(((c3)2)−1)1ϕ(((c3)2)0)α

′
1(c5)⊗

⊗α−1
2 (c1)α2(c2)((c3)1)2α

−1
2 (c4)(((c3)

2)−1)2α
′
2(c5)

(because H is commutative)

=
∑
α−1

1 (c1)α′1(c2)((c3)1)1α
′−1
1 (c4)(((c3)

2)−1)1ϕ(((c3)
2)0)α′1(c5)⊗

⊗α−1
2 (c1)α

′
2(c2)((c3)

1)2α
′−1
2 (c4)(((c3)2)−1)2α

′
2(c5)

(applying (**) for c1 instead of c)

=
∑
α−1

1 (c1)α′1(c2)[(c3)
1((c3)2)−1]1ϕ(((c3)

2)0)⊗
α−1

2 (c1)α′2(c2)[(c3)
1((c3)2)−1]2

(because H is commutative)

=
∑
α−1

1 (c1)α′1(c2)ϕ(c3)⊗ α−1
2 (c1)α′2(c2) =

∑
γ(c1)ϕ(c2)

(applying (*))

Therefore we have
∑
γ(c1)⊗ c2 =

∑
γ(c2)⊗ c1 for any c ∈ C .

We shall define f : C → H⊗H⊗H, f(c) =
∑
γ(c1)⊗ c2. C is a Ce-right comodule

with structure map ρC : C → C ⊗ Ce, ρC(c) =
∑
c2 ⊗ c1 ⊗ c3 and H ⊗ H ⊗ C

is a Ce right comodule with structure map ρ : H ⊗ H ⊗ C → H ⊗ H ⊗ C ⊗ Ce,
ρ(h⊗ g ⊗ c) =

∑
h ⊗ g ⊗ c2 ⊗ c1 ⊗ c3.

Using the relation
∑
γ(c1)⊗ c2 =

∑
γ(c2)⊗ c1, it is easy to see that f is a right co-

module homomorphism. Now, from [12] ,1.4, there exists a unique k-linear map
u : Z(C) → H ⊗ H such that f = (u ⊗ I) ◦ θ, where θ : C → Z(C) ⊗ C ,
θ(c) =

∑
1d(c1)⊗ c2. Hence γ(c) = u(1d(c)) for any c ∈ C .

Define Γ = u. We shall prove that Γ ∈ Z2(Z(C), H). Since (ψ, α′) is a crossed cosys-
tem, it appears , by Proposition 3.9, from a cleft coextension, say D′/C, in fact from
a cosection φ′ : D′ → H. So, using the same proof, there exists Γ′ : Z(C)→ H⊗H,
k-linear, with Γ′(1d(c)) = γ′(c) for any c ∈ C , where γ′ = α

′−1 ∗ α, and then obvi-
ously Γ′ is the convolution inverse of Γ. It remains to prove that Γ satisfies (CU)
and (C). Let Γ(1d(c)) =

∑
Γ1(1d(c))⊗ Γ2(1d(c)) = γ(c) =

∑
γ1(c)⊗ γ2(c).

The condition (CU) for Γ is trivial, because α and α′ satisfy (CU). We shall prove
now the condition (C).
Since

∑
1d(c1)⊗c2 =

∑
1d(c2)⊗c1 and H is commutative, we have that γ = α′∗α−1.

Then:∑
γ1(c1)(γ1(c2))1 ⊗ γ2(c1)(γ1(c2))2 ⊗ γ2(c2) =

=
∑
α−1

1 (c1)α′1(c2)[α′1(c3)α−1
1 (c4)]1⊗

⊗α−1
2 (c1)α

′
2(c2)[α′1(c3)α−1

1 (c4)]2 ⊗ α′2(c3)α
−1
2 (c4)

(using α′ ∗ α−1 = α−1 ∗ α′)
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=
∑
α−1

1 (c1)(c2)1α′1(c3)α−1
1 (c4)1⊗

⊗α−1
2 (c1)α′1((c2)

2)α′2(c3)1α
−1
1 (c4)2 ⊗ α′2((c2)

2)α′2(c3)2α
−1
2 (c4)

(using condition (C) for α′)

=
∑
α−1

1 (c1)(c2)1α1(c3)γ1(c4)α
−1
1 (c5)1⊗

⊗α−1
2 (c1)α1(((c2)

2)1)γ1(((c2)2)2)α2(c3)1γ2(c4)1α
−1
1 (c5)2⊗

⊗α2(((c2)2)1)γ2(((c2)2)2)α2(c3)2γ2(c4)2α
−1
2 (c5)

(using α′ = α ∗ γ)

=
∑
α−1

1 (c1)(c2)1α1(c3)Γ1(1d(c4))α−1
1 (c5)1⊗

⊗α−1
2 (c1)α1(((c2)

2)1)Γ1(1d(((c2)
2)2))α2(c3)1Γ2(1d(c4))1α

−1
1 (c5)2⊗

⊗α2(((c2)2)1)Γ2(1d(((c2)2)2))α2(c3)2Γ2(1d(c4))2α
−1
2 (c5)

=
∑
α−1

1 (c1)(c2)1(c3)1α1(c4)Γ1(1d(c5))α−1
1 (c6)1⊗

⊗α−1
2 (c1)α1((c2)2)Γ1(1d((c3)

2))α2(c4)1Γ2(1d(c5))1α
−1
1 (c6)2⊗

⊗α2((c2)
2))Γ2(1d((c3)

2))α2(c4)2Γ2(1d(c5))2α
−1
2 (c6)

(using the definition of the weak coaction for c2)

=
∑
α−1

1 (c1)(1d(c2))
1(c3)1α1(c4)Γ1(1d(c5))α−1

1 (c6)1⊗

⊗α−1
2 (c1)α1((c3)2)α2(c4)1Γ1(1d(c2)

2)Γ2(1d(c5))1α
−1
1 (c6)2⊗

⊗Γ2(1d(c2)
2)α2((c3)

2))α2(c4)2Γ2(1d(c5))2α
−1
2 (c6)

(because: by Proposition 4.3 we have
∑

1d(c)1 ⊗ 1d(c)2 =
∑
c1 ⊗ 1d(c2); we apply

this here for c3. Then we have
∑

1d(c3)⊗ c2 =
∑

1d(c2)⊗ c3 and H is commutative)

=
∑
α−1

1 (c1)(1d(c2))
1α1(c3)α1(c4)1Γ1(1d(c5))α−1

1 (c6)1⊗

⊗α−1
2 (c1)Γ1(1d(c2)2)α2(c3)α1(c4)2Γ2(1d(c5))1α

−1
1 (c6)2⊗

⊗Γ2(1d(c2)2)α2(c4)Γ2(1d(c5))2α
−1
2 (c6)

(applying (C) for α)

= α−1
1 (c1)α1(c2)(c3)1γ1(c4)α1(c5)1α

−1
1 (c6)1⊗

⊗α−1
2 (c1)α2(c2)Γ1(1d(c2)2)γ2(c4)α1(c5)2α

−1
1 (c6)2⊗

⊗Γ2(1d(c2)2)γ2(c5)2α2(c5)α
−1
2 (c6)

(because
∑

1d(c2)⊗ c3 =
∑

1d(c3)⊗ c2 and
∑

1d(c5)⊗ c4 =
∑

1d(c4)⊗ c5)

=
∑

((1d(c)1)1Γ1(1d(c)2)⊗ Γ1((1d(c)1)2)Γ2(1d(c)2)1 ⊗ Γ2((1d(c)1)2)Γ2(1d(c)2)2

hence Γ satisfies (C).

3) Suppose (ψ, α ∗ γ) ∼ (ψ, α ∗ γ′). We shall prove that Γ and Γ′ are cohomologous.
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From the above equivalence, there exists v : C → H, k-linear, convolution invertible,
with εH ◦ v = εC such that (denote ψ(c) =

∑
c1 ⊗ c2):∑

c1 ⊗ c2 =
∑

v(c1)(c2)1v−1(c3)⊗ (c2)
2 (10)

(α ∗ γ′)(c) =
∑

v(c1)(c2)
1(α ∗ γ)1(c3)v−1(c4)1 ⊗ v((c2)

2)(α ∗ γ)2(c3)v−1(c4)2 (11)

First, we shall prove that
∑
v(c1) ⊗ c2 =

∑
v(c2) ⊗ c1 for any c ∈ C . Let ϕ ∈ C∗;

we denoted F (π(c)) =
∑
c−1 ⊗ c0, F : C → H ⊗C . Then, for c ∈ C , we have∑

v(c1)ϕ(c2) =
∑
v(c1)(c2)1((c2)

2)−1ϕ(((c2)2)0)v−1(c3)v(c4)

(because
∑
c1(c2)−1 ⊗ (c2)0 = 1⊗ c )

=
∑

(c1)1((c1)
2)−1ϕ(((c1)2)0)v(c2)

(applying the fact that H is commutative and (10))

=
∑
ϕ(c1)v(c2)

Hence,
∑
v(c1)⊗ c2 =

∑
v(c2)⊗ c1.

Now, define f : C → H ⊗ C , f(c) =
∑
v(c1) ⊗ c2. The equality proved above

says that f is a right Ce-comodule homomorphism. Therefore, there exists a unique
k-linear map u : Z(C)→ H such that (u⊗ I) ◦ θ = f , where θ is the canonical map.
So, u(1d(c)) = v(c), and therefore u is convolution invertible.
If we denote A : Z(C)→ H ⊗H, A(1d(c)) = α(c), then A is convolution invertible
and from (11) we obtain immediately A ∗Γ′ = (A ∗Γ) ∗D1(u), hence Γ′ = Γ ∗D1(u)
q.e.d.
Conversely, if Γ and Γ′ are cohomologous, we can prove in a similar way that (ψ, α∗
γ) ∼ (ψ, α ∗ γ′).
4) Is a direct consequence of 1), 2) and 3).

Remark 4.8. In the conditions of the above theorem, if there exists a map A :
Z(C) → H ⊗ H, k-linear, such that A(1d(c)) = α(c) for any c ∈ C, then A ∈
Z2(Z(C), H ⊗ H), and (TC) implies that C is a left H-comodule coalgebra via ψ.
The pair (ψ, α0) , where α0(c) = ε(c)1H ⊗ 1H , is also a crossed cosystem for H over
C. Therefore, by 3) we obtain that B/C is H-smash if and only if A ∈ B2(Z(C), H).

Remark 4.9. If H is a commutative Hopf algebra, then, for B = k, the cohomology
groups coalg − Hn(B,H) are also known under the name Harrison cohomology
groups. It is known (see [2], Th.3.4) that the second Harrison cohomology group is
isomorphic to the group of Galois coobjects with normal basis. Recall that a Galois
coobject with normal basis is a right H-module coalgebra C satisfying the following
properties:
1) the map δ : C ⊗H → C ⊗ C , δ(c⊗ h) =

∑
c1 ⊗ c2h is an isomorphism

2) H and C are isomorphic as right H-modules
(see [2], [3], [9]).
The group operation is the tensor product over H (see [2], Th.2.3). We can conclude
that a cleft H-coextension of k is an H-Galois coobject with normal basis.
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[3] S. Caenepeel and Ş. Raianu, Induction functors for the Doi-Koppinen uni-
fied Hopf modules, in Abelian groups and modules, Proc. of the Padova
Conference, Padova, Italy, June 23-July 1, 1994, Kluwer, 1995, eds. A.
Facchini and C. Menini, pp. 73-94.
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