Equivalence of Crossed Coproducts

Florin Panaite

1 Introduction

The concept of "crossed coproduct" appeared as a dual version of the usual crossed product for Hopf algebras and it was used in several papers (for instance, in [8] it gives rise, together with the crossed product, to the so-called "bicrossproduct"). In [4] were studied cleft coextensions, a dual notion for that of cleft extension, and it was proved that a cleft coextension is isomorphic to a crossed coproduct (and, another caracterization, a cleft coextension is a Galois coextension with normal basis).

In this paper, we continue the study performed in [5] and [4] on crossed coproducts and cleft coextensions. Our main source of inspiration was Doi's paper [7]; our results are dual to those obtained by Doi. A few remarks are in order:

1) In his paper, Doi uses the cohomology groups introduced by Sweedler in [11]; we use here the dual objects, also introduced by Doi in [6].
2) In Doi's paper, the centre of an algebra was used. Following the philosophy of dualization, we were led, naturally, to the use of a dual object, the "cocentre" of a coalgebra. This object was introduced recently, in [13], and is slightly more complicated than its dual version.

The main results of this paper are the following:

1) If H is a Hopf algebra and C a coalgebra, then there exists a bijection between the set of isomorphism classes of H-cleft coextensions of C and the set of the equivalence classes of crossed cosystems for H over C.
2) if H is a commutative Hopf algebra, C a coalgebra, $Z(C)$ the cocentre of C, D / C an H-cleft coextension , $\phi: D \rightarrow H$ a fixed cosection, (ψ, α) the corresponding crossed cosystem, then there exists a bijection between the cohomology group Coalg $-H^{2}(Z(C), H)$ and the set of the equivalence classes of all those crossed cosystems for H over C which have ψ as a weak coaction.
[^0]
2 Preliminaries

Throughout k is a fixed field. All coalgebras, algebras, vector spaces and unadorned \otimes, Hom, etc., are over k. We refer to [10] for details on coalgebras and Hopf algebras.

We recall now some constructions from [5] and [4].
Definition 2.1. Let H be a Hopf algebra and C a coalgebra. A k-linear map $\psi: C \rightarrow H \otimes C, \psi(c)=\sum c^{1} \otimes c^{2}$ is called a weak coaction if the following conditions are satisfied:

$$
\begin{gather*}
\sum c^{1} \otimes\left(c^{2}\right)_{1} \otimes\left(c^{2}\right)_{2}=\sum\left(c_{1}\right)^{1}\left(c_{2}\right)^{1} \otimes\left(c_{1}\right)^{2} \otimes\left(c_{2}\right)^{2} \tag{1}\\
\sum c^{1} \varepsilon_{C}\left(c^{2}\right)=\varepsilon_{C}(c) 1_{H} \tag{2}\\
\sum \varepsilon_{H}\left(c^{1}\right) c^{2}=c \tag{3}
\end{gather*}
$$

for any $c \in C$.
In the above conditions, let $\alpha: C \rightarrow H \otimes H$ be a k-linear map, with notation $\alpha(c)=\sum \alpha_{1}(c) \otimes \alpha_{2}(c)$, satisfying the following conditions:
$(C U) \quad \sum \varepsilon_{H}\left(\alpha_{1}(c)\right) \alpha_{2}(c)=\varepsilon_{C}(c) 1_{H}=\sum \alpha_{1}(c) \varepsilon_{H}\left(\alpha_{2}(c)\right)$
(C) $\sum\left(c_{1}\right)^{1} \alpha_{1}\left(c_{2}\right) \otimes \alpha_{1}\left(\left(c_{1}\right)^{2}\right)\left(\alpha_{2}\left(c_{2}\right)\right)_{1} \otimes \alpha_{2}\left(\left(c_{1}\right)^{2}\right)\left(\alpha_{2}\left(c_{2}\right)\right)_{2}=$

$$
=\sum \alpha_{1}\left(c_{1}\right)\left(\alpha_{1}\left(c_{2}\right)\right)_{1} \otimes \alpha_{2}\left(c_{1}\right)\left(\alpha_{1}\left(c_{2}\right)\right)_{2} \otimes \alpha_{2}\left(c_{2}\right)
$$

$$
\begin{align*}
\sum\left(c_{1}\right)^{1} \alpha_{1}\left(c_{2}\right) & \otimes\left(\left(c_{1}\right)^{2}\right)^{1} \alpha_{2}\left(c_{2}\right) \otimes\left(\left(c_{1}\right)^{2}\right)^{2}= \tag{TC}\\
= & \sum \alpha_{1}\left(c_{1}\right)\left(\left(c_{2}\right)^{1}\right)_{1} \otimes \alpha_{2}\left(c_{1}\right)\left(\left(c_{2}\right)^{1}\right)_{2} \otimes\left(c_{2}\right)^{2}
\end{align*}
$$

for any $c \in C$. Then we can construct the crossed coproduct $C \rtimes_{\alpha} H$, which is a coalgebra, with $C \otimes H$ as the underlying linear space and the structures

$$
\begin{gathered}
\Delta_{\alpha}: C \otimes H \rightarrow C \otimes H \otimes C \otimes H \\
\Delta_{\alpha}(c \otimes h)=\sum c_{1} \otimes\left(c_{2}\right)^{1} \alpha_{1}\left(c_{3}\right) h_{1} \otimes\left(c_{2}\right)^{2} \otimes \alpha_{2}\left(c_{3}\right) h_{2}
\end{gathered}
$$

and

$$
\begin{gathered}
\varepsilon_{\alpha}: C \otimes H \rightarrow k \\
\varepsilon_{\alpha}(c \otimes h)=\varepsilon_{C}(c) \varepsilon_{H}(h)
\end{gathered}
$$

Definition 2.2. If $C \rtimes_{\alpha} H$ is a crossed coproduct and α is convolution invertible, we shall say that (ψ, α) is a crossed cosystem for H over C.

Definition 2.3. If H is a Hopf algebra and C a coalgebra, a right H-coextension of C is a pair (D, p), where D is a right H-module coalgebra, $p: D \rightarrow C$ a surjective coalgebra map, and $\operatorname{Ker}(p)=D H^{+}$, where $H^{+}=\operatorname{Ker}\left(\varepsilon_{H}\right)$. We shall denote a coextension by D / C.

Definition 2.4. An H-coextension D / C is called a cleft coextension if there exists a k-linear map $\phi: D \rightarrow H$, convolution invertible and which is moreover a right H-module homomorphism (such a map is called a cointegral).

Lemma 2.5. If D / C is an H-cleft coextension, then there exists a cointegral ϕ^{\prime} : $D \rightarrow H$ which is counitary, i.e. $\varepsilon_{H} \circ \phi^{\prime}=\varepsilon_{D}$.

Definition 2.6. A unitary cointegral is called a cosection of D.
Remark 2.7. If $C \rtimes_{\alpha} H$ is a crossed coproduct, then the map

$$
\pi: C \rtimes_{\alpha} H \rightarrow C, \pi(c \otimes h)=\varepsilon_{H}(h) c
$$

is a surjective coalgebra homomorphism.
Proposition 2.8. Let D / C be an H-coextension. Then the following statements are equivalent:
(i) D / C is a cleft coextension.
(ii) D is isomorphic to a crossed coproduct $C \rtimes_{\alpha} H$, with the cocycle α convolution invertible, such that, if we identify D to $C \rtimes_{\alpha} H$, the map $p: D \rightarrow C$ equals the map π defined in the previous remark.
More exactly, let $\phi: D \rightarrow H$ be a crossed cosection, let

$$
\begin{gathered}
\psi: C \rightarrow H \otimes C, \quad \psi(\bar{c})=\sum \phi\left(c_{1}\right) \phi^{-1}\left(c_{3}\right) \otimes \bar{c}_{2} \\
\alpha: C \rightarrow H \otimes H, \quad \alpha(\bar{c})=\sum \phi\left(c_{1}\right) \phi^{-1}\left(c_{3}\right)_{1} \otimes \phi\left(c_{2}\right) \phi^{-1}\left(c_{3}\right)_{2}
\end{gathered}
$$

where, for $c \in C$, we denoted $\bar{c}=p(c)$.
Then ψ and α are well defined, (ψ, α) is a crossed cosystem for H over C (we shall say that it corresponds to ϕ) and D is isomorphic to $C \rtimes_{\alpha} H$, such that, if we identify D to $C \rtimes_{\alpha} H$, then $p=\pi$.

Definition 2.9. Let H be a Hopf algebra and C a coalgebra. Two crossed cosystems (ψ, α) and (φ, β) are called equivalent (and we shall write $(\psi, \alpha) \sim(\varphi, \beta))$ if there exists a k-linear map $v: C \rightarrow H$, convolution invertible, with $\varepsilon_{H} \circ v=\varepsilon_{C}$, such that:

$$
\begin{gather*}
\sum c_{-1} \otimes c_{0}=\sum v\left(c_{1}\right)\left(c_{2}\right)^{1} v^{-1}\left(c_{3}\right) \otimes\left(c_{2}\right)^{2} \tag{4}\\
\sum \beta_{1}(c) \otimes \beta_{2}(c)=\sum v\left(c_{1}\right)\left(c_{2}\right)^{1} \alpha_{1}\left(c_{3}\right) v^{-1}\left(c_{4}\right)_{1} \otimes v\left(\left(c_{2}\right)^{2}\right) \alpha_{2}\left(c_{3}\right) v^{-1}\left(c_{4}\right)_{2} \tag{5}
\end{gather*}
$$

for any $c \in C$, where we denoted $\varphi: C \rightarrow H \otimes C, \varphi(c)=\sum c_{-1} \otimes c_{0}, \psi: C \rightarrow H \otimes C$, $\psi(c)=\sum c^{1} \otimes c^{2}$.

Remark 2.10. The above relation is an equivalence relation.
We recall now from [13] some facts about the cocentre of a coalgebra. If D is a coalgebra, it can be defined the cocentre $\left(Z(D), 1^{d}\right)$ of D, where $Z(D)$ is a cocommutative coalgebra and $1^{d}: D \rightarrow Z(D)$ is a surjective coalgebra map, which satisfies the equality

$$
\sum 1^{d}\left(d_{1}\right) \otimes d_{2}=\sum 1^{d}\left(d_{2}\right) \otimes d_{1}
$$

for all $d \in D$. The cocentre satisfies the following universal property: for any coalgebra H and any coalgebra map $f: D \rightarrow H$, which satisfies the condition $\sum f\left(d_{1}\right) \otimes d_{2}=\sum f\left(d_{2}\right) \otimes d_{1} \quad$ for all $d \in D$, there exists a unique coalgebra map $g: Z(D) \rightarrow H$ such that $f=g \circ 1^{d}$ (see [13], Cor.2.3). From this universal property, the cocentre of a coalgebra is unique up to isomorphism.

3 Equivalence of crossed coproducts

In what follows, H will be a Hopf algebra.
Lemma 3.1. Let D / C be an H-cleft coextension, ϕ and γ two cosections for D, (ψ, α) and (φ, β) the crossed cosystems corresponding to ϕ and γ respectively. Then we have $(\psi, \alpha) \sim(\varphi, \beta)$.

Proof: Define $u: D \rightarrow H, u=\gamma * \phi^{-1}$ We prove first that $D H^{+} \subset \operatorname{Ker}(u)$, and for this it is enough to show that $u(c h)=0$ for $c \in D$ and $h \in H^{+} . D$ is a right H-module coalgebra, so we have that $\sum(c h)_{1} \otimes(c h)_{2}=\sum c_{1} h_{1} \otimes c_{2} h_{2}$. From [4], Lemma 2.3, we know that $\phi^{-1}(c h)=S(h) \phi^{-1}(c)$. Hence we obtain $u(c h)=0$, by applying the above formulae, $h \in H^{+}$, and the fact that γ is a right module homomorphism. We can define now $v: C \rightarrow H, v(\bar{c})=\sum \gamma\left(c_{1}\right) \phi^{-1}\left(c_{2}\right)$. With the same proof we can define $w: C \rightarrow H, w(\bar{c})=\sum \phi\left(c_{1}\right) \gamma^{-1}\left(c_{2}\right)$. It is easy to see that $w=v^{-1}$ in $(\operatorname{Hom}(C, H), *)$. Then $\left(\varepsilon_{H} \circ v\right)(\bar{c})=\varepsilon_{H}\left(\phi^{-1}(c)\right)$, because $\varepsilon_{H} \circ \gamma=\varepsilon_{D}$.

We know $\varepsilon_{H} \circ \phi=\varepsilon_{D}$; multiplying by convolution with $\varepsilon_{H} \circ \phi^{-1}$, we obtain $\varepsilon_{D}(c)=\varepsilon_{H}\left(\phi^{-1}(c)\right)$ for each $c \in D$, hence $\varepsilon_{H} \circ v=\varepsilon_{C}$. Now, for any $c \in D$, we have (denoting $\psi(\bar{c})=\sum \bar{c}^{1} \otimes \bar{c}^{2}$) that
$\sum \gamma\left(\bar{c}_{1}\right)\left(\bar{c}_{2}\right)^{1} v^{-1}\left(\bar{c}_{3}\right) \otimes\left(\bar{c}_{2}\right)^{2}=$
$\sum \gamma\left(c_{1}\right) \phi^{-1}\left(c_{2}\right) \phi\left(c_{3}\right) \phi^{-1}\left(c_{5}\right) \phi\left(c_{6}\right) \gamma^{-1}\left(c_{7}\right) \otimes \bar{c}_{4}=$
$\sum \gamma\left(c_{1}\right) \gamma^{-1}\left(c_{3}\right) \otimes \bar{c}_{2}=\varphi(\bar{c})$
and
$\sum v\left(\bar{c}_{1}\right)\left(\bar{c}_{2}\right)^{1} \alpha_{1}\left(\bar{c}_{3}\right) v^{-1}\left(\bar{c}_{4}\right)_{1} \otimes v\left(\left(\bar{c}_{2}\right)^{2}\right) \alpha_{2}\left(\bar{c}_{3}\right) v^{-1}\left(\bar{c}_{4}\right)_{2}=$
$\sum \gamma\left(c_{1}\right) \phi^{-1}\left(c_{2}\right) \phi\left(c_{3}\right) \phi^{-1}\left(c_{5}\right) \phi\left(c_{6}\right) \phi^{-1}\left(c_{8}\right)_{1} \phi\left(c_{9}\right)_{1} \gamma^{-1}\left(c_{10}\right)_{1} \otimes$

$$
\otimes v\left(\bar{c}_{4}\right) \phi\left(c_{7}\right) \phi^{-1}\left(c_{8}\right)_{2} \phi\left(c_{9}\right)_{2} \gamma^{-1}\left(c_{10}\right)_{2}=
$$

$\sum \gamma\left(c_{1}\right) \gamma^{-1}\left(c_{4}\right)_{1} \otimes v\left(\bar{c}_{2}\right) \phi\left(c_{3}\right) \gamma^{-1}\left(c_{4}\right)_{2}=$
$\sum \gamma\left(c_{1}\right) \gamma^{-1}\left(c_{5}\right)_{1} \otimes \gamma\left(c_{2}\right) \phi^{-1}\left(c_{3}\right) \phi\left(c_{4}\right) \gamma^{-1}\left(c_{5}\right)_{2}=$
$\sum \gamma\left(c_{1}\right) \gamma^{-1}\left(c_{3}\right)_{1} \otimes \gamma\left(c_{2}\right) \gamma^{-1}\left(c_{3}\right)_{2}=\beta(\bar{c})$
Hence, v gives the equivalence between (ψ, α) and (φ, β).
Corollary 3.2. Each H-cleft coextension D / C determines a unique equivalence class of crossed cosystems for H over C, which will be denoted by (D / C).

Let now H be a Hopf algebra, C a coalgebra,

$$
\psi: C \rightarrow H \otimes C, \quad \psi(c)=\sum c^{1} \otimes c^{2}
$$

a weak coaction, $C \rtimes_{\alpha} H$ a crossed coproduct.
We know that $\pi: C \rtimes_{\alpha} H \rightarrow C, \pi(c \otimes h)=\varepsilon_{H}(h) c$ is a surjective coalgebra homomorphism. Let E be a coalgebra, let $\theta: E \rightarrow C$ be a coalgebra homomorphism, $\gamma: E \rightarrow H$ convolution invertible, with $\varepsilon_{H} \circ \gamma=\varepsilon_{E}$ and
(a) $\sum \theta(e)^{1} \otimes \theta(e)^{2}=\sum \gamma\left(e_{1}\right) \gamma^{-1}\left(e_{3}\right) \otimes \theta\left(e_{2}\right)$
(b) $\sum \alpha_{1}(\theta(e)) \otimes \alpha_{2}(\theta(e))=\sum \gamma\left(e_{1}\right) \gamma^{-1}\left(e_{3}\right)_{1} \otimes \gamma\left(e_{2}\right) \gamma^{-1}\left(e_{3}\right)_{2}$ for any $e \in E$.

Proposition 3.3. In the above situation, the map $\Theta: E \rightarrow C \rtimes_{\alpha} H$, $\Theta(e)=\sum \theta\left(e_{1}\right) \otimes \gamma\left(e_{2}\right) \quad$ is a coalgebra homomorphism, and $\pi \circ \Theta=\theta$.

Proof: $\Theta\left(e_{1}\right) \otimes \Theta\left(e_{2}\right)=\sum \theta\left(e_{1}\right) \otimes \gamma\left(e_{2}\right) \otimes \theta\left(e_{3}\right) \otimes \gamma\left(e_{4}\right)$
The comultiplication on $C \rtimes_{\alpha} H$ is
$\Delta(c \otimes h)=\sum c_{1} \otimes\left(c_{2}\right)^{1} \alpha_{1}\left(c_{3}\right) h_{1} \otimes\left(c_{2}\right)^{2} \otimes \alpha_{2}\left(c_{3}\right) h_{2}$, so:
$\sum \Theta(e)_{1} \otimes \Theta(e)_{2}=\sum \theta\left(e_{1}\right) \otimes \theta\left(e_{2}\right)^{1} \alpha_{1}\left(\theta\left(e_{3}\right)\right) \gamma\left(e_{4}\right)_{1} \otimes \theta\left(e_{2}\right)^{2} \otimes \alpha_{2}\left(\theta\left(e_{3}\right)\right) \gamma\left(e_{4}\right)_{2}$
(because θ is a coalgebra homomorphism)
$=\sum \theta\left(e_{1}\right) \otimes \gamma\left(e_{2}\right) \gamma^{-1}\left(e_{4}\right) \gamma\left(e_{5}\right) \gamma^{-1}\left(e_{7}\right)_{1} \gamma\left(e_{8}\right)_{1} \otimes \theta\left(e_{3}\right) \otimes \gamma\left(e_{6}\right) \gamma^{-1}\left(e_{7}\right)_{2} \gamma\left(e_{8}\right)_{2}$
(using (a) and (b))
$=\sum \theta\left(e_{1}\right) \otimes \gamma\left(e_{2}\right) \otimes \theta\left(e_{3}\right) \otimes \gamma\left(e_{4}\right)$
Then $\varepsilon(\Theta(e))=\sum \varepsilon\left(\theta\left(e_{1}\right)\right) \varepsilon\left(\gamma\left(e_{2}\right)\right)=\varepsilon_{H}(\gamma(e))=\varepsilon_{E}(e)$, so Θ is a coalgebra homomorphism. Finally,
$\pi(\Theta(e))=\sum \varepsilon_{H}\left(\gamma\left(e_{2}\right)\right) \theta\left(e_{1}\right)=\sum \varepsilon_{E}\left(e_{2}\right) \theta\left(e_{1}\right)=\theta(e)$.
Definition 3.4. Let H be a Hopf algebra , C a coalgebra, $\psi: C \rightarrow H \otimes C$ a left weak coaction. Let E be a coalgebra, $\pi: E \rightarrow C$ a surjective coalgebra homomorphism. We shall say that ψ is an E-inner coaction if there exists $\gamma: E \rightarrow H$, convolution invertible, such that
$\sum \pi(e)^{1} \otimes \pi(e)^{2}=\sum \gamma\left(e_{1}\right) \gamma^{-1}\left(e_{3}\right) \otimes \pi\left(e_{2}\right)$ for any $e \in E$.
Remark 3.5. If $E=C$ and $\pi=i d$, we obtain the notion of "inner coaction".
Example 3.6. Let H be a Hopf algebra, C a coalgebra, (ψ, α) a crossed cosystem for H over C; let $E=C \rtimes_{\alpha} H, \pi: E \rightarrow C, \pi(c \otimes h)=\varepsilon(h) c, \gamma: E \rightarrow H$, $\gamma(c \otimes h)=\varepsilon(c) h$.
We know from [4], Proposition 2.1., that γ is convolution invertible and

$$
\gamma^{-1}(c \otimes h)=\sum S\left(\alpha_{1}^{-1}(c) h\right) \alpha_{2}^{-1}(c) .
$$

We show that ψ is a $C \rtimes_{\alpha} H$-inner coaction.
$\sum \pi(c \otimes h)^{1} \otimes \pi(c \otimes h)^{2}=\varepsilon(h) \sum c^{1} \otimes c^{2}$
$\sum \gamma\left((c \otimes h)_{1}\right) \gamma^{-1}\left((c \otimes h)_{3}\right) \otimes \pi\left((c \otimes h)_{2}\right)=$
$\sum\left(c_{1}\right)^{1} \alpha_{1}\left(c_{2}\right) h_{1} \gamma^{-1}\left(\left[\left(c_{1}\right)^{2} \otimes \alpha_{2}\left(c_{2}\right) h_{2}\right]_{2}\right) \otimes \pi\left(\left[\left(c_{1}\right)^{2} \otimes \alpha_{2}\left(c_{2}\right) h_{2}\right]_{1}\right)=$
$\sum\left(c_{1}\right)^{1} \alpha_{1}\left(c_{2}\right) h_{1} \gamma^{-1}\left(\left(\left(\left(c_{1}\right)^{2}\right)_{2}\right)^{2} \otimes \alpha_{2}\left(\left(\left(c_{1}\right)^{2}\right)_{3} \alpha_{2}\left(c_{2}\right)_{2} h_{3}\right) \otimes\right.$

$$
\otimes \pi\left(\left(\left(c_{1}\right)^{2}\right)_{1} \otimes\left(\left(\left(c_{1}\right)^{2}\right)_{2}\right)^{1} \alpha_{1}\left(\left(\left(c_{1}\right)^{2}\right)_{3}\right) \alpha_{2}\left(c_{2}\right)_{1} h_{2}\right)=
$$

$\sum\left(c_{1}\right)^{1} \alpha_{1}\left(c_{2}\right) h_{1} \gamma^{-1}\left(\left(\left(c_{1}\right)^{2}\right)_{2} \otimes \alpha_{2}\left(c_{2}\right) h_{2}\right) \otimes\left(\left(c_{1}\right)^{2}\right)_{1}=$ $\varepsilon(h) \sum\left(c_{1}\right)^{1} \alpha_{1}\left(c_{2}\right) S\left(\alpha_{2}\left(c_{2}\right)\right) S\left(\alpha_{1}^{-1}\left(\left(\left(c_{1}\right)^{2}\right)_{2}\right)\right) \alpha_{2}^{-1}\left(\left(\left(c_{1}\right)^{2}\right)_{2}\right) \otimes\left(\left(c_{1}\right)^{2}\right)_{1}=$
$\varepsilon(h) \sum\left(c_{1}\right)^{1}\left(c_{2}\right)^{1} \alpha_{1}\left(c_{3}\right) S\left(\alpha_{2}\left(c_{3}\right)\right) S\left(\alpha_{1}^{-1}\left(\left(c_{2}\right)^{2}\right)\right) \alpha_{2}^{-1}\left(\left(c_{2}\right)^{2}\right) \otimes\left(c_{1}\right)^{2}$
(using the definition of the weak coaction for c_{1})
$=\varepsilon(h) \sum c^{1} \otimes c^{2}$
where the last equality follows after some computations, but applying first for $c=c_{2}$ the following relation (which is Lemma 1.4. in [4]):

$$
\begin{gathered}
\sum c^{1} \otimes \alpha_{1}^{-1}\left(c^{2}\right) \otimes \alpha_{2}^{-1}\left(c^{2}\right)= \\
=\sum \alpha_{1}\left(c_{1}\right)\left(\alpha_{1}^{-1}\left(c_{2}\right)\right)_{1} \alpha_{1}^{-1}\left(c_{3}\right) \otimes\left(\alpha_{2}\left(c_{1}\right)\right)_{1}\left(\alpha_{1}^{-1}\left(c_{2}\right)\right)_{2} \alpha_{2}^{-1}\left(c_{3}\right) \otimes\left(\alpha_{2}\left(c_{1}\right)\right)_{2} \alpha_{2}^{-1}\left(c_{2}\right)
\end{gathered}
$$

Remark 3.7. If D / C is a right H-coextension for C, we shall denote in the sequel by $\pi: D \rightarrow C$ the surjective coalgebra homomorphism with $\operatorname{Ker}(\pi)=D H^{+}$.

Definition 3.8. Let D / C and D^{\prime} / C two right H-coextensions. We shall say that they are isomorphic if there exists a right H-module coalgebra isomorphism $f: D \rightarrow$ D^{\prime} such that $\pi^{\prime} \circ f=\pi$. We shall denote by $[D / C]$ the equivalence class of D / C.

Proposition 3.9. Two H-cleft coextensions D / C and D^{\prime} / C are isomorphic if and only if $(D / C)=\left(D^{\prime} / C\right)$; thus the assignement $[D / C] \rightarrow(D / C)$ determines a bijection between the isomorphism classes of H-cleft coextensions of C and the equivalence classes of crossed cosystems for H over C.

Proof: Let $f: D \rightarrow D^{\prime}$ a module coalgebra isomorphism with $\pi^{\prime} \circ f=\pi$, let $\phi^{\prime}: D^{\prime} \rightarrow H$ a co-section of D^{\prime}, let $\phi=\phi^{\prime} \circ f$; obviously ϕ is a right comodule homomorphism , $\varepsilon_{H} \circ \phi=\varepsilon_{C}$ and ϕ is convolution invertible with inverse $\phi^{-1}=$ $\phi^{\prime-1} \circ f$, hence ϕ is a cosection for D.
Let (ψ, α) and $\left(\psi^{\prime}, \alpha^{\prime}\right)$ be the crossed cosystems corresponding to ϕ and ϕ^{\prime} respectively, i.e. for any $c \in D$ we have

$$
\begin{gathered}
\psi: C \rightarrow H \otimes C, \quad \psi(\pi(c))=\sum \phi\left(c_{1}\right) \phi^{-1}\left(c_{3}\right) \otimes \pi\left(c_{2}\right) \\
\alpha: C \rightarrow H \otimes H, \alpha(\pi(c))=\sum \phi\left(c_{1}\right) \phi^{-1}\left(c_{3}\right)_{1} \otimes \phi\left(c_{2}\right) \phi^{-1}\left(c_{3}\right)_{2}
\end{gathered}
$$

(and the corresponding relations for ψ^{\prime} and α^{\prime}).
Since f is surjective, for any $c^{\prime} \in D^{\prime}$ there exists $c \in D$ with $f(c)=c^{\prime}$, hence
$\psi^{\prime}\left(\pi^{\prime}\left(c^{\prime}\right)\right)=\sum \phi^{\prime}\left(f\left(c_{1}\right)\right) \phi^{\prime-1}\left(f\left(c_{3}\right)\right) \otimes \pi^{\prime}\left(f\left(c_{2}\right)\right)=$
$\sum \phi\left(c_{1}\right) \phi^{-1}\left(c_{3}\right) \otimes \pi\left(c_{2}\right)=\psi(\pi(c))$
But $\pi^{\prime}\left(c^{\prime}\right)=\pi(c)$, hence $\psi=\psi^{\prime}$; with an analogous proof, we obtain $\alpha=\alpha^{\prime}$, therefore $(D / C)=\left(D^{\prime} / C\right)$.

Conversely, let ϕ, ϕ^{\prime} cosections for D and D^{\prime} respectively, let (ψ, α) and (φ, β) the corresponding crossed cosystems. From $(D / C)=\left(D^{\prime} / C\right)$ we obtain $(\psi, \alpha) \sim(\varphi, \beta)$, so the relations (4) and (5) are satisfied.
Let $\gamma: D \rightarrow H, \gamma=(v \circ \pi) * \phi$. It is easy to see that γ is convolution invertible with inverse $\gamma^{-1}(c)=\sum \phi^{-1}\left(c_{1}\right) v^{-1}\left(\pi\left(c_{2}\right)\right)$, and $\varepsilon_{H} \circ \gamma=\varepsilon_{D}$.
From (4) we obtain $\varphi(x)=\sum v\left(x_{1}\right)\left(x_{2}\right)^{1} v^{-1}\left(x_{3}\right) \otimes\left(x_{2}\right)^{2}$ for any $x \in C$, where $\psi(x)=\sum x^{1} \otimes x^{2}$. Then, if we take $c \in D$ with $\pi(c)=x$, we obtain

$$
\varphi(\pi(c))=\sum \gamma\left(c_{1}\right) \gamma^{-1}\left(c_{3}\right) \otimes \pi\left(c_{2}\right)
$$

for any $c \in C$, because $\psi(\pi(c))=\sum \phi\left(c_{1}\right) \phi^{-1}\left(c_{3}\right) \otimes \pi\left(c_{2}\right)$.
In the same way, from (5) we obtain :

$$
\begin{array}{r}
\beta(\pi(c))=\sum v\left(\pi\left(c_{1}\right)\right) \phi\left(c_{2}\right) \phi^{-1}\left(c_{4}\right) \alpha_{1}\left(\pi\left(c_{5}\right)\right) v^{-1}\left(\pi\left(c_{6}\right)\right)_{1} \otimes \\
\otimes v\left(\pi\left(c_{3}\right)\right) \alpha_{2}\left(\pi\left(c_{5}\right)\right) v^{-1}\left(\pi\left(c_{6}\right)\right)_{2} \\
=\sum v\left(\pi\left(c_{1}\right)\right) \phi\left(c_{2}\right) \phi^{-1}\left(c_{4}\right) \phi\left(c_{5}\right) \phi^{-1}\left(c_{7}\right)_{1} v^{-1}\left(\pi\left(c_{8}\right)\right)_{1} \otimes \\
\otimes v\left(\pi\left(c_{3}\right)\right) \phi\left(c_{6}\right) \phi^{-1}\left(c_{7}\right)_{2} v^{-1}\left(\pi\left(c_{8}\right)\right)_{2}
\end{array}
$$

$\left(\right.$ from $\alpha(\pi(c))=\sum \phi\left(c_{1}\right) \phi^{-1}\left(c_{3}\right)_{1} \otimes \phi\left(c_{2}\right) \phi^{-1}\left(c_{3}\right)_{2}$, for c_{5} instead of $\left.c\right)$
$=\sum v\left(\pi\left(c_{1}\right)\right) \phi\left(c_{2}\right) \phi^{-1}\left(c_{5}\right)_{1} v^{-1}\left(\pi\left(c_{6}\right)\right)_{1} \otimes v\left(\pi\left(c_{3}\right)\right) \phi\left(c_{4}\right) \phi^{-1}\left(c_{5}\right)_{2} v^{-1}\left(\pi\left(c_{6}\right)\right)_{2}$
$=\sum \gamma\left(c_{1}\right) \gamma^{-1}\left(c_{3}\right)_{1} \otimes \gamma\left(c_{2}\right) \gamma^{-1}\left(c_{3}\right)_{2}$
for any $c \in D$.
Now we shall apply Proposition 3.3 for the crossed coproduct $C \rtimes_{\beta} H$. We take $E=D, \theta=\pi, \gamma=\gamma$ in Proposition 3.3, and one can see that the relations proved above are just (a) and (b) in Proposition 3.3. Then the map $\Theta: D \rightarrow C \rtimes_{\beta} H$, $\Theta(c)=\sum \pi\left(c_{1}\right) \otimes \gamma\left(c_{2}\right)$ is a coalgebra homomorphism, with $p \circ \Theta=\pi$, where $p: C \rtimes_{\beta} H \rightarrow C, p(c \otimes h)=\varepsilon_{H}(h) c$.

We prove now that Θ is a right H-module homomorphism.
We have first $\pi(c h)=\pi(c h-c \varepsilon(h) 1+c \varepsilon(h) 1)=\pi(c(h-\varepsilon(h) 1))+\pi(c) \varepsilon(h)=\pi(c) \varepsilon(h)$, because $c(h-\varepsilon(h) 1) \in D H^{+}=K e r \pi$. Then
$\gamma(c h)=\sum v\left(\pi\left(c_{1} h_{1}\right)\right) \phi\left(c_{2} h_{2}\right)=\sum v\left(\pi\left(c_{1}\right)\right) \phi\left(c_{2} h_{)}\right.$
$=\sum v\left(\pi\left(c_{1}\right)\right) \phi\left(c_{2}\right) h=\gamma(c) h$
where the last equality holds because ϕ is a right module homomorphism. Hence
$\Theta(c h)=\sum \pi\left(c_{1} h_{1}\right) \otimes \gamma\left(c_{2} h_{2}\right)=\sum \pi\left(c_{1}\right) \otimes \gamma\left(c_{2}\right) h$
$=\left(\sum \pi\left(c_{1}\right) \otimes \gamma\left(c_{2}\right)\right) h=\Theta(c) h$, q.e.d.
Now, define $f: C \rtimes_{\alpha} H \rightarrow C \rtimes_{\beta} H, f(x \otimes h)=\sum x_{1} \otimes v\left(x_{2}\right) h$
Because v is convolution invertible, f is bijective with inverse

$$
g: C \rtimes_{\beta} H \rightarrow C \rtimes_{\alpha} H, \quad g(x \otimes h)=\sum x_{1} \otimes v^{-1}\left(x_{2}\right) h .
$$

We know from [4] that the map

$$
F: D \rightarrow C \rtimes_{\alpha} H, \quad F(c)=\sum \pi\left(c_{1}\right) \otimes \phi\left(c_{2}\right)
$$

is a coalgebra isomorphism; it is also a module homomorphism. Then

$$
(f \circ F)(c)=\sum \pi\left(c_{1}\right) \otimes v\left(\pi\left(c_{2}\right)\right) \phi\left(c_{3}\right)=\Theta(c),
$$

so Θ is bijective, hence an isomorphism of H-module coalgebras.
Let

$$
F^{\prime}: D^{\prime} \rightarrow C \rtimes_{\beta} H, \quad F^{\prime}(c)=\sum \pi\left(c_{1}\right) \otimes \phi^{\prime}\left(c_{2}\right),
$$

and

$$
\mu: D \rightarrow D^{\prime}, \quad \mu=F^{\prime-1} \circ \Theta
$$

We obtain that μ is a module coalgebra isomorphism. From $\pi^{\prime} \circ F^{\prime-1}=p$ and $p \circ \Theta=\pi$, we obtain $\pi^{\prime} \circ \mu=\pi$, hence D / C and D^{\prime} / C are isomorphic.
Thus, we proved that the map $[D / C] \rightarrow(D / C)$ is well-defined and injective, and we shall prove now that it is surjective. Let $\left(\psi_{0}, \alpha_{0}\right)$ be a crossed cosystem, $\psi_{0}(c)=$ $\sum c^{1} \otimes c^{2}$. From [4] we know that $C \rtimes_{\alpha_{0}} H / C$ is a cleft coextension, and let (ψ, α) be the crossed cosystem associated to this cleft coextension, with the cosection $\gamma: C \rtimes_{\alpha_{0}} H \rightarrow H, \gamma(c \otimes h)=\varepsilon(c) h$. For $c \in C$, let
$c \otimes 1 \in C \rtimes \alpha_{0} H$; then we have $\pi(c \otimes 1)=c$, where
$\pi: C \rtimes_{\alpha_{0}} H \rightarrow C, \pi(c \otimes h)=\varepsilon(h) c$. Hence
$\psi(c)=\sum \gamma\left((c \otimes 1)_{1}\right) \gamma^{-1}\left((c \otimes 1)_{3}\right) \otimes \pi\left((c \otimes 1)_{2}\right)$
$=\sum\left(c_{1}\right)^{1} \alpha_{1}\left(c_{2}\right) \gamma^{-1}\left(\left(\left(c_{1}\right)^{2}\right)_{2} \otimes \alpha_{2}\left(c_{2}\right)\right) \otimes\left(\left(c_{1}\right)^{2}\right)_{1}$
$=\sum\left(c_{1}\right)^{1} \alpha_{1}\left(c_{2}\right) S\left(\alpha_{2}\left(c_{2}\right)\right) S\left(\alpha_{1}^{-1}\left(\left(\left(c_{1}\right)^{2}\right)_{2}\right)\right) \alpha_{2}^{-1}\left(\left(\left(c_{1}\right)^{2}\right)_{2}\right) \otimes\left(\left(c_{1}\right)^{2}\right)_{1}$
$=\sum c^{1} \otimes c^{2}$
where the last equality follows from the proof of the Example 3.6.
Hence $\psi=\psi_{0}$; in the same way we can prove that $\alpha=\alpha_{0}$, so that the map is surjective.

Definition 3.10. If D / C is an H-cleft coextension such that there exists a cosection $\phi: D \rightarrow H$ which is a coalgebra homomorphism, then ϕ is called an algebraic cosection and the coextension D / C is called H-smash.

Lemma 3.11. In the situation of Prop.2.8, we have : ϕ is an algebraic co-section if and only if α is a trivial cocycle, i.e. $\alpha(x)=\varepsilon(x) 1_{H} \otimes 1_{H}$ for any $x \in C$ (and in this case C is an H-comodule coalgebra).

Proof: Suppose that ϕ is a coalgebra homomorphism; then
$\alpha(\bar{c})=\sum\left[\phi\left(c_{1}\right) \phi^{-1}\left(c_{2}\right)\right]_{1} \otimes\left[\phi\left(c_{1}\right)_{2} \phi^{-1}\left(c_{2}\right)\right]_{2}=\varepsilon_{D}(c) 1_{H} \otimes 1_{H}=\varepsilon_{D}(\bar{c}) 1_{H} \otimes 1_{H}$.
Conversely, suppose that α is trivial ; then
$\sum \phi\left(c_{1}\right) \phi^{-1}\left(c_{3}\right)_{1} \otimes \phi\left(c_{2}\right) \phi^{-1}\left(c_{3}\right)_{2}=\varepsilon_{D}(c) 1_{H} \otimes 1_{H}$ for any $c \in D$.
Multiplying by convolution with the map

$$
\psi: D \rightarrow H \otimes H, \quad \psi(c)=\sum \phi(c)_{1} \otimes \phi(c)_{2}
$$

we obtain $\sum \phi\left(c_{1}\right) \otimes \phi\left(c_{2}\right)=\sum \phi(c)_{1} \otimes \phi(c)_{2}$, that is ϕ is a coalgebra homomorphism.
Proposition 3.12. Let D / C be an H-cleft coextension and (ψ, α) a crossed cosystem associated to D / C; then the following statements are equivalent:
(i) D / C is H-smash
(ii) (D / C) is the equivalence class of a crossed cosystem (ϕ, β) for which $\beta(c)=$ $\varepsilon(c) 1_{H} \otimes 1_{H}$ for any $c \in C$.
(iii) There exists $v: C \rightarrow H$, k-linear, convolution invertible, with $\varepsilon_{H} \circ v=\varepsilon_{C}$, such that

$$
\begin{equation*}
\alpha(c)=\sum\left(c_{1}\right)^{1} v\left(c_{2}\right) v^{-1}\left(c_{3}\right)_{1} \otimes v\left(\left(c_{1}\right)^{2}\right) v^{-1}\left(c_{3}\right)_{2} \tag{6}
\end{equation*}
$$

for any $c \in C$, where $\psi(c)=\sum c^{1} \otimes c^{2}$.

Proof: $(i) \Rightarrow(i i)$ is obvious, from Lemma 3.11 and Lemma 3.1.
(ii) \Rightarrow (iii) We have $(\psi, \alpha) \sim(\varphi, \beta)$, with $\beta(c)=\varepsilon(c) 1_{H} \otimes 1_{H}$. Hence, there exists $v: C \rightarrow H$, k-linear, convolution invertible, with $\varepsilon_{H} \circ v=\varepsilon_{C}$, such that

$$
\begin{gather*}
\sum c^{1} \otimes c^{2}=\sum v\left(c_{1}\right)\left(c_{2}\right)_{-1} v^{-1}\left(c_{3}\right) \otimes\left(c_{2}\right)_{0} \tag{7}\\
\alpha(c)=\sum v\left(c_{1}\right)\left(c_{2}\right)_{-1} \beta_{1}\left(c_{3}\right) v^{-1}\left(c_{4}\right)_{1} \otimes v\left(\left(c_{2}\right)_{0}\right) \beta_{2}\left(c_{3}\right) v^{-1}\left(c_{4}\right)_{2} \tag{8}
\end{gather*}
$$

where $\psi(c)=\sum c^{1} \otimes c^{2}$ and $\varphi(c)=\sum c_{-1} \otimes c_{0}$.
Since $\beta(c)=\varepsilon_{C}(c) 1_{H} \otimes 1_{H}$, (8) becomes:
$\alpha(c)=\sum v\left(c_{1}\right)\left(c_{2}\right)_{-1} v^{-1}\left(c_{3}\right)_{1} \otimes v\left(\left(c_{2}\right)_{0}\right) v^{-1}\left(c_{3}\right)_{2}=$
$\sum v\left(c_{1}\right)\left(c_{2}\right)_{-1} v^{-1}\left(c_{3}\right) v\left(c_{4}\right) v^{-1}\left(c_{5}\right)_{1} \otimes v\left(\left(c_{2}\right)_{0}\right) v^{-1}\left(c_{5}\right)_{2}=$
$\sum\left(c_{1}\right)^{1} v\left(c_{2}\right) v^{-1}\left(c_{3}\right)_{1} \otimes v\left(\left(c_{1}\right)^{2}\right) v^{-1}\left(c_{3}\right)_{2}$
which is exactly (iii), where for the last equality we used (7).
$($ iii $) \Rightarrow(i)$ Using the map v given in (iii), define $\gamma: C \rtimes_{\alpha} H \rightarrow H, \gamma(c \otimes h)=$ $v^{-1}(c) h$. We have
$\varepsilon_{H} \circ v=\varepsilon_{C} \Rightarrow \varepsilon_{H} \circ v^{-1}=\varepsilon_{C} \Rightarrow \varepsilon_{H} \circ \gamma=\varepsilon_{C \rtimes_{\alpha} H}$
$\gamma((c \otimes h) g)=\gamma(c \otimes h g)=v^{-1}(c) h g=\left(v^{-1}(c) h\right) g=\gamma(c \otimes h) g$
hence γ is a right H-module map.
Now we shall prove that γ is a coalgebra map.

$$
\begin{aligned}
& \sum \gamma(c \otimes h)_{1} \otimes \gamma(c \otimes h)_{2}=\sum v^{-1}(c)_{1} h_{1} \otimes v^{-1}(c)_{2} h_{2} \\
& \sum \gamma\left((c \otimes h)_{1}\right) \otimes \gamma\left((c \otimes h)_{2}\right)= \\
& \sum \gamma\left(c_{1} \otimes\left(c_{2}\right)^{1} \alpha_{1}\left(c_{3}\right) h_{1}\right) \otimes \gamma\left(\left(c_{2}\right)^{2} \otimes \alpha_{2}\left(c_{3}\right) h_{2}\right)= \\
& \sum v^{-1}\left(c_{1}\right)\left(c_{2}\right)^{1} \alpha_{1}\left(c_{3}\right) h_{1} \otimes v^{-1}\left(\left(c_{2}\right)^{2}\right) \alpha_{2}\left(c_{3}\right) h_{2}= \\
& \sum v^{-1}\left(c_{1}\right)\left(c_{2}\right)^{1}\left(c_{3}\right)^{1} v\left(c_{4}\right) v^{-1}\left(c_{5}\right)_{1} h_{1} \otimes v^{-1}\left(\left(c_{2}\right)^{2}\right) v\left(\left(c_{3}\right)^{2}\right) v^{-1}\left(c_{5}\right)_{2} h_{2}
\end{aligned}
$$

(using (6))

$$
=\sum v^{-1}\left(c_{1}\right)\left(c_{2}\right)^{1} v\left(c_{3}\right) v^{-1}\left(c_{4}\right)_{1} h_{1} \otimes v^{-1}\left(\left(\left(c_{2}\right)^{2}\right)_{1}\right) v\left(\left(\left(c_{2}\right)^{2}\right)_{2}\right) v^{-1}\left(c_{4}\right)_{2} h_{2}
$$

(using (1))

$$
=\sum v^{-1}\left(c_{1}\right)\left(c_{2}\right)^{1} v\left(c_{3}\right) v^{-1}\left(c_{4}\right)_{1} h_{1} \otimes \varepsilon\left(\left(c_{2}\right)^{2}\right) v^{-1}\left(c_{4}\right)_{2} h_{2}=
$$

$$
\sum v^{-1}\left(c_{1}\right) v\left(c_{2}\right) v^{-1}\left(c_{3}\right)_{1} h_{1} \otimes v^{-1}\left(c_{3}\right)_{2} h_{2}=
$$

$$
\sum v^{-1}(c)_{1} h_{1} \otimes v^{-1}(c)_{2} h_{2}
$$

hence γ is a coalgebra map.
We prove now that γ is convolution invertible. Define $w: C \rtimes_{\alpha} H \rightarrow H$, by $w(c \otimes h)=\varepsilon(h) v^{-1}(c)$. It is easy to see that w is convolution invertible, with inverse $w^{-1}(c \otimes h)=\varepsilon(h) v(c)$. Let $\gamma_{0}: C \rtimes_{\alpha} H \rightarrow H, \gamma_{0}(c \otimes h)=\varepsilon(c) h$.
By [4], γ_{0} is convolution invertible, and it is easy to see that $\gamma=w * \gamma_{0}$. Therefore γ is convolution invertible. The conclusion is that γ is an algebraic cosection, hence $C \rtimes_{\alpha} H / C$ is H-smash. By Proposition 2.8, we have $D \simeq C \rtimes_{\alpha} H$, therefore D / C is also H-smash.

Remark 3.13. Let D / C be an H-coextension and let $\phi: D \rightarrow H$ be a cosection.

Then we have

$$
\sum \phi\left(c_{1}\right) \otimes \pi\left(c_{2}\right)=\sum \pi\left(c_{1}\right)^{1} \phi\left(c_{2}\right) \otimes \pi\left(c_{1}\right)^{2}
$$

where $\psi(\pi(c))=\sum \pi(c)^{1} \otimes \pi(c)^{2}=\sum \phi\left(c_{1}\right) \phi^{-1}\left(c_{3}\right) \otimes \pi\left(c_{2}\right)$ (as in Proposition 2.8).
Proof: $\sum \pi\left(c_{1}\right)^{1} \phi\left(c_{2}\right) \otimes \pi\left(c_{1}\right)^{2}=$
$\sum \phi\left(c_{1}\right) \phi^{-1}\left(c_{3}\right) \phi\left(c_{4}\right) \otimes \pi\left(c_{2}\right)=\sum \phi\left(c_{1}\right) \otimes \pi\left(c_{2}\right)$
Remark 3.14. In the same conditions, the weak coaction ψ of H on C is trivial (i.e. $\psi(x)=1 \otimes x$ for any $x \in C$) if and only if $\sum \phi\left(c_{1}\right) \otimes \pi\left(c_{2}\right)=\sum \phi\left(c_{2}\right) \otimes \pi\left(c_{1}\right)$ for any $c \in D$.

Proof: Suppose that ψ is trivial. Then $\sum \pi(c)^{1} \otimes \pi(c)^{2}=1 \otimes \pi(c)$; we have $\sum \pi(c)^{1} \phi\left(c_{2}\right) \otimes \pi\left(c_{1}\right)^{2}=\sum \phi\left(c_{1}\right) \otimes \pi\left(c_{2}\right)$ (the above remark). Hence $\sum \phi\left(c_{1}\right) \otimes \pi\left(c_{2}\right)=\sum 1_{H} \phi\left(c_{2}\right) \otimes \pi\left(c_{1}\right)=\sum \phi\left(c_{2}\right) \otimes \pi\left(c_{1}\right)$ q.e.d.
Conversely, we have:
$\sum \pi(c)^{1} \otimes \pi(c)^{2}=\sum \pi\left(c_{1}\right)^{1} \phi\left(c_{2}\right) \phi^{-1}\left(c_{3}\right) \otimes \pi\left(c_{1}\right)^{2}$
$=\sum \phi\left(c_{1}\right) \phi^{-1}\left(c_{3}\right) \otimes \pi\left(c_{2}\right)$
$=\sum \phi\left(c_{2}\right) \phi^{-1}\left(c_{3}\right) \otimes \pi\left(c_{1}\right)$
(because $\left.\sum \phi\left(c_{1}\right) \otimes \pi\left(c_{2}\right)=\sum \phi\left(c_{2}\right) \otimes \pi\left(c_{1}\right)\right)$
$=1_{H} \otimes \pi(c)$
for any $c \in D$, hence $\psi(x)=1_{H} \otimes x$ for any $x \in C$.
Definition 3.15. A cleft coextension D / C is called H-twisted if there exists a cosection $\phi: D \rightarrow H$ such that $\sum \phi\left(c_{1}\right) \otimes \pi\left(c_{2}\right)=\sum \phi\left(c_{2}\right) \otimes \pi\left(c_{1}\right)$ for any $c \in D$.

Proposition 3.16. Let D / C be an H-coextension and let (ψ, α) be a crossed cosystem associated to D / C. Then the following statements are equivalent:

1) D / C is H-twisted
2) D / C is the equivalence class of a crossed cosystem (φ, β) for which $\varphi(x)=1_{H} \otimes x$ for any $x \in C$.
3) There exists $v: C \rightarrow H$, k-linear, convolution invertible, with $\varepsilon_{H} \circ v=\varepsilon_{C}$ such that

$$
\begin{equation*}
\psi(c)=\sum v\left(c_{1}\right) v^{-1}\left(c_{3}\right) \otimes c_{2} \tag{9}
\end{equation*}
$$

for any $c \in C$ (this means that ψ is C-inner with respect to id: $C \rightarrow C$).
Proof: 1) \Rightarrow 2) Follows immediately from Remark 3.14 and Lemma 3.1 $2) \Rightarrow 3)$ We have $(\psi, \alpha) \sim(\varphi, \beta)$, with $\varphi(x)=1_{H} \otimes x$ for any $x \in C$. So, there exists $v: C \rightarrow H$, k-linear, convolution invertible, with $\varepsilon_{H} \circ v=\varepsilon_{C}$ such that, if we denote $\psi(c)=\sum c^{1} \otimes c^{2}, \varphi(c)=\sum c_{-1} \otimes c_{0}$, we have the relations (7) and (8) which appeared in the proof of Proposition 3.12.
Since $\varphi(c)=1_{H} \otimes c=\sum c_{-1} \otimes c_{0}$, (7) becomes
$\psi(c)=\sum v\left(c_{1}\right)\left(c_{2}\right)_{-1} v^{-1}\left(c_{3}\right) \otimes\left(c_{2}\right)_{0}=\sum v\left(c_{1}\right) v^{-1}\left(c_{3}\right) \otimes c_{2}$
and this is just the relation (9).
3) $\Rightarrow 1$) Let $v: C \rightarrow H$ be a k-linear map, convolution invertible, with $\varepsilon_{H} \circ v=\varepsilon_{C}$, such that $\psi(c)=\sum v\left(c_{1}\right) v^{-1}\left(c_{3}\right) \otimes c_{2}$. We consider the map $\gamma: C \rtimes_{\alpha} H \rightarrow H$ which appeared in the proof of Proposition 3.12, that is $\gamma(c \otimes h)=v^{-1}(c) h$. We proved there that γ is a cosection, and it is easy to see that the proof remains valid here.
Now, we show that

$$
\sum \gamma\left((c \otimes h)_{1}\right) \otimes \pi\left((c \otimes h)_{2}\right)=\sum \gamma\left((c \otimes h)_{2}\right) \otimes \pi\left((c \otimes h)_{1}\right)
$$

where $\pi: C \rtimes_{\alpha} H \rightarrow C, \pi(c \otimes h)=\varepsilon(h) c$. We have:
$\sum \gamma\left((c \otimes h)_{1}\right) \otimes \pi\left((c \otimes h)_{2}\right)=$
$=\sum \gamma\left(c_{1} \otimes\left(c_{2}\right)^{1} \alpha_{1}\left(c_{3}\right) h_{1}\right) \otimes \pi\left(\left(c_{2}\right)^{2} \otimes \alpha_{2}\left(c_{3}\right) h_{2}\right)$
$=\sum v^{-1}\left(c_{1}\right)\left(c_{2}\right)^{1} \alpha_{1}\left(c_{3}\right) h_{1} \otimes \varepsilon\left(\alpha_{2}\left(c_{3}\right)\right) \varepsilon\left(h_{2}\right)\left(c_{2}\right)^{2}$
$=\sum v^{-1}\left(c_{1}\right)\left(c_{2}\right)^{1} h \otimes\left(c_{2}\right)^{2}$
$=\sum v^{-1}\left(c_{1}\right) v\left(c_{2}\right) v^{-1}\left(c_{4}\right) h \otimes c_{3}$
(using (9))
$=\sum v^{-1}\left(c_{2}\right) h \otimes c_{1}$
$\sum \gamma\left((c \otimes h)_{2}\right) \otimes \pi\left((c \otimes h)_{1}\right)$
$=\sum v^{-1}\left(\left(c_{2}\right)^{2}\right) \alpha_{2}\left(c_{3}\right) h_{2} \otimes \varepsilon\left(\left(c_{2}\right)^{1}\right) \varepsilon\left(\alpha_{1}\left(c_{3}\right)\right) \varepsilon\left(h_{1}\right) c_{1}$
$=\sum v^{-1}\left(c_{2}\right) h \otimes c_{1}$
The conclusion is that $C \rtimes_{\alpha} H$ is H-twisted, and since $C \rtimes_{\alpha} H / C$ is isomorphic to D, we obtain that D / C is H-twisted, q.e.d.

4 The case when H is commutative

From now on, H will be a commutative Hopf algebra.
Let $\pi: D \rightarrow C$ be a cleft coextension, $\phi: D \rightarrow H$ a cosection and (ψ, α) the associated crossed cosystem. Define $f: D \rightarrow H \otimes C$ by

$$
f(c)=\sum \phi^{-1}\left(c_{1}\right) \phi\left(c_{3}\right) \otimes \pi\left(c_{2}\right)
$$

We shall prove that $\operatorname{Ker} \pi \subseteq \operatorname{Kerf}$. Let $c \in D, h \in H^{+}$; it is enough to show that $f(c h)=0$. We have $\pi(c h)=\varepsilon(h) \pi(c), \phi$ is a right H-module homomorphism and (see [4]) $\phi^{-1}(c h)=S(h) \phi^{-1}(c)$, so
$f(c h)=\sum \phi^{-1}\left(c_{1} h_{1}\right) \phi\left(c_{3} h_{2}\right) \otimes \pi\left(c_{2}\right)$
$=\sum S\left(h_{1}\right) \phi^{-1}\left(c_{1}\right) \phi\left(c_{3}\right) h_{2} \otimes \pi\left(c_{2}\right)$
$=\sum S\left(h_{1}\right) h_{2} \phi^{-1}\left(c_{1}\right) \phi\left(c_{3}\right) \otimes \pi\left(c_{2}\right)$
(because H is commutative)
$=\sum \varepsilon(h) \phi^{-1}\left(c_{1}\right) \phi\left(c_{3}\right) \otimes \pi\left(c_{2}\right)=0$, q.e.d.
Hence, we have proved the following
Lemma 4.1. There exists a k-linear map $F: C \rightarrow H \otimes C$, with $F(\pi(c))=\sum \phi^{-1}\left(c_{1}\right) \phi\left(c_{3}\right) \otimes \pi\left(c_{2}\right)$ for any $c \in D$.

Now, if C is a coalgebra, $Z(C)$ the cocentre of C, let $1^{d}: C \rightarrow Z(C)$ be the canonical (surjective) coalgebra homomorphism.
Hence $\sum 1^{d}\left(c_{1}\right) \otimes c_{2}=\sum 1^{d}\left(c_{2}\right) \otimes c_{1}$ for any $c \in C$.
Lemma 4.2. In the above situation, we have:

$$
\sum \phi\left(c_{1}\right) \phi^{-1}\left(c_{3}\right) \otimes 1^{d}\left(\pi\left(c_{2}\right)\right) \otimes \pi\left(c_{4}\right)=\sum \phi\left(c_{2}\right) \phi^{-1}\left(c_{4}\right) \otimes 1^{d}\left(\pi\left(c_{3}\right)\right) \otimes \pi\left(c_{1}\right)
$$

for any $c \in D$.
Proof: Let $\varphi \in C^{*}$, and define $f_{\varphi}: D \rightarrow H, f_{\varphi}(c)=\sum \phi^{-1}\left(c_{1}\right) \phi\left(c_{3}\right) \varphi\left(\pi\left(c_{2}\right)\right)$. It follows that $f_{\varphi} * \phi^{-1}(c)=\sum \phi^{-1}\left(c_{1}\right) \varphi\left(\pi\left(c_{2}\right)\right)$ for any $c \in D$.
We have the map $F: C \rightarrow H \otimes C$, with $F(\pi(c))=\sum \phi^{-1}\left(c_{1}\right) \phi\left(c_{3}\right) \otimes \pi\left(c_{2}\right)$ for any $c \in D$, so in this way we obtain a k-linear map $g_{\varphi}: C \rightarrow H$ with $f_{\varphi}(c)=g_{\varphi}(\pi(c))$ for any $c \in D$. Hence
$\sum \phi\left(c_{1}\right) \phi^{-1}\left(c_{3}\right) \varphi\left(\pi\left(c_{4}\right)\right) \otimes 1^{d}\left(\pi\left(c_{2}\right)\right)$
$=\sum \phi\left(c_{1}\right) g_{\varphi}\left(\pi\left(c_{3}\right)\right) \phi^{-1}\left(c_{4}\right) \otimes 1^{d}\left(\pi\left(c_{2}\right)\right)$
$=\sum \phi\left(c_{1}\right) g_{\varphi}\left(\pi\left(c_{2}\right)\right) \phi^{-1}\left(c_{4}\right) \otimes 1^{d}\left(\pi\left(c_{3}\right)\right)$
(because $\sum 1^{d}\left(x_{1}\right) \otimes x_{2}=\sum 1^{d}\left(x_{2}\right) \otimes x_{1}$ for any $x \in C$)
$=\sum \phi\left(c_{1}\right) \phi^{-1}\left(c_{2}\right) \phi\left(c_{4}\right) \varphi\left(\pi\left(c_{3}\right)\right) \phi^{-1}\left(c_{6}\right) \otimes 1^{d}\left(\pi\left(c_{5}\right)\right)$
$=\sum \phi\left(c_{2}\right) \phi^{-1}\left(c_{4}\right) \varphi\left(\pi\left(c_{1}\right)\right) \otimes 1^{d}\left(\pi\left(c_{3}\right)\right)$
Since this equality is valid for any $\varphi \in C^{*}$, we obtain
$\sum \phi\left(c_{1}\right) \phi^{-1}\left(c_{3}\right) \otimes 1^{d}\left(\pi\left(c_{2}\right)\right) \otimes \pi\left(c_{4}\right)=\sum \phi\left(c_{2}\right) \phi^{-1}\left(c_{4}\right) \otimes 1^{d}\left(\pi\left(c_{3}\right)\right) \otimes \pi\left(c_{1}\right)$.

Proposition 4.3. In the above situation, if we denote $\psi: C \rightarrow H \otimes C$, $\psi(\pi(c))=\sum \phi\left(c_{1}\right) \phi^{-1}\left(c_{3}\right) \otimes \pi\left(c_{2}\right)$ for any $c \in D$, then there exists a k-linear map $\bar{\psi}: Z(C) \rightarrow H \otimes Z(C)$ with $\bar{\psi}\left(1^{d}(c)\right)=\sum \phi\left(c_{1}\right) \phi^{-1}\left(c_{3}\right) \otimes 1^{d}\left(\pi\left(c_{2}\right)\right)$ for any $c \in C$.

Proof: By [13], p.544, $Z(C)=e_{-C^{e}}(C)$, where $C^{e}=C^{c o p} \otimes C$. By Proposition (2.2) of [13] the canonical map

$$
\theta: C \rightarrow e_{-C^{e}}(C) \otimes C
$$

is given by

$$
\theta(c)=\sum 1^{d}\left(c_{1}\right) \otimes c_{2}
$$

(for the definition of $e_{-C^{e}}(C)$ and the canonical map, we refer to [12]). By [12], 1.4, if W is a k-linear space and $\alpha: C \rightarrow W \otimes C$ is a C^{e}-right comodule homomorphism, then there exists a unique k-linear map $u: e_{-C^{e}}(C) \rightarrow W$ such that $\alpha=(u \otimes I) \circ \theta$. We shall take here $W=H \otimes Z(C)$; then, for $c \in C$, we denote $\psi(c)=\sum c^{1} \otimes c^{2}$ and we take $\alpha: C \rightarrow[H \otimes Z(C)] \otimes C$,

$$
\alpha(c)=\sum\left(c_{1}\right)^{1} \otimes 1^{d}\left(\left(c_{1}\right)^{2}\right) \otimes c_{2}
$$

The C^{e}-right comodule structure of C is given by

$$
\rho_{C}: C \rightarrow C \otimes C^{e}, \quad \rho_{C}(c)=\sum c_{2} \otimes\left(c_{1} \otimes c_{3}\right)
$$

(see [13], p.538). The C^{e}-right comodule structure of $H \otimes Z(C) \otimes C$ is given by

$$
\begin{gathered}
\rho: H \otimes Z(C) \otimes C \rightarrow(H \otimes Z(C) \otimes C) \otimes C^{e} \\
\rho\left(h \otimes 1^{d}(c) \otimes d\right)=\sum h \otimes 1^{d}(c) \otimes d_{2} \otimes d_{1} \otimes d_{3}
\end{gathered}
$$

We shall prove that α is a C^{e}-right comodule homomorphism; to see this, it is enough to show that $\rho \circ \alpha=(\alpha \otimes I) \circ \rho_{C}$ and then, by computation, it is enough to prove that

$$
\sum\left(c_{1}\right)^{1} \otimes 1^{d}\left(\left(c_{1}\right)^{2}\right) \otimes c_{2}=\sum\left(c_{2}\right)^{1} \otimes 1^{d}\left(\left(c_{2}\right)^{2}\right) \otimes c_{1}
$$

for any $c \in C$, or equivalently

$$
\sum \pi\left(c_{1}\right)^{1} \otimes 1^{d}\left(\pi\left(c_{1}\right)^{2}\right) \otimes \pi\left(c_{2}\right)=\sum \pi\left(c_{2}\right)^{1} \otimes 1^{d}\left(\pi\left(c_{2}\right)^{2}\right) \otimes \pi\left(c_{1}\right)
$$

for any $c \in D$. But, for any $c \in D, \psi(\pi(c))=\sum \phi\left(c_{1}\right) \phi^{-1}\left(c_{3}\right) \otimes \pi\left(c_{2}\right)$, hence the required equality follows using Lemma 4.2.
Therefore, there exists a unique k-linear map $u: Z(C) \rightarrow H \otimes Z(C)$ with $\alpha=$ $(u \otimes I) \circ \theta$.
We have $(u \otimes I)(\theta(c))=\sum u\left(1^{d}\left(c_{1}\right)\right) \otimes c_{2}$ for any $c \in C$. By applying $I \otimes \varepsilon$ we obtain $u\left(1^{d}(c)\right)=\sum \phi\left(c_{1}\right) \phi^{-1}\left(c_{3}\right) \otimes 1^{d}\left(\pi\left(c_{2}\right)\right)$ and now we can define $\bar{\psi}=u$.

Proposition 4.4. In the above situation, $\bar{\psi}$ defines a H-left comodule structure on $Z(C)$, and with this structure $Z(C)$ becomes a (cocommutative) H-comodule coalgebra.

Proof: We shall prove first that $\bar{\psi}$ is a comodule structure; to see this, it is enough to prove that

$$
\sum\left(1^{d}(c)\right)^{1} \otimes\left(1^{d}(c)^{2}\right)^{1} \otimes\left(1^{d}(c)^{2}\right)^{2}=\sum\left(1^{d}(c)^{1}\right)_{1} \otimes\left(1^{d}(c)^{1}\right)_{2} \otimes 1^{d}(c)^{2}
$$

for any $c \in C$. We have:
$\sum\left(1^{d}(c)\right)^{1} \otimes\left(1^{d}(c)^{2}\right)^{1} \otimes\left(1^{d}(c)^{2}\right)^{2}=\sum c^{1} \otimes 1^{d}\left(c^{2}\right)^{1} \otimes 1^{d}\left(c^{2}\right)^{2}=$
$\sum c^{1} \otimes\left(c^{2}\right)^{1} \otimes 1^{d}\left(\left(c^{2}\right)^{2}\right)$
(because $\sum 1^{d}(c)^{1} \otimes 1^{d}(c)^{2}=\bar{\psi}\left(1^{d}(c)\right)=\sum c^{1} \otimes 1^{d}\left(c^{2}\right)$)
For $c \in C$, the condition (TC) is
$\sum\left(c_{1}\right)^{1} \alpha_{1}\left(c_{2}\right) \otimes\left(\left(c_{1}\right)^{2}\right)^{1} \alpha_{2}\left(c_{2}\right) \otimes\left(\left(c_{1}\right)^{2}\right)^{2}=$
$\sum \alpha_{1}\left(c_{1}\right)\left(\left(c_{2}\right)^{1}\right)_{1} \otimes \alpha_{2}\left(c_{1}\right)\left(\left(c_{2}\right)^{1}\right)_{2} \otimes\left(c_{2}\right)^{2}$
Now, taking $\varphi \in C^{*}$ and applying φ on the last position in the previous equality, we obtain two functions defined on C with values in $H \otimes H$; multiplying by convolution to the left with α^{-1}, we obtain, finally:
$\sum c^{1} \otimes\left(c^{2}\right)^{1} \otimes\left(c^{2}\right)^{2}=\sum \alpha_{1}\left(c_{1}\right)\left(\left(c_{2}\right)^{1}\right)_{1} \alpha_{1}^{-1}\left(c_{3}\right) \otimes \alpha_{2}\left(c_{1}\right)\left(\left(c_{2}\right)^{1}\right)_{2} \alpha_{2}^{-1}\left(c_{3}\right) \otimes\left(c_{2}\right)^{2}$
Then
$\sum c^{1} \otimes\left(c^{2}\right)^{1} \otimes 1^{d}\left(\left(c^{2}\right)^{2}\right)$
$=\sum \alpha_{1}\left(c_{1}\right)\left(1^{d}\left(c_{2}\right)^{1}\right)_{1} \alpha_{1}^{-1}\left(c_{3}\right) \otimes \alpha_{2}\left(c_{1}\right)\left(1^{d}\left(c_{2}\right)^{1}\right)_{2} \alpha_{2}^{-1}\left(c_{3}\right) \otimes 1^{d}\left(c_{2}\right)^{2}$
(because $\sum 1^{d}(x)^{1} \otimes 1^{d}(x)^{2}=\sum x^{1} \otimes 1^{d}\left(x^{2}\right)$)
$=\sum \alpha_{1}\left(c_{1}\right)\left(1^{d}\left(c_{3}\right)^{1}\right)_{1} \alpha_{1}^{-1}\left(c_{2}\right) \otimes \alpha_{2}\left(c_{1}\right)\left(1^{d}\left(c_{3}\right)^{1}\right)_{2} \alpha_{2}^{-1}\left(c_{2}\right) \otimes 1^{d}\left(c_{3}\right)^{2}$
(because $\left.\sum 1^{d}\left(x_{1}\right) \otimes x_{2}=\sum 1^{d}\left(x_{2}\right) \otimes x_{1}\right)$
$=\sum\left(1^{d}(c)^{1}\right)_{1} \otimes\left(1^{d}(c)^{1}\right)_{2} \otimes 1^{d}(c)^{2}$
where the last equality follows because H is commutative.
Now, the fact that $Z(C)$ is a H-comodule coalgebra follows immediately, using the relations:
$\sum\left(1^{d}(c)\right)_{1} \otimes\left(1^{d}(c)\right)_{2}=\sum 1^{d}\left(c_{1}\right) \otimes 1^{d}\left(c_{2}\right)$ and
$\sum 1^{d}(c)^{1} \otimes 1^{d}(c)^{2}=\sum c^{1} \otimes 1^{d}\left(c^{2}\right)$
for any $c \in C$.
Lemma 4.5. In the above situation, if ϕ^{\prime} is another cosection, then the coaction of H on $Z(C)$ induced by ϕ^{\prime} (it is a strong coaction) is just $\bar{\psi}$, i.e. the coaction induced by ϕ.

Proof: Let (φ, β) be the crossed cosystem induced by ϕ^{\prime}. From Lemma 3.1 we know that $(\psi, \alpha) \sim(\varphi, \beta)$, so there exists $v: C \rightarrow H$, k-linear and convolution invertible such that $\varphi(c)=\sum v\left(c_{1}\right)\left(c_{2}\right)^{1} v^{-1}\left(c_{3}\right) \otimes\left(c_{2}\right)^{2}$ for any $c \in C$, where $\psi(c)=$ $\sum c^{1} \otimes c^{2}$. Therefore it is enough to prove that

$$
\sum v\left(c_{1}\right)\left(c_{2}\right)^{1} v^{-1}\left(c_{3}\right) \otimes 1^{d}\left(\left(c_{2}\right)^{2}\right)=\sum c^{1} \otimes 1^{d}\left(c^{2}\right)
$$

for any $c \in C$, and this follows immediately, using the relations
$\sum 1^{d}(c)^{1} \otimes 1^{d}(c)^{2}=\sum c^{1} \otimes 1^{d}\left(c^{2}\right)$
$\sum 1^{d}\left(c_{1}\right) \otimes c_{2}=\sum 1^{d}\left(c_{2}\right) \otimes c_{1}$
and the fact that H is commutative.
Remark 4.6. By Proposition 3.9 and the proof of Lemma 4.5 it follows that if D^{\prime} / C is a cleft coextension isomorphic to D / C, then the coaction of H on $Z(C)$ induced by D^{\prime} / C equals the one induced by D / C. Hence, an isomorphism class of cleft coextensions $[D / C]$ gives a unique left H-comodule coalgebra structure on $Z(C)$.

Now, let H be a commutative Hopf algebra, B a cocommutative left H-comodule coalgebra with structure map $\rho: B \rightarrow H \otimes B, \rho(b)=\sum b^{1} \otimes b^{2}$. In [6] the cohomology groups Coalg - $H^{n}(B, H)$ were defined; they are dual to the cohomology groups introduced by Sweedler in [11]. In the sequel, we use only $\operatorname{Coalg}-H^{2}(B, H)$. If $v: B \rightarrow H$ is k-linear and convolution invertible, define a (k-linear and convolution invertible) map $D^{1}(v): B \rightarrow H \otimes H$, by

$$
D^{1}(v)(b)=\sum\left(b_{1}\right)^{1} v\left(b_{2}\right) v^{-1}\left(b_{3}\right)_{1} \otimes v\left(\left(b_{1}\right)^{2}\right) v^{-1}\left(b_{3}\right)_{2}
$$

Then Coalg - $H^{2}(B, H)=Z^{2}(B, H) / B^{2}(B, H)$, where $Z^{2}(B, H)=$
$=\{\alpha: B \rightarrow H \otimes H, k$ - linear, convolution invertible, with $(C U)$ and $(C)\}$

$$
\begin{aligned}
& B^{2}(B, H)= \\
& \quad=\left\{D^{1}(v) / v: B \rightarrow H, k-\text { linear, convolution invertible, with } \varepsilon_{H} \circ v=\varepsilon_{B}\right\} .
\end{aligned}
$$

Proposition 4.7. Let H be a commutative Hopf algebra, D / C a cleft coextension, $\phi: D \rightarrow H$ a cosection and (ψ, α) the corresponding crossed cosystem. If Γ : $Z(C) \rightarrow H \otimes H$, let $\gamma: C \rightarrow H \otimes H, \gamma(c)=\Gamma\left(1^{d}(c)\right)$. Then:

1) If $\Gamma \in Z^{2}(Z(C), H)$, then $(\psi, \alpha * \gamma)$ is a crossed cosystem for H over C.
2) Conversely, if $\alpha^{\prime}: C \rightarrow H \otimes H$ is k-linear and convolution invertible, and $\left(\psi, \alpha^{\prime}\right)$ is a crossed cosystem for H over C (with the same ψ), then there exists $\Gamma \in$ $Z^{2}(Z(C), H)$ such that $\alpha^{\prime}=\alpha * \gamma$.
3) If $\Gamma, \Gamma^{\prime} \in Z^{2}(Z(C), H)$, then $(\psi, \alpha * \gamma) \sim\left(\psi, \alpha * \gamma^{\prime}\right)$ if and only if Γ and Γ^{\prime} are cohomologous, i.e. there exists $v: Z(C) \rightarrow H$, k-linear, convolution invertible, with $\varepsilon_{H} \circ v=\varepsilon_{Z(C)}$, such that $\Gamma^{-1} * \Gamma^{\prime}=D^{1}(v)$.
4) The map $\Gamma \mapsto(\psi, \alpha * \gamma)$ induces a bijection between Coalg $-H^{2}(Z(C), H)$ and the set of the equivalence classes of all those crossed cosystems for H over C which have ψ as weak coaction.

Proof: 1) Follows after a tedious (but straightforward) computation.
2) Define $\gamma: C \rightarrow H \otimes H, \gamma=\alpha^{-1} * \alpha^{\prime}$. It is enough to show that there exists $\Gamma \in Z^{2}(Z(C), H)$ such that $\Gamma\left(1^{d}(c)\right)=\gamma(c)$ for any $c \in C$.

We had $\psi: C \rightarrow H \otimes C, \psi(\pi(c))=\sum \phi\left(c_{1}\right) \phi^{-1}\left(c_{3}\right) \otimes \pi\left(c_{2}\right)$ for any $c \in D$ and $F: C \rightarrow H \otimes C, F(\pi(c))=\sum \phi^{-1}\left(c_{1}\right) \phi\left(c_{3}\right) \otimes \pi\left(c_{2}\right)$ for any $c \in D$. If $c \in C$ we denote $\psi(c)=\sum c^{1} \otimes c^{2}$ and $F(c)=\sum c_{-1} \otimes c_{0}$. Then, if $c \in D$ and $d=\pi(c)$, we have:
$\sum d^{1}\left(d^{2}\right)_{-1} \otimes\left(d^{2}\right)_{0}=\sum \phi\left(c_{1}\right) \phi^{-1}\left(c_{5}\right) \phi^{-1}\left(c_{2}\right) \phi\left(c_{4}\right) \otimes \pi\left(c_{3}\right)=$
$1 \otimes \pi(c)=1 \otimes d$
(because H is commutative).
Hence
$\sum x^{1}\left(x^{2}\right)_{-1} \otimes\left(x^{2}\right)_{0}=1 \otimes x$
for any $x \in C$.
We have seen before that, since (ψ, α) is a crossed cosystem, we have
$\sum c^{1} \otimes\left(c^{2}\right)^{1} \otimes\left(c^{2}\right)^{2}=\sum \alpha_{1}\left(c_{1}\right)\left(\left(c_{2}\right)^{1}\right)_{1} \alpha_{1}^{-1}\left(c_{3}\right) \otimes \alpha_{2}\left(c_{1}\right)\left(\left(c_{2}\right)^{1}\right)_{2} \alpha_{2}^{-1}\left(c_{3}\right) \otimes\left(c_{2}\right)^{2}$
But (ψ, α^{\prime}) is also a crossed cosystem, then
$\sum \alpha_{1}\left(c_{1}\right)\left(\left(c_{2}\right)^{1}\right)_{1} \alpha_{1}^{-1}\left(c_{3}\right) \otimes \alpha_{2}\left(c_{1}\right)\left(\left(c_{2}\right)^{1}\right)_{2} \alpha_{2}^{-1}\left(c_{3}\right) \otimes\left(c_{2}\right)^{2}=$
$=\sum \alpha_{1}^{\prime}\left(c_{1}\right)\left(\left(c_{2}\right)^{1}\right)_{1} \alpha_{1}^{\prime-1}\left(c_{3}\right) \otimes \alpha_{2}^{\prime}\left(c_{1}\right)\left(\left(c_{2}\right)^{1}\right)_{2} \alpha_{2}^{\prime-1}\left(c_{3}\right) \otimes\left(c_{2}\right)^{2}$
for any $c \in C$.
Now, let $\varphi \in C^{*}$; we shall prove that $\sum \varphi\left(c_{1}\right) \gamma\left(c_{2}\right)=\sum \varphi\left(c_{2}\right) \gamma\left(c_{1}\right)$ for any $c \in C$.
$\sum \varphi\left(c_{1}\right) \gamma\left(c_{2}\right)=\sum \varphi\left(c_{1}\right) \alpha_{1}^{-1}\left(c_{2}\right) \alpha_{1}^{\prime}\left(c_{3}\right) \otimes \alpha_{2}^{-1}\left(c_{2}\right) \alpha_{2}^{\prime}\left(c_{3}\right)$

$$
\begin{aligned}
& =\sum \alpha_{1}^{-1}\left(c_{1}\right) \alpha_{1}\left(c_{2}\right)\left(\left(c_{3}\right)^{1}\right)_{1}\left(\left(\left(c_{3}\right)^{2}\right)_{-1}\right)_{1} \varphi\left(\left(\left(c_{3}\right)^{2}\right)_{0}\right) \alpha_{1}^{-1}\left(c_{4}\right) \alpha_{1}^{\prime}\left(c_{5}\right) \otimes \\
& \otimes \alpha_{2}^{-1}\left(c_{1}\right) \alpha_{2}\left(c_{2}\right)\left(\left(c_{3}\right)^{1}\right)_{2}\left(\left(\left(c_{3}\right)^{2}\right)_{-1}\right)_{2} \alpha_{2}^{-1}\left(c_{4}\right) \alpha_{2}^{\prime}\left(c_{5}\right)
\end{aligned}
$$

(applying $\left(^{*}\right)$ for $\left(c_{1}\right)^{1}\left(\left(c_{1}\right)^{2}\right)_{1}$ instead of x)
$=\sum \alpha_{1}^{-1}\left(c_{1}\right) \alpha_{1}\left(c_{2}\right)\left(\left(c_{3}\right)^{1}\right)_{1} \alpha_{1}^{-1}\left(c_{4}\right)\left(\left(\left(c_{3}\right)^{2}\right)_{-1}\right)_{1} \varphi\left(\left(\left(c_{3}\right)^{2}\right)_{0}\right) \alpha_{1}^{\prime}\left(c_{5}\right) \otimes$

$$
\otimes \alpha_{2}^{-1}\left(c_{1}\right) \alpha_{2}\left(c_{2}\right)\left(\left(c_{3}\right)^{1}\right)_{2} \alpha_{2}^{-1}\left(c_{4}\right)\left(\left(\left(c_{3}\right)^{2}\right)_{-1}\right)_{2} \alpha_{2}^{\prime}\left(c_{5}\right)
$$

(because H is commutative)

$$
\begin{array}{r}
=\sum \alpha_{1}^{-1}\left(c_{1}\right) \alpha_{1}^{\prime}\left(c_{2}\right)\left(\left(c_{3}\right)^{1}\right)_{1} \alpha_{1}^{\prime-1}\left(c_{4}\right)\left(\left(\left(c_{3}\right)^{2}\right)_{-1}\right)_{1} \varphi\left(\left(\left(c_{3}\right)^{2}\right)_{0}\right) \alpha_{1}^{\prime}\left(c_{5}\right) \otimes \\
\otimes \alpha_{2}^{-1}\left(c_{1}\right) \alpha_{2}^{\prime}\left(c_{2}\right)\left(\left(c_{3}\right)^{1}\right)_{2} \alpha_{2}^{\prime-1}\left(c_{4}\right)\left(\left(\left(c_{3}\right)^{2}\right)_{-1}\right)_{2} \alpha_{2}^{\prime}\left(c_{5}\right)
\end{array}
$$

(applying $\left({ }^{* *}\right)$ for c_{1} instead of c)
$=\sum \alpha_{1}^{-1}\left(c_{1}\right) \alpha_{1}^{\prime}\left(c_{2}\right)\left[\left(c_{3}\right)^{1}\left(\left(c_{3}\right)^{2}\right)_{-1}\right]_{1} \varphi\left(\left(\left(c_{3}\right)^{2}\right)_{0}\right) \otimes$
$\alpha_{2}^{-1}\left(c_{1}\right) \alpha_{2}^{\prime}\left(c_{2}\right)\left[\left(c_{3}\right)^{1}\left(\left(c_{3}\right)^{2}\right)_{-1}\right]_{2}$
(because H is commutative)
$=\sum \alpha_{1}^{-1}\left(c_{1}\right) \alpha_{1}^{\prime}\left(c_{2}\right) \varphi\left(c_{3}\right) \otimes \alpha_{2}^{-1}\left(c_{1}\right) \alpha_{2}^{\prime}\left(c_{2}\right)=\sum \gamma\left(c_{1}\right) \varphi\left(c_{2}\right)$
(applying (*))
Therefore we have $\sum \gamma\left(c_{1}\right) \otimes c_{2}=\sum \gamma\left(c_{2}\right) \otimes c_{1}$ for any $c \in C$.
We shall define $f: C \rightarrow H \otimes H \otimes H, f(c)=\sum \gamma\left(c_{1}\right) \otimes c_{2}$. C is a C^{e}-right comodule with structure map $\rho_{C}: C \rightarrow C \otimes C^{e}, \rho_{C}(c)=\sum c_{2} \otimes c_{1} \otimes c_{3}$ and $H \otimes H \otimes C$ is a C^{e} right comodule with structure map $\rho: H \otimes H \otimes C \rightarrow H \otimes H \otimes C \otimes C^{e}$, $\rho(h \otimes g \otimes c)=\sum h \otimes g \otimes c_{2} \otimes c_{1} \otimes c_{3}$.
Using the relation $\sum \gamma\left(c_{1}\right) \otimes c_{2}=\sum \gamma\left(c_{2}\right) \otimes c_{1}$, it is easy to see that f is a right comodule homomorphism. Now, from [12] ,1.4, there exists a unique k-linear map $u: Z(C) \rightarrow H \otimes H$ such that $f=(u \otimes I) \circ \theta$, where $\theta: C \rightarrow Z(C) \otimes C$, $\theta(c)=\sum 1^{d}\left(c_{1}\right) \otimes c_{2}$. Hence $\gamma(c)=u\left(1^{d}(c)\right)$ for any $c \in C$.
Define $\Gamma=u$. We shall prove that $\Gamma \in Z^{2}(Z(C), H)$. Since $\left(\psi, \alpha^{\prime}\right)$ is a crossed cosystem, it appears, by Proposition 3.9, from a cleft coextension, say D^{\prime} / C, in fact from a cosection $\phi^{\prime}: D^{\prime} \rightarrow H$. So, using the same proof, there exists $\Gamma^{\prime}: Z(C) \rightarrow H \otimes H$, k-linear, with $\Gamma^{\prime}\left(1^{d}(c)\right)=\gamma^{\prime}(c)$ for any $c \in C$, where $\gamma^{\prime}=\alpha^{\prime-1} * \alpha$, and then obviously Γ^{\prime} is the convolution inverse of Γ. It remains to prove that Γ satisfies (CU) and (C). Let $\Gamma\left(1^{d}(c)\right)=\sum \Gamma_{1}\left(1^{d}(c)\right) \otimes \Gamma_{2}\left(1^{d}(c)\right)=\gamma(c)=\sum \gamma_{1}(c) \otimes \gamma_{2}(c)$.
The condition (CU) for Γ is trivial, because α and α^{\prime} satisfy (CU). We shall prove now the condition (C).
Since $\sum 1^{d}\left(c_{1}\right) \otimes c_{2}=\sum 1^{d}\left(c_{2}\right) \otimes c_{1}$ and H is commutative, we have that $\gamma=\alpha^{\prime} * \alpha^{-1}$. Then:

$$
\begin{aligned}
& \sum \gamma_{1}\left(c_{1}\right)\left(\gamma_{1}\left(c_{2}\right)\right)_{1} \otimes \gamma_{2}\left(c_{1}\right)\left(\gamma_{1}\left(c_{2}\right)\right)_{2} \otimes \gamma_{2}\left(c_{2}\right)= \\
& =\sum \alpha_{1}^{-1}\left(c_{1}\right) \alpha_{1}^{\prime}\left(c_{2}\right)\left[\alpha_{1}^{\prime}\left(c_{3}\right) \alpha_{1}^{-1}\left(c_{4}\right)\right]_{1} \otimes \\
& \qquad \otimes \alpha_{2}^{-1}\left(c_{1}\right) \alpha_{2}^{\prime}\left(c_{2}\right)\left[\alpha_{1}^{\prime}\left(c_{3}\right) \alpha_{1}^{-1}\left(c_{4}\right)\right]_{2} \otimes \alpha_{2}^{\prime}\left(c_{3}\right) \alpha_{2}^{-1}\left(c_{4}\right) \\
& \text { (using } \alpha^{\prime} * \alpha^{-1}=\alpha^{-1} * \alpha^{\prime} \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& =\sum \alpha_{1}^{-1}\left(c_{1}\right)\left(c_{2}\right)^{1} \alpha_{1}^{\prime}\left(c_{3}\right) \alpha_{1}^{-1}\left(c_{4}\right)_{1} \otimes \\
& \\
& \quad \otimes \alpha_{2}^{-1}\left(c_{1}\right) \alpha_{1}^{\prime}\left(\left(c_{2}\right)^{2}\right) \alpha_{2}^{\prime}\left(c_{3}\right)_{1} \alpha_{1}^{-1}\left(c_{4}\right)_{2} \otimes \alpha_{2}^{\prime}\left(\left(c_{2}\right)^{2}\right) \alpha_{2}^{\prime}\left(c_{3}\right)_{2} \alpha_{2}^{-1}\left(c_{4}\right)
\end{aligned}
$$

(using condition (C) for α^{\prime})

$$
\begin{aligned}
& =\sum \alpha_{1}^{-1}\left(c_{1}\right)\left(c_{2}\right)^{1} \alpha_{1}\left(c_{3}\right) \gamma_{1}\left(c_{4}\right) \alpha_{1}^{-1}\left(c_{5}\right)_{1} \otimes \\
& \otimes \alpha_{2}^{-1}\left(c_{1}\right) \alpha_{1}\left(\left(\left(c_{2}\right)^{2}\right)_{1}\right) \gamma_{1}\left(\left(\left(c_{2}\right)^{2}\right)_{2}\right) \alpha_{2}\left(c_{3}\right)_{1} \gamma_{2}\left(c_{4}\right)_{1} \alpha_{1}^{-1}\left(c_{5}\right)_{2} \otimes \\
& \otimes \alpha_{2}\left(\left(\left(c_{2}\right)^{2}\right)_{1}\right) \gamma_{2}\left(\left(\left(c_{2}\right)^{2}\right)_{2}\right) \alpha_{2}\left(c_{3}\right)_{2} \gamma_{2}\left(c_{4}\right)_{2} \alpha_{2}^{-1}\left(c_{5}\right)
\end{aligned}
$$

$$
\left(\text { using } \alpha^{\prime}=\alpha * \gamma\right)
$$

$$
=\sum \alpha_{1}^{-1}\left(c_{1}\right)\left(c_{2}\right)^{1} \alpha_{1}\left(c_{3}\right) \Gamma_{1}\left(1^{d}\left(c_{4}\right)\right) \alpha_{1}^{-1}\left(c_{5}\right)_{1} \otimes
$$

$$
\otimes \alpha_{2}^{-1}\left(c_{1}\right) \alpha_{1}\left(\left(\left(c_{2}\right)^{2}\right)_{1}\right) \Gamma_{1}\left(1^{d}\left(\left(\left(c_{2}\right)^{2}\right)_{2}\right)\right) \alpha_{2}\left(c_{3}\right)_{1} \Gamma_{2}\left(1^{d}\left(c_{4}\right)\right)_{1} \alpha_{1}^{-1}\left(c_{5}\right)_{2} \otimes
$$

$$
\otimes \alpha_{2}\left(\left(\left(c_{2}\right)^{2}\right)_{1}\right) \Gamma_{2}\left(1^{d}\left(\left(\left(c_{2}\right)^{2}\right)_{2}\right)\right) \alpha_{2}\left(c_{3}\right)_{2} \Gamma_{2}\left(1^{d}\left(c_{4}\right)\right)_{2} \alpha_{2}^{-1}\left(c_{5}\right)
$$

$$
=\sum \alpha_{1}^{-1}\left(c_{1}\right)\left(c_{2}\right)^{1}\left(c_{3}\right)^{1} \alpha_{1}\left(c_{4}\right) \Gamma_{1}\left(1^{d}\left(c_{5}\right)\right) \alpha_{1}^{-1}\left(c_{6}\right)_{1} \otimes
$$

$$
\otimes \alpha_{2}^{-1}\left(c_{1}\right) \alpha_{1}\left(\left(c_{2}\right)^{2}\right) \Gamma_{1}\left(1^{d}\left(\left(c_{3}\right)^{2}\right)\right) \alpha_{2}\left(c_{4}\right)_{1} \Gamma_{2}\left(1^{d}\left(c_{5}\right)\right)_{1} \alpha_{1}^{-1}\left(c_{6}\right)_{2} \otimes
$$

$$
\left.\left.\otimes \alpha_{2}\left(\left(c_{2}\right)^{2}\right)\right) \Gamma_{2}\left(1^{d}\left(\left(c_{3}\right)^{2}\right)\right) \alpha_{2}\left(c_{4}\right)\right)_{2} \Gamma_{2}\left(1^{d}\left(c_{5}\right)\right)_{2} \alpha_{2}^{-1}\left(c_{6}\right)
$$

(using the definition of the weak coaction for c_{2})

$$
\begin{aligned}
& =\sum \alpha_{1}^{-1}\left(c_{1}\right)\left(1^{d}\left(c_{2}\right)\right)^{1}\left(c_{3}\right)^{1} \alpha_{1}\left(c_{4}\right) \Gamma_{1}\left(1^{d}\left(c_{5}\right)\right) \alpha_{1}^{-1}\left(c_{6}\right)_{1} \otimes \\
& \otimes \alpha_{2}^{-1}\left(c_{1}\right) \alpha_{1}\left(\left(c_{3}\right)^{2}\right) \alpha_{2}\left(c_{4}\right)_{1} \Gamma_{1}\left(1^{d}\left(c_{2}\right)^{2}\right) \Gamma_{2}\left(1^{d}\left(c_{5}\right)\right)_{1} \alpha_{1}^{-1}\left(c_{6}\right)_{2} \otimes \\
& \left.\otimes \Gamma_{2}\left(1^{d}\left(c_{2}\right)^{2}\right) \alpha_{2}\left(\left(c_{3}\right)^{2}\right)\right) \alpha_{2}\left(c_{4}\right)_{2} \Gamma_{2}\left(1^{d}\left(c_{5}\right)\right)_{2} \alpha_{2}^{-1}\left(c_{6}\right)
\end{aligned}
$$

(because: by Proposition 4.3 we have $\sum 1^{d}(c)^{1} \otimes 1^{d}(c)^{2}=\sum c^{1} \otimes 1^{d}\left(c^{2}\right)$; we apply this here for c_{3}. Then we have $\sum 1^{d}\left(c_{3}\right) \otimes c_{2}=\sum 1^{d}\left(c_{2}\right) \otimes c_{3}$ and H is commutative)

$$
\begin{aligned}
& =\sum \alpha_{1}^{-1}\left(c_{1}\right)\left(1^{d}\left(c_{2}\right)\right)^{1} \alpha_{1}\left(c_{3}\right) \alpha_{1}\left(c_{4}\right)_{1} \Gamma_{1}\left(1^{d}\left(c_{5}\right)\right) \alpha_{1}^{-1}\left(c_{6}\right)_{1} \otimes \\
& \otimes \alpha_{2}^{-1}\left(c_{1}\right) \Gamma_{1}\left(1^{d}\left(c_{2}\right)^{2}\right) \alpha_{2}\left(c_{3}\right) \alpha_{1}\left(c_{4}\right)_{2} \Gamma_{2}\left(1^{d}\left(c_{5}\right)\right)_{1} \alpha_{1}^{-1}\left(c_{6}\right)_{2} \otimes \\
& \otimes \Gamma_{2}\left(1^{d}\left(c_{2}\right)^{2}\right) \alpha_{2}\left(c_{4}\right) \Gamma_{2}\left(1^{d}\left(c_{5}\right)\right)_{2} \alpha_{2}^{-1}\left(c_{6}\right)
\end{aligned}
$$

(applying (C) for α)
$=\alpha_{1}^{-1}\left(c_{1}\right) \alpha_{1}\left(c_{2}\right)\left(c_{3}\right)^{1} \gamma_{1}\left(c_{4}\right) \alpha_{1}\left(c_{5}\right)_{1} \alpha_{1}^{-1}\left(c_{6}\right)_{1} \otimes$

$$
\begin{gathered}
\otimes \alpha_{2}^{-1}\left(c_{1}\right) \alpha_{2}\left(c_{2}\right) \Gamma_{1}\left(1^{d}\left(c_{2}\right)^{2}\right) \gamma_{2}\left(c_{4}\right) \alpha_{1}\left(c_{5}\right)_{2} \alpha_{1}^{-1}\left(c_{6}\right)_{2} \otimes \\
\otimes \Gamma_{2}\left(1^{d}\left(c_{2}\right)^{2}\right) \gamma_{2}\left(c_{5}\right)_{2} \alpha_{2}\left(c_{5}\right) \alpha_{2}^{-1}\left(c_{6}\right)
\end{gathered}
$$

(because $\sum 1^{d}\left(c_{2}\right) \otimes c_{3}=\sum 1^{d}\left(c_{3}\right) \otimes c_{2}$ and $\sum 1^{d}\left(c_{5}\right) \otimes c_{4}=\sum 1^{d}\left(c_{4}\right) \otimes c_{5}$)
$=\sum\left(\left(1^{d}(c)_{1}\right)^{1} \Gamma_{1}\left(1^{d}(c)_{2}\right) \otimes \Gamma_{1}\left(\left(1^{d}(c)_{1}\right)^{2}\right) \Gamma_{2}\left(1^{d}(c)_{2}\right)_{1} \otimes \Gamma_{2}\left(\left(1^{d}(c)_{1}\right)^{2}\right) \Gamma_{2}\left(1^{d}(c)_{2}\right)_{2}\right.$
hence Γ satisfies (C).
3) Suppose $(\psi, \alpha * \gamma) \sim\left(\psi, \alpha * \gamma^{\prime}\right)$. We shall prove that Γ and Γ^{\prime} are cohomologous.

From the above equivalence, there exists $v: C \rightarrow H$, k-linear, convolution invertible, with $\varepsilon_{H} \circ v=\varepsilon_{C}$ such that (denote $\left.\psi(c)=\sum c^{1} \otimes c^{2}\right)$:

$$
\begin{gather*}
\sum c^{1} \otimes c^{2}=\sum v\left(c_{1}\right)\left(c_{2}\right)^{1} v^{-1}\left(c_{3}\right) \otimes\left(c_{2}\right)^{2} \tag{10}\\
\left(\alpha * \gamma^{\prime}\right)(c)=\sum v\left(c_{1}\right)\left(c_{2}\right)^{1}(\alpha * \gamma)_{1}\left(c_{3}\right) v^{-1}\left(c_{4}\right)_{1} \otimes v\left(\left(c_{2}\right)^{2}\right)(\alpha * \gamma)_{2}\left(c_{3}\right) v^{-1}\left(c_{4}\right)_{2} \tag{11}
\end{gather*}
$$

First, we shall prove that $\sum v\left(c_{1}\right) \otimes c_{2}=\sum v\left(c_{2}\right) \otimes c_{1}$ for any $c \in C$. Let $\varphi \in C^{*}$; we denoted $F(\pi(c))=\sum c_{-1} \otimes c_{0}, F: C \rightarrow H \otimes C$. Then, for $c \in C$, we have
$\sum v\left(c_{1}\right) \varphi\left(c_{2}\right)=\sum v\left(c_{1}\right)\left(c_{2}\right)^{1}\left(\left(c_{2}\right)^{2}\right)_{-1} \varphi\left(\left(\left(c_{2}\right)^{2}\right)_{0}\right) v^{-1}\left(c_{3}\right) v\left(c_{4}\right)$
(because $\left.\sum c^{1}\left(c^{2}\right)_{-1} \otimes\left(c^{2}\right)_{0}=1 \otimes c\right)$
$=\sum\left(c_{1}\right)^{1}\left(\left(c_{1}\right)^{2}\right)_{-1} \varphi\left(\left(\left(c_{1}\right)^{2}\right)_{0}\right) v\left(c_{2}\right)$
(applying the fact that H is commutative and (10))
$=\sum \varphi\left(c_{1}\right) v\left(c_{2}\right)$
Hence, $\sum v\left(c_{1}\right) \otimes c_{2}=\sum v\left(c_{2}\right) \otimes c_{1}$.
Now, define $f: C \rightarrow H \otimes C, f(c)=\sum v\left(c_{1}\right) \otimes c_{2}$. The equality proved above says that f is a right C^{e}-comodule homomorphism. Therefore, there exists a unique k-linear map $u: Z(C) \rightarrow H$ such that $(u \otimes I) \circ \theta=f$, where θ is the canonical map. So, $u\left(1^{d}(c)\right)=v(c)$, and therefore u is convolution invertible.
If we denote $A: Z(C) \rightarrow H \otimes H, A\left(1^{d}(c)\right)=\alpha(c)$, then A is convolution invertible and from (11) we obtain immediately $A * \Gamma^{\prime}=(A * \Gamma) * D^{1}(u)$, hence $\Gamma^{\prime}=\Gamma * D^{1}(u)$ q.e.d.

Conversely, if Γ and Γ^{\prime} are cohomologous, we can prove in a similar way that ($\psi, \alpha *$ $\gamma) \sim\left(\psi, \alpha * \gamma^{\prime}\right)$.
4) Is a direct consequence of 1), 2) and 3).

Remark 4.8. In the conditions of the above theorem, if there exists a map A : $Z(C) \rightarrow H \otimes H$, -linear, such that $A\left(1^{d}(c)\right)=\alpha(c)$ for any $c \in C$, then $A \in$ $Z^{2}(Z(C), H \otimes H)$, and $(T C)$ implies that C is a left H-comodule coalgebra via ψ. The pair $\left(\psi, \alpha_{0}\right)$, where $\alpha_{0}(c)=\varepsilon(c) 1_{H} \otimes 1_{H}$, is also a crossed cosystem for H over C. Therefore, by 3) we obtain that B / C is H-smash if and only if $A \in B^{2}(Z(C), H)$.
Remark 4.9. If H is a commutative Hopf algebra, then, for $B=k$, the cohomology groups coalg - $H^{n}(B, H)$ are also known under the name Harrison cohomology groups. It is known (see [2], Th.3.4) that the second Harrison cohomology group is isomorphic to the group of Galois coobjects with normal basis. Recall that a Galois coobject with normal basis is a right H-module coalgebra C satisfying the following properties:

1) the map $\delta: C \otimes H \rightarrow C \otimes C, \quad \delta(c \otimes h)=\sum c_{1} \otimes c_{2} h \quad$ is an isomorphism
2) H and C are isomorphic as right H-modules
(see [2], [3], [9]).
The group operation is the tensor product over H (see [2], Th.2.3). We can conclude that a cleft H-coextension of k is an H-Galois coobject with normal basis.

ACKNOWLEDGEMENT

I thank Şerban Raianu for suggesting the subject of this paper, and the referee for some useful suggestions.

References

[1] E. Abe, "Hopf Algebras", Cambridge University Press, Cambridge, 1977.
[2] S. Caenepeel, Harrison cocycles and the group of Galois coobjects, Preprint 1995.
[3] S. Caenepeel and Ş. Raianu, Induction functors for the Doi-Koppinen unified Hopf modules, in Abelian groups and modules, Proc. of the Padova Conference, Padova, Italy, June 23-July 1, 1994, Kluwer, 1995, eds. A. Facchini and C. Menini, pp. 73-94.
[4] S. Dăscălescu, G. Militaru, Ş. Raianu, Crossed coproducts and cleft coextensions, Comm. Algebra, 24 (1996), 1229-1243.
[5] S. Dăscălescu, Ş. Raianu, Y.H. Zhang, Finite Hopf-Galois Coextensions, Crossed Coproducts and Duality, J. Algebra 178 (1995), 400-413.
[6] Y. Doi, Cohomologies over Commutative Hopf Algebras, J. Math. Soc. Japan, vol. 25, no. 4 (1973), 680-706.
[7] Y. Doi, Equivalent Crossed Products for a Hopf Algebra, Comm. Algebra, 17(12), 3053-3085 (1989).
[8] S. Majid and Ya. S. Soibelman, Bicrossproduct structure of the Quantum Weyl Group, J. Algebra, 163 (1994), 68-87.
[9] H.-J. Schneider, Principal homogeneous spaces for arbitrary Hopf algebras, Israel J.Math. 72(1990), 167-195.
[10] M.E. Sweedler, "Hopf Algebras", Benjamin New York, 1969.
[11] M.E. Sweedler, Cohomology of algebras over Hopf algebras, Trans. AMS, 133(1968), 205-239.
[12] M. Takeuchi, Morita theorems for categories of comodules, J. of the Fac. of Sc., Univ. of Tokio, 24(1977), 629-644.
[13] B. Torrecillas, F. Van Oystaeyen and Y.H. Zhang, The Brauer group of a cocommutative coalgebra, J. Algebra 177 (1995), 536-568.

Institute of Mathematics of the Romanian Academy
P.O.Box 1-764, RO-70700, Bucharest, Romania
e-mail: fpanaite@stoilow.imar.ro

[^0]: Communicated by A. Verschoren.

