Equivalence of Crossed Coproducts

Florin Panaite

1 Introduction

The concept of "crossed coproduct" appeared as a dual version of the usual crossed product for Hopf algebras and it was used in several papers (for instance, in [8] it gives rise, together with the crossed product, to the so-called "bicrossproduct"). In [4] were studied cleft coextensions, a dual notion for that of cleft extension, and it was proved that a cleft coextension is isomorphic to a crossed coproduct (and, another caracterization, a cleft coextension is a Galois coextension with normal basis).

In this paper, we continue the study performed in [5] and [4] on crossed coproducts and cleft coextensions. Our main source of inspiration was Doi's paper [7]; our results are dual to those obtained by Doi. A few remarks are in order:

1) In his paper, Doi uses the cohomology groups introduced by Sweedler in [11]; we use here the dual objects, also introduced by Doi in [6].

2) In Doi's paper, the centre of an algebra was used. Following the philosophy of dualization, we were led, naturally, to the use of a dual object, the "cocentre" of a coalgebra. This object was introduced recently, in [13], and is slightly more complicated than its dual version.

The main results of this paper are the following:

1) If H is a Hopf algebra and C a coalgebra, then there exists a bijection between the set of isomorphism classes of H-cleft coextensions of C and the set of the equivalence classes of crossed cosystems for H over C.

2) if H is a commutative Hopf algebra, C a coalgebra , Z(C) the cocentre of C, D/C an H-cleft coextension , $\phi: D \to H$ a fixed cosection, (ψ, α) the corresponding crossed cosystem, then there exists a bijection between the cohomology group $Coalg - H^2(Z(C), H)$ and the set of the equivalence classes of all those crossed cosystems for H over C which have ψ as a weak coaction.

Bull. Belg. Math. Soc. 6 (1999), 259-278

Communicated by A. Verschoren.

2 Preliminaries

Throughout k is a fixed field. All coalgebras, algebras, vector spaces and unadorned \otimes , Hom, etc., are over k. We refer to [10] for details on coalgebras and Hopf algebras.

We recall now some constructions from [5] and [4].

Definition 2.1. Let H be a Hopf algebra and C a coalgebra. A k-linear map

 $\psi:C\to H\otimes C$, $\psi(c)=\sum c^1\otimes c^2$ is called a weak coaction if the following conditions are satisfied:

$$\sum c^1 \otimes (c^2)_1 \otimes (c^2)_2 = \sum (c_1)^1 (c_2)^1 \otimes (c_1)^2 \otimes (c_2)^2 \tag{1}$$

$$\sum c^1 \varepsilon_C(c^2) = \varepsilon_C(c) \mathbf{1}_H \tag{2}$$

$$\sum \varepsilon_H(c^1)c^2 = c \tag{3}$$

for any $c \in C$.

In the above conditions, let $\alpha : C \to H \otimes H$ be a k-linear map, with notation $\alpha(c) = \sum \alpha_1(c) \otimes \alpha_2(c)$, satisfying the following conditions:

$$\begin{aligned} (CU) & \sum \varepsilon_H(\alpha_1(c))\alpha_2(c) = \varepsilon_C(c)\mathbf{1}_H = \sum \alpha_1(c)\varepsilon_H(\alpha_2(c)) \\ (C) & \sum (c_1)^1 \alpha_1(c_2) \otimes \alpha_1((c_1)^2)(\alpha_2(c_2))_1 \otimes \alpha_2((c_1)^2)(\alpha_2(c_2))_2 = \\ & = \sum \alpha_1(c_1)(\alpha_1(c_2))_1 \otimes \alpha_2(c_1)(\alpha_1(c_2))_2 \otimes \alpha_2(c_2) \\ (TC) & \sum (c_1)^1 \alpha_1(c_2) \otimes ((c_1)^2)^1 \alpha_2(c_2) \otimes ((c_1)^2)^2 = \\ & = \sum \alpha_1(c_1)((c_2)^1)_1 \otimes \alpha_2(c_1)((c_2)^1)_2 \otimes (c_2)^2 \end{aligned}$$

for any $c \in C$. Then we can construct the crossed coproduct $C \Join_{\alpha} H$, which is a coalgebra, with $C \otimes H$ as the underlying linear space and the structures

$$\Delta_{\alpha}: C \otimes H \to C \otimes H \otimes C \otimes H$$
$$\Delta_{\alpha}(c \otimes h) = \sum c_1 \otimes (c_2)^1 \alpha_1(c_3) h_1 \otimes (c_2)^2 \otimes \alpha_2(c_3) h_2$$

and

$$\varepsilon_{\alpha}: C \otimes H \to k$$
$$\varepsilon_{\alpha}(c \otimes h) = \varepsilon_{C}(c)\varepsilon_{H}(h)$$

Definition 2.2. If $C \Join_{\alpha} H$ is a crossed coproduct and α is convolution invertible, we shall say that (ψ, α) is a crossed cosystem for H over C.

Definition 2.3. If H is a Hopf algebra and C a coalgebra, a right H-coextension of C is a pair (D, p), where D is a right H-module coalgebra, $p : D \to C$ a surjective coalgebra map, and $Ker(p) = DH^+$, where $H^+ = Ker(\varepsilon_H)$. We shall denote a coextension by D/C.

Definition 2.4. An *H*-coextension D/C is called a cleft coextension if there exists a k-linear map $\phi : D \to H$, convolution invertible and which is moreover a right *H*-module homomorphism (such a map is called a cointegral). **Lemma 2.5.** If D/C is an H-cleft coextension, then there exists a cointegral ϕ' : $D \to H$ which is counitary, i.e. $\varepsilon_H \circ \phi' = \varepsilon_D$.

Definition 2.6. A unitary cointegral is called a cosection of D.

Remark 2.7. If $C \Join_{\alpha} H$ is a crossed coproduct, then the map

is a surjective coalgebra homomorphism.

Proposition 2.8. Let D/C be an H-coextension. Then the following statements are equivalent:

(i) D/C is a cleft coextension.

(ii) D is isomorphic to a crossed coproduct $C \Join_{\alpha} H$, with the cocycle α convolution invertible, such that, if we identify D to $C \Join_{\alpha} H$, the map $p : D \to C$ equals the map π defined in the previous remark.

More exactly, let $\phi: D \to H$ be a crossed cosection, let

$$\psi: C \to H \otimes C, \quad \psi(\overline{c}) = \sum \phi(c_1)\phi^{-1}(c_3) \otimes \overline{c}_2$$
$$\alpha: C \to H \otimes H, \quad \alpha(\overline{c}) = \sum \phi(c_1)\phi^{-1}(c_3)_1 \otimes \phi(c_2)\phi^{-1}(c_3)_2$$

where, for $c \in C$, we denoted $\overline{c} = p(c)$.

Then ψ and α are well defined, (ψ, α) is a crossed cosystem for H over C (we shall say that it corresponds to ϕ) and D is isomorphic to $C \rtimes_{\alpha} H$, such that, if we identify D to $C \rtimes_{\alpha} H$, then $p = \pi$.

Definition 2.9. Let H be a Hopf algebra and C a coalgebra. Two crossed cosystems (ψ, α) and (φ, β) are called equivalent (and we shall write $(\psi, \alpha) \sim (\varphi, \beta)$) if there exists a k-linear map $v : C \to H$, convolution invertible, with $\varepsilon_H \circ v = \varepsilon_C$, such that:

$$\sum c_{-1} \otimes c_0 = \sum v(c_1)(c_2)^1 v^{-1}(c_3) \otimes (c_2)^2$$
(4)

$$\sum \beta_1(c) \otimes \beta_2(c) = \sum v(c_1)(c_2)^1 \alpha_1(c_3) v^{-1}(c_4)_1 \otimes v((c_2)^2) \alpha_2(c_3) v^{-1}(c_4)_2$$
 (5)

for any $c \in C$, where we denoted $\varphi : C \to H \otimes C$, $\varphi(c) = \sum c_{-1} \otimes c_0$, $\psi : C \to H \otimes C$, $\psi(c) = \sum c^1 \otimes c^2$.

Remark 2.10. The above relation is an equivalence relation.

We recall now from [13] some facts about the cocentre of a coalgebra. If D is a coalgebra, it can be defined the cocentre $(Z(D), 1^d)$ of D, where Z(D) is a cocommutative coalgebra and $1^d : D \to Z(D)$ is a surjective coalgebra map, which satisfies the equality

$$\sum 1^d(d_1) \otimes d_2 = \sum 1^d(d_2) \otimes d_1$$

for all $d \in D$. The cocentre satisfies the following universal property: for any coalgebra H and any coalgebra map $f : D \to H$, which satisfies the condition $\sum f(d_1) \otimes d_2 = \sum f(d_2) \otimes d_1$ for all $d \in D$, there exists a unique coalgebra map $g: Z(D) \to H$ such that $f = g \circ 1^d$ (see [13], Cor.2.3). From this universal property, the cocentre of a coalgebra is unique up to isomorphism.

3 Equivalence of crossed coproducts

In what follows, H will be a Hopf algebra.

Lemma 3.1. Let D/C be an H-cleft coextension, ϕ and γ two cosections for D, (ψ, α) and (φ, β) the crossed cosystems corresponding to ϕ and γ respectively. Then we have $(\psi, \alpha) \sim (\varphi, \beta)$.

Proof: Define $u: D \to H$, $u = \gamma * \phi^{-1}$ We prove first that $DH^+ \subset Ker(u)$, and for this it is enough to show that u(ch) = 0 for $c \in D$ and $h \in H^+$. D is a right H-module coalgebra, so we have that $\sum (ch)_1 \otimes (ch)_2 = \sum c_1 h_1 \otimes c_2 h_2$. From [4], Lemma 2.3, we know that $\phi^{-1}(ch) = S(h)\phi^{-1}(c)$. Hence we obtain u(ch) = 0, by applying the above formulae, $h \in H^+$, and the fact that γ is a right module homomorphism. We can define now $v: C \to H$, $v(\overline{c}) = \sum \gamma(c_1)\phi^{-1}(c_2)$. With the same proof we can define $w: C \to H$, $w(\overline{c}) = \sum \phi(c_1)\gamma^{-1}(c_2)$. It is easy to see that $w = v^{-1}$ in (Hom(C, H), *). Then $(\varepsilon_H \circ v)(\overline{c}) = \varepsilon_H(\phi^{-1}(c))$, because $\varepsilon_H \circ \gamma = \varepsilon_D$.

We know $\varepsilon_H \circ \phi = \varepsilon_D$; multiplying by convolution with $\varepsilon_H \circ \phi^{-1}$, we obtain $\varepsilon_D(c) = \varepsilon_H(\phi^{-1}(c))$ for each $c \in D$, hence $\varepsilon_H \circ v = \varepsilon_C$. Now, for any $c \in D$, we have (denoting $\psi(\overline{c}) = \sum \overline{c}^1 \otimes \overline{c}^2$) that

$$\sum \gamma(\overline{c}_{1})(\overline{c}_{2})^{1}v^{-1}(\overline{c}_{3}) \otimes (\overline{c}_{2})^{2} =$$

$$\sum \gamma(c_{1})\phi^{-1}(c_{2})\phi(c_{3})\phi^{-1}(c_{5})\phi(c_{6})\gamma^{-1}(c_{7}) \otimes \overline{c}_{4} =$$

$$\sum \gamma(c_{1})\gamma^{-1}(c_{3}) \otimes \overline{c}_{2} = \varphi(\overline{c})$$
and
$$\sum v(\overline{c}_{1})(\overline{c}_{2})^{1}\alpha_{1}(\overline{c}_{3})v^{-1}(\overline{c}_{4})_{1} \otimes v((\overline{c}_{2})^{2})\alpha_{2}(\overline{c}_{3})v^{-1}(\overline{c}_{4})_{2} =$$

$$\sum \gamma(c_{1})\phi^{-1}(c_{2})\phi(c_{3})\phi^{-1}(c_{5})\phi(c_{6})\phi^{-1}(c_{8})_{1}\phi(c_{9})_{1}\gamma^{-1}(c_{10})_{1}\otimes$$

$$\otimes v(\overline{c}_{4})\phi(c_{7})\phi^{-1}(c_{8})_{2}\phi(c_{9})_{2}\gamma^{-1}(c_{10})_{2} =$$

$$\sum \gamma(c_{1})\gamma^{-1}(c_{4})_{1} \otimes v(\overline{c}_{2})\phi(c_{3})\gamma^{-1}(c_{4})_{2} =$$

$$\sum \gamma(c_{1})\gamma^{-1}(c_{4})_{1} \otimes v(\overline{c}_{2})\phi(c_{3})\gamma^{-1}(c_{4})_{2} =$$

$$\sum \gamma(c_1)\gamma^{-1}(c_5)_1 \otimes \gamma(c_2)\phi^{-1}(c_3)\phi(c_4)\gamma^{-1}(c_5)_2 = \\\sum \gamma(c_1)\gamma^{-1}(c_3)_1 \otimes \gamma(c_2)\gamma^{-1}(c_3)_2 = \beta(\overline{c})$$

Hence, v gives the equivalence between (ψ, α) and (φ, β) .

Corollary 3.2. Each *H*-cleft coextension D/C determines a unique equivalence class of crossed cosystems for *H* over *C*, which will be denoted by (D/C).

Let now H be a Hopf algebra, C a coalgebra,

$$\psi: C \to H \otimes C, \ \psi(c) = \sum c^1 \otimes c^2$$

a weak coaction, $C \Join_{\alpha} H$ a crossed coproduct.

We know that $\pi : C \rtimes_{\alpha} H \to C$, $\pi(c \otimes h) = \varepsilon_H(h)c$ is a surjective coalgebra homomorphism. Let E be a coalgebra , let $\theta : E \to C$ be a coalgebra homomorphism, $\gamma : E \to H$ convolution invertible, with $\varepsilon_H \circ \gamma = \varepsilon_E$ and

(a) $\sum \theta(e)^1 \otimes \theta(e)^2 = \sum \gamma(e_1)\gamma^{-1}(e_3) \otimes \theta(e_2)$

(b)
$$\sum \alpha_1(\theta(e)) \otimes \alpha_2(\theta(e)) = \sum \gamma(e_1)\gamma^{-1}(e_3)_1 \otimes \gamma(e_2)\gamma^{-1}(e_3)_2$$

for any $e \in E$.

Proposition 3.3. In the above situation, the map $\Theta : E \to C \rtimes_{\alpha} H$, $\Theta(e) = \sum \theta(e_1) \otimes \gamma(e_2)$ is a coalgebra homomorphism, and $\pi \circ \Theta = \theta$.

Proof: $\Theta(e_1) \otimes \Theta(e_2) = \sum \theta(e_1) \otimes \gamma(e_2) \otimes \theta(e_3) \otimes \gamma(e_4)$ The comultiplication on $C \Join_{\alpha} H$ is

$$\Delta(c \otimes h) = \sum c_1 \otimes (c_2)^1 \alpha_1(c_3) h_1 \otimes (c_2)^2 \otimes \alpha_2(c_3) h_2, \text{ so:}$$

$$\sum \Theta(e)_1 \otimes \Theta(e)_2 = \sum \theta(e_1) \otimes \theta(e_2)^1 \alpha_1(\theta(e_3)) \gamma(e_4)_1 \otimes \theta(e_2)^2 \otimes \alpha_2(\theta(e_3)) \gamma(e_4)_2$$

(because θ is a coalgebra homomorphism)

$$= \sum \theta(e_1) \otimes \gamma(e_2) \gamma^{-1}(e_4) \gamma(e_5) \gamma^{-1}(e_7)_1 \gamma(e_8)_1 \otimes \theta(e_3) \otimes \gamma(e_6) \gamma^{-1}(e_7)_2 \gamma(e_8)_2$$
(using (a) and (b))

(using (a) and (b))

$$=\sum \theta(e_1)\otimes \gamma(e_2)\otimes \theta(e_3)\otimes \gamma(e_4)$$

Then $\varepsilon(\Theta(e)) = \sum \varepsilon(\theta(e_1))\varepsilon(\gamma(e_2)) = \varepsilon_H(\gamma(e)) = \varepsilon_E(e)$, so Θ is a coalgebra homomorphism. Finally, $\pi(\Theta(e)) = \sum \varepsilon_H(\gamma(e_2))\theta(e_1) = \sum \varepsilon_E(e_2)\theta(e_1) = \theta(e).$

Definition 3.4. Let H be a Hopf algebra, C a coalgebra, $\psi : C \to H \otimes C$ a left weak coaction. Let E be a coalgebra, $\pi : E \to C$ a surjective coalgebra homomorphism. We shall say that ψ is an E-inner coaction if there exists $\gamma : E \to H$, convolution invertible, such that

$$\sum \pi(e)^1 \otimes \pi(e)^2 = \sum \gamma(e_1)\gamma^{-1}(e_3) \otimes \pi(e_2)$$
 for any $e \in E$.

Remark 3.5. If E = C and $\pi = id$, we obtain the notion of "inner coaction".

Example 3.6. Let *H* be a Hopf algebra , *C* a coalgebra , (ψ, α) a crossed cosystem for *H* over *C* ; let $E = C \Join_{\alpha} H$, $\pi : E \to C$, $\pi(c \otimes h) = \varepsilon(h)c$, $\gamma : E \to H$, $\gamma(c \otimes h) = \varepsilon(c)h$.

We know from [4], Proposition 2.1., that γ is convolution invertible and

$$\gamma^{-1}(c \otimes h) = \sum S(\alpha_1^{-1}(c)h)\alpha_2^{-1}(c).$$

We show that ψ is a $C \Join_{\alpha} H$ -inner coaction.

$$\sum \pi (c \otimes h)^{1} \otimes \pi (c \otimes h)^{2} = \varepsilon(h) \sum c^{1} \otimes c^{2}$$

$$\sum \gamma ((c \otimes h)_{1}) \gamma^{-1} ((c \otimes h)_{3}) \otimes \pi ((c \otimes h)_{2}) =$$

$$\sum (c_{1})^{1} \alpha_{1}(c_{2}) h_{1} \gamma^{-1} ([(c_{1})^{2} \otimes \alpha_{2}(c_{2})h_{2}]_{2}) \otimes \pi ([(c_{1})^{2} \otimes \alpha_{2}(c_{2})h_{2}]_{1}) =$$

$$\sum (c_{1})^{1} \alpha_{1}(c_{2}) h_{1} \gamma^{-1} ((((c_{1})^{2})_{2})^{2} \otimes \alpha_{2} (((c_{1})^{2})_{3} \alpha_{2}(c_{2})_{2}h_{3}) \otimes$$

$$\otimes \pi(((c_1)^2)_1 \otimes (((c_1)^2)_2)^1 \alpha_1(((c_1)^2)_3) \alpha_2(c_2)_1 h_2) =$$

 $\sum_{(c_1)} (c_1)^1 \alpha_1(c_2) h_1 \gamma^{-1}(((c_1)^2)_2 \otimes \alpha_2(c_2) h_2) \otimes ((c_1)^2)_1 = \varepsilon(h) \sum_{(c_1)} (c_1)^1 \alpha_1(c_2) S(\alpha_2(c_2)) S(\alpha_1^{-1}(((c_1)^2)_2)) \alpha_2^{-1}(((c_1)^2)_2) \otimes ((c_1)^2)_1 = \varepsilon(h) \sum_{(c_1)} (c_1)^1 \alpha_1(c_2) S(\alpha_2(c_2)) S(\alpha_1^{-1}(((c_1)^2)_2)) \alpha_2^{-1}(((c_1)^2)_2) \otimes ((c_1)^2)_1 = \varepsilon(h) \sum_{(c_1)} (c_1)^1 \alpha_1(c_2) S(\alpha_2(c_2)) S(\alpha_1^{-1}(((c_1)^2)_2)) \alpha_2^{-1}(((c_1)^2)_2) \otimes ((c_1)^2)_1 = \varepsilon(h) \sum_{(c_1)} (c_1)^1 \alpha_1(c_2) S(\alpha_2(c_2)) S(\alpha_1^{-1}(((c_1)^2)_2)) \alpha_2^{-1}(((c_1)^2)_2) \otimes ((c_1)^2)_1 = \varepsilon(h) \sum_{(c_1)} (c_1)^1 \alpha_1(c_2) S(\alpha_2(c_2)) S(\alpha_1^{-1}(((c_1)^2)_2)) \alpha_2^{-1}(((c_1)^2)_2) \otimes ((c_1)^2)_1 = \varepsilon(h) \sum_{(c_1)} (c_1)^1 \alpha_1(c_2) S(\alpha_2(c_2)) S(\alpha_1^{-1}(((c_1)^2)_2)) \alpha_2^{-1}(((c_1)^2)_2) \otimes ((c_1)^2)_1 = \varepsilon(h) \sum_{(c_1)} (c_2)^1 \alpha_2(c_2) S(\alpha_2(c_2)) S(\alpha_1^{-1}(((c_1)^2)_2)) \alpha_2^{-1}(((c_1)^2)_2) \otimes ((c_1)^2)_1 = \varepsilon(h) \sum_{(c_1)} (c_2)^1 \alpha_2(c_2) S(\alpha_2(c_2)) S(\alpha_1^{-1}(((c_1)^2)_2) \otimes ((c_1)^2)_2) \otimes ((c_1)^2)_1 = \varepsilon(h) \sum_{(c_1)} (c_2)^1 \alpha_2(c_2) S(\alpha_2(c_2)) S(\alpha_1^{-1}(((c_1)^2)_2)) \otimes ((c_1)^2)_1 = \varepsilon(h) \sum_{(c_1)} (c_2)^1 \alpha_2(c_2) S(\alpha_2(c_2)) S(\alpha_2(c_2)) \otimes ((c_1)^2)_2 \otimes ((c_1$

 $\varepsilon(h) \sum (c_1)^1 (c_2)^1 \alpha_1(c_3) S(\alpha_2(c_3)) S(\alpha_1^{-1}((c_2)^2)) \alpha_2^{-1}((c_2)^2) \otimes (c_1)^2$

(using the definition of the weak coaction for c_1)

 $=\varepsilon(h)\sum c^1\otimes c^2$

where the last equality follows after some computations, but applying first for $c = c_2$ the following relation (which is Lemma 1.4. in [4]):

$$\sum c^1 \otimes \alpha_1^{-1}(c^2) \otimes \alpha_2^{-1}(c^2) =$$

= $\sum \alpha_1(c_1)(\alpha_1^{-1}(c_2))_1 \alpha_1^{-1}(c_3) \otimes (\alpha_2(c_1))_1 (\alpha_1^{-1}(c_2))_2 \alpha_2^{-1}(c_3) \otimes (\alpha_2(c_1))_2 \alpha_2^{-1}(c_2)$

Remark 3.7. If D/C is a right H-coextension for C, we shall denote in the sequel by $\pi: D \to C$ the surjective coalgebra homomorphism with $Ker(\pi) = DH^+$.

Definition 3.8. Let D/C and D'/C two right H-coextensions. We shall say that they are isomorphic if there exists a right H-module coalgebra isomorphism $f: D \to$ D' such that $\pi' \circ f = \pi$. We shall denote by [D/C] the equivalence class of D/C.

Proposition 3.9. Two H-cleft coextensions D/C and D'/C are isomorphic if and only if (D/C) = (D'/C); thus the assignment $[D/C] \rightarrow (D/C)$ determines a bijection between the isomorphism classes of H-cleft coextensions of C and the equivalence classes of crossed cosystems for H over C.

Proof: Let $f: D \to D'$ a module coalgebra isomorphism with $\pi' \circ f = \pi$, let $\phi': D' \to H$ a co-section of D', let $\phi = \phi' \circ f$; obviously ϕ is a right comodule homomorphism, $\varepsilon_H \circ \phi = \varepsilon_C$ and ϕ is convolution invertible with inverse $\phi^{-1} = \phi'^{-1} \circ f$, hence ϕ is a cosection for D.

Let (ψ, α) and (ψ', α') be the crossed cosystems corresponding to ϕ and ϕ' respectively, i.e. for any $c \in D$ we have

$$\psi: C \to H \otimes C, \quad \psi(\pi(c)) = \sum \phi(c_1)\phi^{-1}(c_3) \otimes \pi(c_2)$$
$$\alpha: C \to H \otimes H, \quad \alpha(\pi(c)) = \sum \phi(c_1)\phi^{-1}(c_3)_1 \otimes \phi(c_2)\phi^{-1}(c_3)_2$$

(and the corresponding relations for ψ' and α'). Since f is surjective, for any $c' \in D'$ there exists $c \in D$ with f(c) = c', hence $\psi'(\pi'(c')) = \sum \phi'(f(c_1)) {\phi'}^{-1}(f(c_3)) \otimes \pi'(f(c_2)) =$ $\sum \phi(c_1) {\phi}^{-1}(c_3) \otimes \pi(c_2) = \psi(\pi(c))$

But $\pi'(c') = \pi(c)$, hence $\psi = \psi'$; with an analogous proof, we obtain $\alpha = \alpha'$, therefore (D/C) = (D'/C).

Conversely, let ϕ , ϕ' cosections for D and D' respectively, let (ψ, α) and (φ, β) the corresponding crossed cosystems. From (D/C) = (D'/C) we obtain $(\psi, \alpha) \sim (\varphi, \beta)$, so the relations (4) and (5) are satisfied.

Let $\gamma: D \to H$, $\gamma = (v \circ \pi) * \phi$. It is easy to see that γ is convolution invertible with inverse $\gamma^{-1}(c) = \sum \phi^{-1}(c_1)v^{-1}(\pi(c_2))$, and $\varepsilon_H \circ \gamma = \varepsilon_D$.

From (4) we obtain $\varphi(x) = \sum v(x_1)(x_2)^1 v^{-1}(x_3) \otimes (x_2)^2$ for any $x \in C$, where $\psi(x) = \sum x^1 \otimes x^2$. Then, if we take $c \in D$ with $\pi(c) = x$, we obtain

$$\varphi(\pi(c)) = \sum \gamma(c_1) \gamma^{-1}(c_3) \otimes \pi(c_2)$$

for any $c \in C$, because $\psi(\pi(c)) = \sum \phi(c_1)\phi^{-1}(c_3) \otimes \pi(c_2)$. In the same way, from (5) we obtain : $\beta(\pi(c)) = \sum v(\pi(c_1))\phi(c_2)\phi^{-1}(c_4)\alpha_1(\pi(c_5))v^{-1}(\pi(c_6))_1 \otimes$ $\otimes v(\pi(c_3))\alpha_2(\pi(c_5))v^{-1}(\pi(c_6))_2$ $= \sum v(\pi(c_1))\phi(c_2)\phi^{-1}(c_4)\phi(c_5)\phi^{-1}(c_7)_1v^{-1}(\pi(c_8))_1 \otimes$ $\otimes v(\pi(c_3))\phi(c_6)\phi^{-1}(c_7)_2v^{-1}(\pi(c_8))_2$ (from $\alpha(\pi(c)) = \sum \phi(c_1)\phi^{-1}(c_3)_1 \otimes \phi(c_2)\phi^{-1}(c_3)_2$, for c_5 instead of c)

$$= \sum v(\pi(c_1))\phi(c_2)\phi^{-1}(c_5)_1v^{-1}(\pi(c_6))_1 \otimes v(\pi(c_3))\phi(c_4)\phi^{-1}(c_5)_2v^{-1}(\pi(c_6))_2$$

= $\sum \gamma(c_1)\gamma^{-1}(c_3)_1 \otimes \gamma(c_2)\gamma^{-1}(c_3)_2$
for any $c \in D$

for any $c \in D$.

Now we shall apply Proposition 3.3 for the crossed coproduct $C >_{\beta} H$. We take $E = D, \ \theta = \pi, \ \gamma = \gamma$ in Proposition 3.3, and one can see that the relations proved above are just (a) and (b) in Proposition 3.3. Then the map $\Theta : D \to C >_{\beta} H$, $\Theta(c) = \sum \pi(c_1) \otimes \gamma(c_2)$ is a coalgebra homomorphism, with $p \circ \Theta = \pi$, where $p: C >_{\beta} H \to C, \ p(c \otimes h) = \varepsilon_H(h)c$.

We prove now that Θ is a right *H*-module homomorphism. We have first $\pi(ch) = \pi(ch - c\varepsilon(h)1 + c\varepsilon(h)1) = \pi(c(h - \varepsilon(h)1)) + \pi(c)\varepsilon(h) = \pi(c)\varepsilon(h)$, because $c(h - \varepsilon(h)1) \in DH^+ = Ker\pi$. Then

$$\gamma(ch) = \sum v(\pi(c_1h_1))\phi(c_2h_2) = \sum v(\pi(c_1))\phi(c_2h_1)$$
$$= \sum v(\pi(c_1))\phi(c_2)h = \gamma(c)h$$

where the last equality holds because ϕ is a right module homomorphism. Hence

$$\Theta(ch) = \sum \pi(c_1h_1) \otimes \gamma(c_2h_2) = \sum \pi(c_1) \otimes \gamma(c_2)h$$
$$= (\sum \pi(c_1) \otimes \gamma(c_2))h = \Theta(c)h, \text{ q.e.d.}$$

Now, define $f: C \rtimes_{\alpha} H \to C \rtimes_{\beta} H$, $f(x \otimes h) = \sum x_1 \otimes v(x_2)h$ Because v is convolution invertible, f is bijective with inverse

$$g: C \rtimes_{\beta} H \to C \rtimes_{\alpha} H, \ g(x \otimes h) = \sum x_1 \otimes v^{-1}(x_2)h$$

We know from [4] that the map

$$F: D \to C \rtimes_{\alpha} H, \ F(c) = \sum \pi(c_1) \otimes \phi(c_2)$$

is a coalgebra isomorphism; it is also a module homomorphism. Then

$$(f \circ F)(c) = \sum \pi(c_1) \otimes v(\pi(c_2))\phi(c_3) = \Theta(c),$$

so Θ is bijective, hence an isomorphism of $H\text{-}\mathrm{module}$ coalgebras. Let

$$F': D' \to C \Join_{\beta} H, \ F'(c) = \sum \pi(c_1) \otimes \phi'(c_2),$$

and

$$\mu: D \to D', \ \mu = F'^{-1} \circ \Theta.$$

We obtain that μ is a module coalgebra isomorphism. From $\pi' \circ F'^{-1} = p$ and $p \circ \Theta = \pi$, we obtain $\pi' \circ \mu = \pi$, hence D/C and D'/C are isomorphic.

Thus, we proved that the map $[D/C] \to (D/C)$ is well-defined and injective, and we shall prove now that it is surjective. Let (ψ_0, α_0) be a crossed cosystem, $\psi_0(c) = \sum c^1 \otimes c^2$. From [4] we know that $C \rtimes_{\alpha_0} H/C$ is a cleft coextension, and let (ψ, α) be the crossed cosystem associated to this cleft coextension, with the cosection $\gamma: C \rtimes_{\alpha_0} H \to H, \ \gamma(c \otimes h) = \varepsilon(c)h$. For $c \in C$, let $c \otimes 1 \in C \rtimes_{\alpha_0} H$; then we have $\pi(c \otimes 1) = c$, where

$$\pi : C > \alpha_0 H \to C, \pi(c \otimes h) = \varepsilon(h)c. \text{ Hence}$$

$$\psi(c) = \sum \gamma((c \otimes 1)_1)\gamma^{-1}((c \otimes 1)_3) \otimes \pi((c \otimes 1)_2)$$

$$= \sum (c_1)^1 \alpha_1(c_2)\gamma^{-1}(((c_1)^2)_2 \otimes \alpha_2(c_2)) \otimes ((c_1)^2)_1$$

$$= \sum (c_1)^1 \alpha_1(c_2)S(\alpha_2(c_2))S(\alpha_1^{-1}(((c_1)^2)_2))\alpha_2^{-1}(((c_1)^2)_2) \otimes ((c_1)^2)_1$$

$$= \sum c^1 \otimes c^2$$

where the last equality follows from the proof of the Example 3.6. Hence $\psi = \psi_0$; in the same way we can prove that $\alpha = \alpha_0$, so that the map is surjective.

Definition 3.10. If D/C is an H-cleft coextension such that there exists a cosection $\phi : D \to H$ which is a coalgebra homomorphism, then ϕ is called an algebraic cosection and the coextension D/C is called H-smash.

Lemma 3.11. In the situation of Prop.2.8, we have : ϕ is an algebraic co-section if and only if α is a trivial cocycle, i.e. $\alpha(x) = \varepsilon(x) \mathbf{1}_H \otimes \mathbf{1}_H$ for any $x \in C$ (and in this case C is an H-comodule coalgebra).

Proof: Suppose that ϕ is a coalgebra homomorphism; then

$$\alpha(\overline{c}) = \sum [\phi(c_1)\phi^{-1}(c_2)]_1 \otimes [\phi(c_1)_2\phi^{-1}(c_2)]_2 = \varepsilon_D(c)\mathbf{1}_H \otimes \mathbf{1}_H = \varepsilon_D(\overline{c})\mathbf{1}_H \otimes \mathbf{1}_H$$

Conversely, suppose that α is trivial; then

$$\sum \phi(c_1)\phi^{-1}(c_3)_1 \otimes \phi(c_2)\phi^{-1}(c_3)_2 = \varepsilon_D(c)\mathbf{1}_H \otimes \mathbf{1}_H \text{ for any } c \in D.$$

Multiplying by convolution with the map

$$\psi: D \to H \otimes H, \ \psi(c) = \sum \phi(c)_1 \otimes \phi(c)_2$$

we obtain $\sum \phi(c_1) \otimes \phi(c_2) = \sum \phi(c)_1 \otimes \phi(c)_2$, that is ϕ is a coalgebra homomorphism.

Proposition 3.12. Let D/C be an H-cleft coextension and (ψ, α) a crossed cosystem associated to D/C; then the following statements are equivalent: (i) D/C is H-smash

(ii) (D/C) is the equivalence class of a crossed cosystem (ϕ, β) for which $\beta(c) = \varepsilon(c) \mathbf{1}_H \otimes \mathbf{1}_H$ for any $c \in C$.

(iii) There exists $v: C \to H$, k-linear, convolution invertible, with $\varepsilon_H \circ v = \varepsilon_C$, such that

$$\alpha(c) = \sum (c_1)^1 v(c_2) v^{-1}(c_3)_1 \otimes v((c_1)^2) v^{-1}(c_3)_2$$
(6)

for any $c \in C$, where $\psi(c) = \sum c^1 \otimes c^2$.

Proof: $(i) \Rightarrow (ii)$ is obvious, from Lemma 3.11 and Lemma 3.1. $(ii) \Rightarrow (iii)$ We have $(\psi, \alpha) \sim (\varphi, \beta)$, with $\beta(c) = \varepsilon(c) \mathbb{1}_H \otimes \mathbb{1}_H$. Hence, there exists $v: C \to H$, k-linear, convolution invertible, with $\varepsilon_H \circ v = \varepsilon_C$, such that

$$\sum c^1 \otimes c^2 = \sum v(c_1)(c_2)_{-1}v^{-1}(c_3) \otimes (c_2)_0 \tag{7}$$

$$\alpha(c) = \sum v(c_1)(c_2)_{-1}\beta_1(c_3)v^{-1}(c_4)_1 \otimes v((c_2)_0)\beta_2(c_3)v^{-1}(c_4)_2 \tag{8}$$

where $\psi(c) = \sum c^1 \otimes c^2$ and $\varphi(c) = \sum c_1 \otimes c_2$

where
$$\psi(c) = \sum c^{-} \otimes c^{-}$$
 and $\varphi(c) = \sum c_{-1} \otimes c_{0}$.
Since $\beta(c) = \varepsilon_{C}(c) \mathbf{1}_{H} \otimes \mathbf{1}_{H}$, (8) becomes:
 $\alpha(c) = \sum v(c_{1})(c_{2})_{-1}v^{-1}(c_{3})_{1} \otimes v((c_{2})_{0})v^{-1}(c_{3})_{2} =$
 $\sum v(c_{1})(c_{2})_{-1}v^{-1}(c_{3})v(c_{4})v^{-1}(c_{5})_{1} \otimes v((c_{2})_{0})v^{-1}(c_{5})_{2} =$
 $\sum (c_{1})^{1}v(c_{2})v^{-1}(c_{3})_{1} \otimes v((c_{1})^{2})v^{-1}(c_{3})_{2}$

which is exactly (iii), where for the last equality we used (7). (*iii*) \Rightarrow (*i*) Using the map v given in (iii), define $\gamma : C \rtimes_{\alpha} H \to H$, $\gamma(c \otimes h) = v^{-1}(c)h$. We have

$$\varepsilon_H \circ v = \varepsilon_C \Rightarrow \varepsilon_H \circ v^{-1} = \varepsilon_C \Rightarrow \varepsilon_H \circ \gamma = \varepsilon_{C \rtimes_{\alpha} H}$$
$$\gamma((c \otimes h)g) = \gamma(c \otimes hg) = v^{-1}(c)hg = (v^{-1}(c)h)g = \gamma(c \otimes h)g$$

hence γ is a right *H*-module map. Now we shall prove that γ is a coalgebra map.

$$\begin{split} \sum \gamma(c \otimes h)_1 \otimes \gamma(c \otimes h)_2 &= \sum v^{-1}(c)_1 h_1 \otimes v^{-1}(c)_2 h_2 \\ \sum \gamma((c \otimes h)_1) \otimes \gamma((c \otimes h)_2) &= \\ \sum \gamma(c_1 \otimes (c_2)^1 \alpha_1(c_3) h_1) \otimes \gamma((c_2)^2 \otimes \alpha_2(c_3) h_2) &= \\ \sum v^{-1}(c_1)(c_2)^1 \alpha_1(c_3) h_1 \otimes v^{-1}((c_2)^2) \alpha_2(c_3) h_2 &= \\ \sum v^{-1}(c_1)(c_2)^1 (c_3)^1 v(c_4) v^{-1}(c_5)_1 h_1 \otimes v^{-1}((c_2)^2) v((c_3)^2) v^{-1}(c_5)_2 h_2 \\ (\text{using (6)}) \\ &= \sum v^{-1}(c_1)(c_2)^1 v(c_3) v^{-1}(c_4)_1 h_1 \otimes v^{-1}(((c_2)^2)_1) v(((c_2)^2)_2) v^{-1}(c_4)_2 h_2 \\ (\text{using (1)}) \\ &= \sum v^{-1}(c_1)(c_2)^1 v(c_3) v^{-1}(c_4)_1 h_1 \otimes \varepsilon((c_2)^2) v^{-1}(c_4)_2 h_2 \\ &= \\ \sum v^{-1}(c_1) v(c_2) v^{-1}(c_3)_1 h_1 \otimes v^{-1}(c_3)_2 h_2 = \\ &\sum v^{-1}(c_1) h_1 \otimes v^{-1}(c)_2 h_2, \end{split}$$

hence γ is a coalgebra map.

We prove now that γ is convolution invertible. Define $w : C \Join_{\alpha} H \to H$, by $w(c \otimes h) = \varepsilon(h)v^{-1}(c)$. It is easy to see that w is convolution invertible, with inverse $w^{-1}(c \otimes h) = \varepsilon(h)v(c)$. Let $\gamma_0 : C \Join_{\alpha} H \to H$, $\gamma_0(c \otimes h) = \varepsilon(c)h$.

By [4], γ_0 is convolution invertible, and it is easy to see that $\gamma = w * \gamma_0$. Therefore γ is convolution invertible. The conclusion is that γ is an algebraic cosection, hence $C \rtimes_{\alpha} H/C$ is *H*-smash. By Proposition 2.8, we have $D \simeq C \rtimes_{\alpha} H$, therefore D/C is also *H*-smash.

Remark 3.13. Let D/C be an H-coextension and let $\phi : D \to H$ be a cosection.

Then we have

$$\sum \phi(c_1) \otimes \pi(c_2) = \sum \pi(c_1)^1 \phi(c_2) \otimes \pi(c_1)^2$$

where $\psi(\pi(c)) = \sum \pi(c)^1 \otimes \pi(c)^2 = \sum \phi(c_1)\phi^{-1}(c_3) \otimes \pi(c_2)$ (as in Proposition 2.8).

Proof: $\sum \pi(c_1)^1 \phi(c_2) \otimes \pi(c_1)^2 =$ $\sum \phi(c_1) \phi^{-1}(c_3) \phi(c_4) \otimes \pi(c_2) = \sum \phi(c_1) \otimes \pi(c_2)$

Remark 3.14. In the same conditions, the weak coaction ψ of H on C is trivial (i.e. $\psi(x) = 1 \otimes x$ for any $x \in C$) if and only if $\sum \phi(c_1) \otimes \pi(c_2) = \sum \phi(c_2) \otimes \pi(c_1)$ for any $c \in D$.

Proof: Suppose that ψ is trivial. Then $\sum \pi(c)^1 \otimes \pi(c)^2 = 1 \otimes \pi(c)$; we have $\sum \pi(c)^1 \phi(c_2) \otimes \pi(c_1)^2 = \sum \phi(c_1) \otimes \pi(c_2)$ (the above remark). Hence $\sum \phi(c_1) \otimes \pi(c_2) = \sum 1_H \phi(c_2) \otimes \pi(c_1) = \sum \phi(c_2) \otimes \pi(c_1)$ q.e.d.

Conversely, we have:

$$\sum \pi(c)^1 \otimes \pi(c)^2 = \sum \pi(c_1)^1 \phi(c_2) \phi^{-1}(c_3) \otimes \pi(c_1)^2$$
$$= \sum \phi(c_1) \phi^{-1}(c_3) \otimes \pi(c_2)$$
$$= \sum \phi(c_2) \phi^{-1}(c_3) \otimes \pi(c_1)$$
$$(\text{because } \sum \phi(c_1) \otimes \pi(c_2) = \sum \phi(c_2) \otimes \pi(c_1))$$
$$= 1_H \otimes \pi(c)$$

for any $c \in D$, hence $\psi(x) = 1_H \otimes x$ for any $x \in C$.

Definition 3.15. A cleft coextension D/C is called H-twisted if there exists a cosection $\phi: D \to H$ such that $\sum \phi(c_1) \otimes \pi(c_2) = \sum \phi(c_2) \otimes \pi(c_1)$ for any $c \in D$.

Proposition 3.16. Let D/C be an *H*-coextension and let (ψ, α) be a crossed cosystem associated to D/C. Then the following statements are equivalent:

1) D/C is H-twisted 2) D/C is the equivalence class of a crossed cosystem (φ, β) for which $\varphi(x) = 1_H \otimes x$

for any $x \in C$. 3) There exists $v : C \to H$, k-linear, convolution invertible, with $\varepsilon_H \circ v = \varepsilon_C$ such that

$$\psi(c) = \sum v(c_1)v^{-1}(c_3) \otimes c_2 \tag{9}$$

for any $c \in C$ (this means that ψ is C-inner with respect to $id : C \to C$).

Proof: 1) \Rightarrow 2) Follows immediately from Remark 3.14 and Lemma 3.1 2) \Rightarrow 3) We have $(\psi, \alpha) \sim (\varphi, \beta)$, with $\varphi(x) = 1_H \otimes x$ for any $x \in C$. So, there exists $v: C \to H$, k-linear, convolution invertible, with $\varepsilon_H \circ v = \varepsilon_C$ such that, if we denote $\psi(c) = \sum c^1 \otimes c^2$, $\varphi(c) = \sum c_{-1} \otimes c_0$, we have the relations (7) and (8) which appeared in the proof of Proposition 3.12. Since $\varphi(c) = 1_H \otimes c = \sum c_{-1} \otimes c_0$, (7) becomes $\psi(c) = \sum v(c_1)(c_2)_{-1}v^{-1}(c_3) \otimes (c_2)_0 = \sum v(c_1)v^{-1}(c_3) \otimes c_2$ and this is just the relation (9). 3) \Rightarrow 1) Let $v: C \to H$ be a k-linear map, convolution invertible, with $\varepsilon_H \circ v = \varepsilon_C$, such that $\psi(c) = \sum v(c_1)v^{-1}(c_3) \otimes c_2$. We consider the map $\gamma: C \rtimes_{\alpha} H \to H$ which appeared in the proof of Proposition 3.12, that is $\gamma(c \otimes h) = v^{-1}(c)h$. We proved there that γ is a cosection, and it is easy to see that the proof remains valid here. Now, we show that

$$\sum \gamma((c \otimes h)_1) \otimes \pi((c \otimes h)_2) = \sum \gamma((c \otimes h)_2) \otimes \pi((c \otimes h)_1)$$

where $\pi : C >_{\alpha} H \to C$, $\pi(c \otimes h) = \varepsilon(h)c$. We have:
$$\sum \gamma((c \otimes h)_1) \otimes \pi((c \otimes h)_2) =$$
$$= \sum \gamma(c_1 \otimes (c_2)^1 \alpha_1(c_3)h_1) \otimes \pi((c_2)^2 \otimes \alpha_2(c_3)h_2)$$
$$= \sum v^{-1}(c_1)(c_2)^1 \alpha_1(c_3)h_1 \otimes \varepsilon(\alpha_2(c_3))\varepsilon(h_2)(c_2)^2$$
$$= \sum v^{-1}(c_1)(c_2)^1 h \otimes (c_2)^2$$
$$= \sum v^{-1}(c_1)v(c_2)v^{-1}(c_4)h \otimes c_3$$
(using (9))
$$= \sum v^{-1}(c_2)h \otimes c_1$$
$$\sum \gamma((c \otimes h)_2) \otimes \pi((c \otimes h)_1)$$
$$= \sum v^{-1}((c_2)^2)\alpha_2(c_3)h_2 \otimes \varepsilon((c_2)^1)\varepsilon(\alpha_1(c_3))\varepsilon(h_1)c_1$$
$$= \sum v^{-1}(c_2)h \otimes c_1$$
The conclusion is that $C >_{\alpha} H$ is H -twisted, and since $C >_{\alpha} H/C$ is isomorphic to D , we obtain that D/C is H -twisted, q.e.d.

4 The case when *H* is commutative

From now on, H will be a commutative Hopf algebra.

Let $\pi : D \to C$ be a cleft coextension, $\phi : D \to H$ a cosection and (ψ, α) the associated crossed cosystem. Define $f : D \to H \otimes C$ by

$$f(c) = \sum \phi^{-1}(c_1)\phi(c_3) \otimes \pi(c_2)$$

We shall prove that $Ker\pi \subseteq Kerf$. Let $c \in D$, $h \in H^+$; it is enough to show that f(ch) = 0. We have $\pi(ch) = \varepsilon(h)\pi(c)$, ϕ is a right *H*-module homomorphism and (see [4]) $\phi^{-1}(ch) = S(h)\phi^{-1}(c)$, so

$$f(ch) = \sum \phi^{-1}(c_1h_1)\phi(c_3h_2) \otimes \pi(c_2)$$

= $\sum S(h_1)\phi^{-1}(c_1)\phi(c_3)h_2 \otimes \pi(c_2)$

$$= \sum S(h_1)h_2\phi^{-1}(c_1)\phi(c_3) \otimes \pi(c_2)$$

(because H is commutative)

$$=\sum \varepsilon(h)\phi^{-1}(c_1)\phi(c_3)\otimes \pi(c_2)=0$$
, q.e.d.

Hence, we have proved the following

Lemma 4.1. There exists a k-linear map $F : C \to H \otimes C$, with $F(\pi(c)) = \sum \phi^{-1}(c_1)\phi(c_3) \otimes \pi(c_2)$ for any $c \in D$.

Now, if C is a coalgebra, Z(C) the cocentre of C, let $1^d : C \to Z(C)$ be the canonical (surjective) coalgebra homomorphism. Hence $\sum 1^d(c_1) \otimes c_2 = \sum 1^d(c_2) \otimes c_1$ for any $c \in C$.

Lemma 4.2. In the above situation, we have:

$$\sum \phi(c_1)\phi^{-1}(c_3) \otimes 1^d(\pi(c_2)) \otimes \pi(c_4) = \sum \phi(c_2)\phi^{-1}(c_4) \otimes 1^d(\pi(c_3)) \otimes \pi(c_1)$$

for any $c \in D$.

Proof: Let $\varphi \in C^*$, and define $f_{\varphi} : D \to H$, $f_{\varphi}(c) = \sum \phi^{-1}(c_1)\phi(c_3)\varphi(\pi(c_2))$. It follows that $f_{\varphi} * \phi^{-1}(c) = \sum \phi^{-1}(c_1)\varphi(\pi(c_2))$ for any $c \in D$.

We have the map $F: C \to H \otimes C$, with $F(\pi(c)) = \sum \phi^{-1}(c_1)\phi(c_3) \otimes \pi(c_2)$ for any $c \in D$, so in this way we obtain a k-linear map $g_{\varphi}: C \to H$ with $f_{\varphi}(c) = g_{\varphi}(\pi(c))$ for any $c \in D$. Hence

$$\begin{split} \sum \phi(c_1)\phi^{-1}(c_3)\varphi(\pi(c_4)) \otimes 1^d(\pi(c_2)) \\ &= \sum \phi(c_1)g_{\varphi}(\pi(c_3))\phi^{-1}(c_4) \otimes 1^d(\pi(c_2)) \\ &= \sum \phi(c_1)g_{\varphi}(\pi(c_2))\phi^{-1}(c_4) \otimes 1^d(\pi(c_3)) \\ (\text{because } \sum 1^d(x_1) \otimes x_2 = \sum 1^d(x_2) \otimes x_1 \text{ for any } x \in C) \\ &= \sum \phi(c_1)\phi^{-1}(c_2)\phi(c_4)\varphi(\pi(c_3))\phi^{-1}(c_6) \otimes 1^d(\pi(c_5)) \\ &= \sum \phi(c_2)\phi^{-1}(c_4)\varphi(\pi(c_1)) \otimes 1^d(\pi(c_3)) \\ \text{Since this equality is valid for any } \varphi \in C^*, \text{ we obtain} \\ &\sum \phi(c_1)\phi^{-1}(c_3) \otimes 1^d(\pi(c_2)) \otimes \pi(c_4) = \sum \phi(c_2)\phi^{-1}(c_4) \otimes 1^d(\pi(c_3)) \otimes \pi(c_1). \end{split}$$

Proposition 4.3. In the above situation, if we denote $\psi : C \to H \otimes C$, $\psi(\pi(c)) = \sum \phi(c_1)\phi^{-1}(c_3) \otimes \pi(c_2)$ for any $c \in D$, then there exists a k-linear map $\overline{\psi} : Z(C) \to H \otimes Z(C)$ with $\overline{\psi}(1^d(c)) = \sum \phi(c_1)\phi^{-1}(c_3) \otimes 1^d(\pi(c_2))$ for any $c \in C$.

Proof: By [13], p.544, $Z(C) = e_{-C^e}(C)$, where $C^e = C^{cop} \otimes C$. By Proposition (2.2) of [13] the canonical map

$$\theta: C \to e_{-C^e}(C) \otimes C$$

is given by

$$\theta(c) = \sum 1^d(c_1) \otimes c_2$$

(for the definition of $e_{-C^e}(C)$ and the canonical map, we refer to [12]). By [12], 1.4, if W is a k-linear space and $\alpha : C \to W \otimes C$ is a C^e -right comodule homomorphism, then there exists a unique k-linear map $u : e_{-C^e}(C) \to W$ such that $\alpha = (u \otimes I) \circ \theta$. We shall take here $W = H \otimes Z(C)$; then, for $c \in C$, we denote $\psi(c) = \sum c^1 \otimes c^2$ and we take $\alpha : C \to [H \otimes Z(C)] \otimes C$,

$$\alpha(c) = \sum (c_1)^1 \otimes 1^d ((c_1)^2) \otimes c_2$$

The C^{e} -right comodule structure of C is given by

$$\rho_C: C \to C \otimes C^e, \ \rho_C(c) = \sum c_2 \otimes (c_1 \otimes c_3)$$

(see [13], p.538). The C^e-right comodule structure of $H \otimes Z(C) \otimes C$ is given by

$$\rho: H \otimes Z(C) \otimes C \to (H \otimes Z(C) \otimes C) \otimes C^{e}$$
$$\rho(h \otimes 1^{d}(c) \otimes d) = \sum h \otimes 1^{d}(c) \otimes d_{2} \otimes d_{1} \otimes d_{3}$$

We shall prove that α is a C^e -right comodule homomorphism; to see this, it is enough to show that $\rho \circ \alpha = (\alpha \otimes I) \circ \rho_C$ and then, by computation, it is enough to prove that

$$\sum (c_1)^1 \otimes 1^d ((c_1)^2) \otimes c_2 = \sum (c_2)^1 \otimes 1^d ((c_2)^2) \otimes c_1$$

for any $c \in C$, or equivalently

$$\sum \pi(c_1)^1 \otimes 1^d(\pi(c_1)^2) \otimes \pi(c_2) = \sum \pi(c_2)^1 \otimes 1^d(\pi(c_2)^2) \otimes \pi(c_1)$$

for any $c \in D$. But, for any $c \in D$, $\psi(\pi(c)) = \sum \phi(c_1)\phi^{-1}(c_3) \otimes \pi(c_2)$, hence the required equality follows using Lemma 4.2.

Therefore, there exists a unique k-linear map $u : Z(C) \to H \otimes Z(C)$ with $\alpha = (u \otimes I) \circ \theta$.

We have $(u \otimes I)(\theta(c)) = \sum u(1^d(c_1)) \otimes c_2$ for any $c \in C$. By applying $I \otimes \varepsilon$ we obtain $u(1^d(c)) = \sum \phi(c_1)\phi^{-1}(c_3) \otimes 1^d(\pi(c_2))$ and now we can define $\overline{\psi} = u$.

Proposition 4.4. In the above situation, $\overline{\psi}$ defines a *H*-left comodule structure on Z(C), and with this structure Z(C) becomes a (cocommutative) *H*-comodule coalgebra.

Proof: We shall prove first that $\overline{\psi}$ is a comodule structure; to see this, it is enough to prove that

$$\sum (1^d(c))^1 \otimes (1^d(c)^2)^1 \otimes (1^d(c)^2)^2 = \sum (1^d(c)^1)_1 \otimes (1^d(c)^1)_2 \otimes 1^d(c)^2$$

for any $c \in C$. We have:

$$\begin{split} &\sum (1^d(c))^1 \otimes (1^d(c)^2)^1 \otimes (1^d(c)^2)^2 = \sum c^1 \otimes 1^d(c^2)^1 \otimes 1^d(c^2)^2 = \\ &\sum c^1 \otimes (c^2)^1 \otimes 1^d((c^2)^2) \\ &(\text{because } \sum 1^d(c)^1 \otimes 1^d(c)^2 = \overline{\psi}(1^d(c)) = \sum c^1 \otimes 1^d(c^2)) \\ &\text{For } c \in C, \text{ the condition (TC) is} \\ &\sum (c_1)^1 \alpha_1(c_2) \otimes ((c_1)^2)^1 \alpha_2(c_2) \otimes ((c_1)^2)^2 = \end{split}$$

$$\sum \alpha_1(c_1)((c_2)^1)_1 \otimes \alpha_2(c_1)((c_2)^1)_2 \otimes (c_2)^2$$

Now, taking $\varphi \in C^*$ and applying φ on the last position in the previous equality, we obtain two functions defined on C with values in $H \otimes H$; multiplying by convolution to the left with α^{-1} , we obtain, finally:

$$\sum c^1 \otimes (c^2)^1 \otimes (c^2)^2 = \sum \alpha_1(c_1)((c_2)^1)_1 \alpha_1^{-1}(c_3) \otimes \alpha_2(c_1)((c_2)^1)_2 \alpha_2^{-1}(c_3) \otimes (c_2)^2$$

Then

$$\begin{split} &\sum c^1 \otimes (c^2)^1 \otimes 1^d ((c^2)^2) \\ &= \sum \alpha_1(c_1) (1^d(c_2)^1)_1 \alpha_1^{-1}(c_3) \otimes \alpha_2(c_1) (1^d(c_2)^1)_2 \alpha_2^{-1}(c_3) \otimes 1^d(c_2)^2 \\ &(\text{because } \sum 1^d(x)^1 \otimes 1^d(x)^2 = \sum x^1 \otimes 1^d(x^2)) \\ &= \sum \alpha_1(c_1) (1^d(c_3)^1)_1 \alpha_1^{-1}(c_2) \otimes \alpha_2(c_1) (1^d(c_3)^1)_2 \alpha_2^{-1}(c_2) \otimes 1^d(c_3)^2 \\ &(\text{because } \sum 1^d(x_1) \otimes x_2 = \sum 1^d(x_2) \otimes x_1) \\ &= \sum (1^d(c)^1)_1 \otimes (1^d(c)^1)_2 \otimes 1^d(c)^2 \end{split}$$

where the last equality follows because H is commutative.

Now, the fact that Z(C) is a *H*-comodule coalgebra follows immediately, using the relations:

$$\sum (1^d(c))_1 \otimes (1^d(c))_2 = \sum 1^d(c_1) \otimes 1^d(c_2) \text{ and}$$
$$\sum 1^d(c)^1 \otimes 1^d(c)^2 = \sum c^1 \otimes 1^d(c^2)$$

for any $c \in C$.

Lemma 4.5. In the above situation, if ϕ' is another cosection, then the coaction of H on Z(C) induced by ϕ' (it is a strong coaction) is just $\overline{\psi}$, i.e. the coaction induced by ϕ .

Proof: Let (φ, β) be the crossed cosystem induced by ϕ' . From Lemma 3.1 we know that $(\psi, \alpha) \sim (\varphi, \beta)$, so there exists $v : C \to H$, k-linear and convolution invertible such that $\varphi(c) = \sum v(c_1)(c_2)^1 v^{-1}(c_3) \otimes (c_2)^2$ for any $c \in C$, where $\psi(c) = \sum c^1 \otimes c^2$. Therefore it is enough to prove that

$$\sum v(c_1)(c_2)^1 v^{-1}(c_3) \otimes 1^d((c_2)^2) = \sum c^1 \otimes 1^d(c^2)$$

for any $c \in C$, and this follows immediately, using the relations

$$\sum 1^d(c)^1 \otimes 1^d(c)^2 = \sum c^1 \otimes 1^d(c^2)$$
$$\sum 1^d(c_1) \otimes c_2 = \sum 1^d(c_2) \otimes c_1$$

and the fact that H is commutative.

Remark 4.6. By Proposition 3.9 and the proof of Lemma 4.5 it follows that if D'/C is a cleft coextension isomorphic to D/C, then the coaction of H on Z(C) induced by D'/C equals the one induced by D/C. Hence, an isomorphism class of cleft coextensions [D/C] gives a unique left H-comodule coalgebra structure on Z(C).

Now, let H be a commutative Hopf algebra, B a cocommutative left H-comodule coalgebra with structure map $\rho: B \to H \otimes B$, $\rho(b) = \sum b^1 \otimes b^2$. In [6] the cohomology groups $Coalg - H^n(B, H)$ were defined; they are dual to the cohomology groups introduced by Sweedler in [11]. In the sequel, we use only $Coalg - H^2(B, H)$. If $v: B \to H$ is k-linear and convolution invertible, define a (k-linear and convolution invertible) map $D^1(v): B \to H \otimes H$, by

$$D^{1}(v)(b) = \sum (b_{1})^{1} v(b_{2}) v^{-1}(b_{3})_{1} \otimes v((b_{1})^{2}) v^{-1}(b_{3})_{2}$$

Then $Coalg - H^2(B, H) = Z^2(B, H)/B^2(B, H)$, where $Z^2(B, H) =$

 $= \{ \alpha : B \to H \otimes H, \ k - linear, \ convolution \ invertible, \ with \ (CU) \ and \ (C) \}$

 $B^2(B,H) =$

 $= \{ D^1(v)/v : B \to H, \ k - linear, \ convolution \ invertible, \ with \ \varepsilon_H \circ v = \varepsilon_B \}.$

Proposition 4.7. Let H be a commutative Hopf algebra , D/C a cleft coextension, $\phi : D \to H$ a cosection and (ψ, α) the corresponding crossed cosystem. If $\Gamma : Z(C) \to H \otimes H$, let $\gamma : C \to H \otimes H$, $\gamma(c) = \Gamma(1^d(c))$. Then:

1) If $\Gamma \in Z^2(Z(C), H)$, then $(\psi, \alpha * \gamma)$ is a crossed cosystem for H over C.

2) Conversely, if $\alpha' : C \to H \otimes H$ is k-linear and convolution invertible, and (ψ, α') is a crossed cosystem for H over C (with the same ψ), then there exists $\Gamma \in Z^2(Z(C), H)$ such that $\alpha' = \alpha * \gamma$.

3) If $\Gamma, \Gamma' \in Z^2(Z(C), H)$, then $(\psi, \alpha * \gamma) \sim (\psi, \alpha * \gamma')$ if and only if Γ and Γ' are cohomologous, i.e. there exists $v : Z(C) \to H$, k-linear, convolution invertible, with $\varepsilon_H \circ v = \varepsilon_{Z(C)}$, such that $\Gamma^{-1} * \Gamma' = D^1(v)$.

4) The map $\Gamma \mapsto (\psi, \alpha * \gamma)$ induces a bijection between $Coalg - H^2(Z(C), H)$ and the set of the equivalence classes of all those crossed cosystems for H over C which have ψ as weak coaction.

Proof: 1) Follows after a tedious (but straightforward) computation. 2) Define $\gamma: C \to H \otimes H, \gamma = \alpha^{-1} * \alpha'$. It is enough to show that there exists $\Gamma \in Z^2(Z(C), H)$ such that $\Gamma(1^d(c)) = \gamma(c)$ for any $c \in C$. We had $\psi: C \to H \otimes C, \psi(\pi(c)) = \sum \phi(c_1)\phi^{-1}(c_3) \otimes \pi(c_2)$ for any $c \in D$ and $F: C \to H \otimes C, F(\pi(c)) = \sum \phi^{-1}(c_1)\phi(c_3) \otimes \pi(c_2)$ for any $c \in D$. If $c \in C$ we denote $\psi(c) = \sum c^1 \otimes c^2$ and $F(c) = \sum c_{-1} \otimes c_0$. Then, if $c \in D$ and $d = \pi(c)$, we have: $\sum d^1(d^2)_{-1} \otimes (d^2)_0 = \sum \phi(c_1)\phi^{-1}(c_5)\phi^{-1}(c_2)\phi(c_4) \otimes \pi(c_3) =$ $1 \otimes \pi(c) = 1 \otimes d$

(because H is commutative).

Hence

$$\sum x^1 (x^2)_{-1} \otimes (x^2)_0 = 1 \otimes x \qquad (*)$$

for any $x \in C$.

We have seen before that, since (ψ, α) is a crossed cosystem, we have

$$\begin{split} \sum c^{1} \otimes (c^{2})^{1} \otimes (c^{2})^{2} &= \sum \alpha_{1}(c_{1})((c_{2})^{1})_{1}\alpha_{1}^{-1}(c_{3}) \otimes \alpha_{2}(c_{1})((c_{2})^{1})_{2}\alpha_{2}^{-1}(c_{3}) \otimes (c_{2})^{2} \\ \text{But } (\psi, \alpha') \text{ is also a crossed cosystem, then} \\ &\sum \alpha_{1}(c_{1})((c_{2})^{1})_{1}\alpha_{1}^{-1}(c_{3}) \otimes \alpha_{2}(c_{1})((c_{2})^{1})_{2}\alpha_{2}^{-1}(c_{3}) \otimes (c_{2})^{2} = \\ &= \sum \alpha_{1}'(c_{1})((c_{2})^{1})_{1}\alpha_{1}'^{-1}(c_{3}) \otimes \alpha_{2}'(c_{1})((c_{2})^{1})_{2}\alpha_{2}'^{-1}(c_{3}) \otimes (c_{2})^{2} \qquad (**) \\ \text{for any } c \in C. \\ \text{Now, let } \varphi \in C^{*} \text{ ; we shall prove that } \sum \varphi(c_{1})\gamma(c_{2}) = \sum \varphi(c_{2})\gamma(c_{1}) \text{ for any } c \in C. \end{split}$$

$$\sum \varphi(c_1)\gamma(c_2) = \sum \varphi(c_1)\alpha_1^{-1}(c_2)\alpha_1'(c_3) \otimes \alpha_2^{-1}(c_2)\alpha_2'(c_3)$$

C.

$$= \sum \alpha_1^{-1}(c_1)\alpha_1(c_2)((c_3)^1)_1(((c_3)^2)_{-1})_1\varphi(((c_3)^2)_0)\alpha_1^{-1}(c_4)\alpha_1'(c_5)\otimes \otimes \alpha_2^{-1}(c_1)\alpha_2(c_2)((c_3)^1)_2(((c_3)^2)_{-1})_2\alpha_2^{-1}(c_4)\alpha_2'(c_5)$$

(applying (*) for $(c_1)^1((c_1)^2)_1$ instead of x) = $\sum \alpha_1^{-1}(c_1)\alpha_1(c_2)((c_3)^1)_1\alpha_1^{-1}(c_4)(((c_3)^2)_{-1})_1\varphi(((c_3)^2)_0)\alpha_1'(c_5)\otimes$ $\otimes \alpha_2^{-1}(c_1)\alpha_2(c_2)((c_3)^1)_2\alpha_2^{-1}(c_4)(((c_3)^2)_{-1})_2\alpha_2'(c_5)$

(because H is commutative)

$$= \sum \alpha_1^{-1}(c_1)\alpha_1'(c_2)((c_3)^1)_1\alpha_1'^{-1}(c_4)(((c_3)^2)_{-1})_1\varphi(((c_3)^2)_0)\alpha_1'(c_5)\otimes$$
$$\otimes \alpha_2^{-1}(c_1)\alpha_2'(c_2)((c_3)^1)_2\alpha_2'^{-1}(c_4)(((c_3)^2)_{-1})_2\alpha_2'(c_5)$$

(applying (**) for c_1 instead of c)

$$= \sum \alpha_1^{-1}(c_1)\alpha_1'(c_2)[(c_3)^1((c_3)^2)_{-1}]_1\varphi(((c_3)^2)_0) \otimes$$

 $\alpha_2^{-1}(c_1)\alpha_2'(c_2)[(c_3)^1((c_3)^2)_{-1}]_2$

(because H is commutative)

$$= \sum \alpha_1^{-1}(c_1)\alpha_1'(c_2)\varphi(c_3) \otimes \alpha_2^{-1}(c_1)\alpha_2'(c_2) = \sum \gamma(c_1)\varphi(c_2)$$

(applying (*))

Therefore we have $\sum \gamma(c_1) \otimes c_2 = \sum \gamma(c_2) \otimes c_1$ for any $c \in C$.

We shall define $f: C \to H \otimes H \otimes H$, $f(c) = \sum \gamma(c_1) \otimes c_2$. *C* is a *C*^{*e*}-right comodule with structure map $\rho_C: C \to C \otimes C^e$, $\rho_C(c) = \sum c_2 \otimes c_1 \otimes c_3$ and $H \otimes H \otimes C$ is a *C*^{*e*} right comodule with structure map $\rho: H \otimes H \otimes C \to H \otimes H \otimes C \otimes C^e$, $\rho(h \otimes g \otimes c) = \sum h \otimes g \otimes c_2 \otimes c_1 \otimes c_3$.

Using the relation $\sum \gamma(c_1) \otimes c_2 = \sum \gamma(c_2) \otimes c_1$, it is easy to see that f is a right comodule homomorphism. Now, from [12] ,1.4, there exists a unique k-linear map $u : Z(C) \to H \otimes H$ such that $f = (u \otimes I) \circ \theta$, where $\theta : C \to Z(C) \otimes C$, $\theta(c) = \sum 1^d(c_1) \otimes c_2$. Hence $\gamma(c) = u(1^d(c))$ for any $c \in C$.

Define $\Gamma = u$. We shall prove that $\Gamma \in Z^2(Z(C), H)$. Since (ψ, α') is a crossed cosystem, it appears, by Proposition 3.9, from a cleft coextension, say D'/C, in fact from a cosection $\phi' : D' \to H$. So, using the same proof, there exists $\Gamma' : Z(C) \to H \otimes H$, k-linear, with $\Gamma'(1^d(c)) = \gamma'(c)$ for any $c \in C$, where $\gamma' = \alpha'^{-1} * \alpha$, and then obviously Γ' is the convolution inverse of Γ . It remains to prove that Γ satisfies (CU) and (C). Let $\Gamma(1^d(c)) = \sum \Gamma_1(1^d(c)) \otimes \Gamma_2(1^d(c)) = \gamma(c) = \sum \gamma_1(c) \otimes \gamma_2(c)$.

The condition (CU) for Γ is trivial, because α and α' satisfy (CU). We shall prove now the condition (C).

Since $\sum 1^d(c_1) \otimes c_2 = \sum 1^d(c_2) \otimes c_1$ and *H* is commutative, we have that $\gamma = \alpha' * \alpha^{-1}$. Then:

$$\sum \gamma_{1}(c_{1})(\gamma_{1}(c_{2}))_{1} \otimes \gamma_{2}(c_{1})(\gamma_{1}(c_{2}))_{2} \otimes \gamma_{2}(c_{2}) =$$

$$= \sum \alpha_{1}^{-1}(c_{1})\alpha_{1}'(c_{2})[\alpha_{1}'(c_{3})\alpha_{1}^{-1}(c_{4})]_{1} \otimes$$

$$\otimes \alpha_{2}^{-1}(c_{1})\alpha_{2}'(c_{2})[\alpha_{1}'(c_{3})\alpha_{1}^{-1}(c_{4})]_{2} \otimes \alpha_{2}'(c_{3})\alpha_{2}^{-1}(c_{4})$$
(using $\alpha' * \alpha^{-1} = \alpha^{-1} * \alpha'$)

$$\begin{split} &= \sum \alpha_1^{-1} (c_1) (c_2)^1 \alpha_1' (c_3) \alpha_1^{-1} (c_4)_1 \otimes \\ &\otimes \alpha_2^{-1} (c_1) \alpha_1' ((c_2)^2) \alpha_2' (c_3)_1 \alpha_1^{-1} (c_4)_2 \otimes \alpha_2' ((c_2)^2) \alpha_2' (c_3)_2 \alpha_2^{-1} (c_4) \\ (\text{using condition (C) for } \alpha') \\ &= \sum \alpha_1^{-1} (c_1) (c_2)^1 \alpha_1 (c_3) \gamma_1 (c_4) \alpha_1^{-1} (c_5)_1 \otimes \\ &\otimes \alpha_2^{-1} (c_1) \alpha_1 (((c_2)^2)_1) \gamma_1 (((c_2)^2)_2) \alpha_2 (c_3)_1 \gamma_2 (c_4)_1 \alpha_1^{-1} (c_5)_2 \otimes \\ &\otimes \alpha_2 (((c_2)^2)_1) \gamma_2 (((c_2)^2)_2) \alpha_2 (c_3)_2 \gamma_2 (c_4)_2 \alpha_2^{-1} (c_5) \\ (\text{using } \alpha' = \alpha * \gamma) \\ &= \sum \alpha_1^{-1} (c_1) (c_2)^1 \alpha_1 (c_3) \Gamma_1 (1^d (c_4)) \alpha_1^{-1} (c_5)_1 \otimes \\ &\otimes \alpha_2^{-1} (c_1) \alpha_1 (((c_2)^2)_1) \Gamma_1 (1^d (((c_2)^2)_2)) \alpha_2 (c_3)_1 \Gamma_2 (1^d (c_4))_1 \alpha_1^{-1} (c_5)_2 \otimes \\ &\otimes \alpha_2 (((c_2)^2)_1) \Gamma_2 (1^d (((c_2)^2)_2)) \alpha_2 (c_3)_2 \Gamma_2 (1^d (c_4))_2 \alpha_2^{-1} (c_5) \\ &= \sum \alpha_1^{-1} (c_1) (c_2)^1 (c_3)^1 \alpha_1 (c_4) \Gamma_1 (1^d (c_5)) \alpha_1^{-1} (c_6)_1 \otimes \\ &\otimes \alpha_2^{-1} (c_1) \alpha_1 ((c_2)^2) \Gamma_1 (1^d ((c_3)^2)) \alpha_2 (c_4)_1 \Gamma_2 (1^d (c_5))_1 \alpha_1^{-1} (c_6)_2 \otimes \\ &\otimes \alpha_2 ((c_2)^2)) \Gamma_2 (1^d ((c_3)^2)) \alpha_2 (c_4)_2 \Gamma_2 (1^d (c_5))_2 \alpha_2^{-1} (c_6) \\ \end{split}$$

(using the definition of the weak coaction for c_2)

$$= \sum \alpha_1^{-1}(c_1)(1^d(c_2))^1(c_3)^1 \alpha_1(c_4) \Gamma_1(1^d(c_5)) \alpha_1^{-1}(c_6)_1 \otimes \\ \otimes \alpha_2^{-1}(c_1) \alpha_1((c_3)^2) \alpha_2(c_4)_1 \Gamma_1(1^d(c_2)^2) \Gamma_2(1^d(c_5))_1 \alpha_1^{-1}(c_6)_2 \otimes \\ \otimes \Gamma_2(1^d(c_2)^2) \alpha_2((c_3)^2)) \alpha_2(c_4)_2 \Gamma_2(1^d(c_5))_2 \alpha_2^{-1}(c_6)$$
(because: by Proposition 4.3 we have $\sum 1^d(c)^1 \otimes 1^d(c)^2 = \sum c^1 \otimes 1^d(c)^2$

(because: by Proposition 4.3 we have $\sum 1^d(c)^1 \otimes 1^d(c)^2 = \sum c^1 \otimes 1^d(c^2)$; we apply this here for c_3 . Then we have $\sum 1^d(c_3) \otimes c_2 = \sum 1^d(c_2) \otimes c_3$ and H is commutative) $= \sum \alpha_1^{-1}(c_1)(1^d(c_2))^1 \alpha_1(c_3) \alpha_1(c_4)_1 \Gamma_1(1^d(c_5)) \alpha_1^{-1}(c_6)_1 \otimes$

$$\otimes \alpha_2^{-1}(c_1) \Gamma_1(1^d(c_2)^2) \alpha_2(c_3) \alpha_1(c_4)_2 \Gamma_2(1^d(c_5))_1 \alpha_1^{-1}(c_6)_2 \otimes \\ \otimes \Gamma_2(1^d(c_2)^2) \alpha_2(c_4) \Gamma_2(1^d(c_5))_2 \alpha_2^{-1}(c_6)$$

(applying (C) for α)

 $= \alpha_1^{-1}(c_1)\alpha_1(c_2)(c_3)^1\gamma_1(c_4)\alpha_1(c_5)_1\alpha_1^{-1}(c_6)_1\otimes$

$$\otimes \alpha_2^{-1}(c_1)\alpha_2(c_2)\Gamma_1(1^d(c_2)^2)\gamma_2(c_4)\alpha_1(c_5)_2\alpha_1^{-1}(c_6)_2\otimes$$

 $\otimes \Gamma_2(1^d(c_2)^2)\gamma_2(c_5)_2\alpha_2(c_5)\alpha_2^{-1}(c_6)$

(because $\sum 1^d(c_2) \otimes c_3 = \sum 1^d(c_3) \otimes c_2$ and $\sum 1^d(c_5) \otimes c_4 = \sum 1^d(c_4) \otimes c_5$) = $\sum ((1^d(c)_1)^1 \Gamma_1(1^d(c)_2) \otimes \Gamma_1((1^d(c)_1)^2) \Gamma_2(1^d(c)_2)_1 \otimes \Gamma_2((1^d(c)_1)^2) \Gamma_2(1^d(c)_2)_2$ hence Γ satisfies (C).

3) Suppose $(\psi, \alpha * \gamma) \sim (\psi, \alpha * \gamma')$. We shall prove that Γ and Γ' are cohomologous.

From the above equivalence, there exists $v : C \to H$, k-linear, convolution invertible, with $\varepsilon_H \circ v = \varepsilon_C$ such that (denote $\psi(c) = \sum c^1 \otimes c^2$):

$$\sum c^1 \otimes c^2 = \sum v(c_1)(c_2)^1 v^{-1}(c_3) \otimes (c_2)^2$$
(10)

$$(\alpha * \gamma')(c) = \sum v(c_1)(c_2)^1 (\alpha * \gamma)_1(c_3) v^{-1}(c_4)_1 \otimes v((c_2)^2)(\alpha * \gamma)_2(c_3) v^{-1}(c_4)_2 \quad (11)$$

First, we shall prove that $\sum v(c_1) \otimes c_2 = \sum v(c_2) \otimes c_1$ for any $c \in C$. Let $\varphi \in C^*$; we denoted $F(\pi(c)) = \sum c_{-1} \otimes c_0$, $F: C \to H \otimes C$. Then, for $c \in C$, we have

$$\sum v(c_1)\varphi(c_2) = \sum v(c_1)(c_2)^1((c_2)^2)_{-1}\varphi(((c_2)^2)_0)v^{-1}(c_3)v(c_4)$$

(because $\sum c^1(c^2)_{-1} \otimes (c^2)_0 = 1 \otimes c$)
 $= \sum (c_1)^1((c_1)^2)_{-1}\varphi(((c_1)^2)_0)v(c_2)$

(applying the fact that H is commutative and (10))

$$=\sum \varphi(c_1)v(c_2)$$

Hence, $\sum v(c_1) \otimes c_2 = \sum v(c_2) \otimes c_1$.

Now, define $f : C \to H \otimes C$, $f(c) = \sum v(c_1) \otimes c_2$. The equality proved above says that f is a right C^e -comodule homomorphism. Therefore, there exists a unique k-linear map $u : Z(C) \to H$ such that $(u \otimes I) \circ \theta = f$, where θ is the canonical map. So, $u(1^d(c)) = v(c)$, and therefore u is convolution invertible.

If we denote $A : Z(C) \to H \otimes H$, $A(1^d(c)) = \alpha(c)$, then A is convolution invertible and from (11) we obtain immediately $A * \Gamma' = (A * \Gamma) * D^1(u)$, hence $\Gamma' = \Gamma * D^1(u)$ q.e.d.

Conversely, if Γ and Γ' are cohomologous, we can prove in a similar way that $(\psi, \alpha * \gamma) \sim (\psi, \alpha * \gamma')$.

4) Is a direct consequence of 1, 2) and 3).

Remark 4.8. In the conditions of the above theorem, if there exists a map $A : Z(C) \to H \otimes H$, k-linear, such that $A(1^d(c)) = \alpha(c)$ for any $c \in C$, then $A \in Z^2(Z(C), H \otimes H)$, and (TC) implies that C is a left H-comodule coalgebra via ψ . The pair (ψ, α_0) , where $\alpha_0(c) = \varepsilon(c) \mathbf{1}_H \otimes \mathbf{1}_H$, is also a crossed cosystem for H over C. Therefore, by 3) we obtain that B/C is H-smash if and only if $A \in B^2(Z(C), H)$.

Remark 4.9. If *H* is a commutative Hopf algebra, then, for B = k, the cohomology groups $coalg - H^n(B, H)$ are also known under the name Harrison cohomology groups. It is known (see [2], Th.3.4) that the second Harrison cohomology group is isomorphic to the group of Galois coobjects with normal basis. Recall that a Galois coobject with normal basis is a right *H*-module coalgebra *C* satisfying the following properties:

1) the map $\delta: C \otimes H \to C \otimes C$, $\delta(c \otimes h) = \sum c_1 \otimes c_2 h$ is an isomorphism

2) H and C are isomorphic as right H-modules

(see [2], [3], [9]).

The group operation is the tensor product over H (see [2], Th.2.3). We can conclude that a cleft H-coextension of k is an H-Galois coobject with normal basis.

ACKNOWLEDGEMENT

I thank Şerban Raianu for suggesting the subject of this paper, and the referee for some useful suggestions.

References

- [1] E. Abe, "Hopf Algebras", Cambridge University Press, Cambridge, 1977.
- [2] S. Caenepeel, Harrison cocycles and the group of Galois coobjects, Preprint 1995.
- [3] S. Caenepeel and Ş. Raianu, Induction functors for the Doi-Koppinen unified Hopf modules, in Abelian groups and modules, Proc. of the Padova Conference, Padova, Italy, June 23-July 1, 1994, Kluwer, 1995, eds. A. Facchini and C. Menini, pp. 73-94.
- [4] S. Dăscălescu, G. Militaru, Ş. Raianu, Crossed coproducts and cleft coextensions, Comm. Algebra, 24 (1996), 1229-1243.
- [5] S. Dăscălescu, Ş. Raianu, Y.H. Zhang, Finite Hopf-Galois Coextensions, Crossed Coproducts and Duality, J. Algebra 178 (1995), 400-413.
- [6] Y. Doi, Cohomologies over Commutative Hopf Algebras, J. Math. Soc. Japan, vol. 25, no.4 (1973), 680-706.
- [7] Y. Doi, Equivalent Crossed Products for a Hopf Algebra, Comm. Algebra, 17(12), 3053-3085 (1989).
- [8] S. Majid and Ya. S. Soibelman, Bicrossproduct structure of the Quantum Weyl Group, J. Algebra, 163 (1994), 68-87.
- H.-J. Schneider, Principal homogeneous spaces for arbitrary Hopf algebras, Israel J.Math. 72(1990), 167-195.
- [10] M.E. Sweedler, "Hopf Algebras", Benjamin New York, 1969.
- [11] M.E. Sweedler, Cohomology of algebras over Hopf algebras, Trans. AMS, 133(1968), 205-239.
- [12] M. Takeuchi, Morita theorems for categories of comodules, J. of the Fac. of Sc., Univ. of Tokio, 24(1977), 629-644.
- [13] B. Torrecillas, F. Van Oystaeyen and Y.H. Zhang, The Brauer group of a cocommutative coalgebra, J. Algebra 177 (1995), 536-568.

Institute of Mathematics of the Romanian Academy P.O.Box 1-764, RO-70700, Bucharest, Romania e-mail: fpanaite@stoilow.imar.ro