Extending the Thas-Walker construction

Rolf Riesinger

Abstract

A spread \mathcal{S} of a Pappian projective 3 -space admits a regulization Σ, if Σ is a collection of reguli contained in \mathcal{S} and if each element of \mathcal{S}, except at most two lines, is contained either in exactly one regulus of Σ or in all reguli of Σ. Replacement of each regulus of Σ by its complementary regulus (exceptional lines remain unchanged) yields the complementary congruence \mathcal{S}_{Σ}^{c} of \mathcal{S} with respect to Σ. If \mathcal{S}_{Σ}^{c} belongs to a single linear complex of lines, then Σ is called a unisymplecticly complemented regulization. For spreads with unisymplecticly complemented regulization we give a construction which can be seen as an extension of the well-known Thas-Walker construction of spreads admitting net generating regulizations.

1 Introduction

Let $\Pi=(\mathcal{P}, \mathcal{L})$ be a Pappian projective 3 -space with point set \mathcal{P} and line set \mathcal{L}. We are going to investigate spreads composed of reguli and at most two exceptional lines. Therefore we standardize by defining: A proper regulus \mathcal{R} is the set of lines meeting three mutually skew lines; the directrices of \mathcal{R} form the complementary (opposite) regulus \mathcal{R}^{c}; if $x \in \mathcal{L}$, then $\{x\}$ is called an improper regulus; $\{x\}^{c}:=\{x\}$.

Definition 1. Let \mathcal{S} be a spread of Π and let Σ be a collection of (proper or improper) reguli contained in \mathcal{S}. We call Σ a regulization of \mathcal{S}, if the following hold:
(RZ1) Each line of \mathcal{S} belongs either to exactly one regulus of Σ or to all reguli of Σ.
(RZ2) There are at most two improper reguli in Σ.

[^0]The set $\cup\left(\mathcal{R}^{c} \mid \mathcal{R} \in \Sigma\right)=: \mathcal{S}_{\Sigma}^{c}$ is named complementary congruence of \mathcal{S} with respect to Σ. If \mathcal{S}_{Σ}^{c} belongs to a linear complex of lines, then we say that Σ is a symplecticly complemented regulization. If \mathcal{S}_{Σ}^{c} belongs to a single linear complex of lines, then Σ is called a unisymplecticly complemented regulization, otherwise multisymplecticly complemented. If \mathcal{S}_{Σ}^{c} is a non-degenerate linear congruence of lines, shortly a net (of lines), then we call Σ a net generating regulization, in particular, a hyperbolic or parabolic or elliptic regulization depending on the type of the complementary net \mathcal{S}_{Σ}^{c}. We say that Σ is a preparabolic regulization, if there exists a parabolic net \mathcal{Z} with axis z such that $\mathcal{S}_{\Sigma}^{c}=\mathcal{Z} \backslash\{z\}$.

For spreads with net generating regulizations and references to this subject, see [7] and [8]. Clearly, each net generating and each preparabolic regulization is multisymplecticly complemented. For the real projective 3 -space $\operatorname{PG}(3, \mathbb{R})$ an example of a non-regular spread admitting a unisymplecticly complemented regulization is given in $[7,(4.1,6)]$.

Let λ be the well-known Klein mapping of \mathcal{L} onto the Klein quadric H_{5} which is embedded into a projective 5 -space Π_{5} with point set \mathcal{P}_{5}; cf. e.g. [5]. If \mathcal{R} is a proper or improper regulus, then $\lambda(\mathcal{R})$ is an irreducible conic or a point. For obvious reasons, we speak of proper or improper conics. If \mathcal{S} is a spread of Π with the net generating regulization Ψ, then $\left\{\lambda\left(\mathcal{R}^{c}\right) \mid \mathcal{R} \in \Psi\right\}$ is a flock of the quadric $\lambda\left(\mathcal{S}_{\Psi}^{c}\right) \subset H_{5}$; cf. [7, Prop. 3.1] and [7, Def. 3.1].

Recall the Thas-Walker construction [7, Prop. 3.3]: If \mathcal{F} is a flock of a quadric Q with $Q \subset H_{5}$, then $\cup\left(\left(\lambda^{-1}(k)\right)^{c} \mid k \in \mathcal{F}\right)$ is a spread of Π with the net generating regulization $\left\{\left(\lambda^{-1}(k)\right)^{c} \mid k \in \mathcal{F}\right\}$. This construction was discovered independently by M. Walker [11] and J. A. Thas (unpublished).

In Section 3 we start with a spread \mathcal{S} of Π admitting a unisymplecticly complemented regulization Ω and investigate the set $\left\{\lambda\left(\mathcal{R}^{c}\right) \mid \mathcal{R} \in \Omega\right\}=: \mathcal{E}$ of conics. By statement (S3) of Section $2, \mathcal{S}_{\Omega}^{c}$ belongs to a general linear complex \mathcal{G} of lines. Each conic of \mathcal{E} is contained in the quadric $\lambda(\mathcal{G}) \subset H_{5}$. We sum up the properties of $\lambda(\mathcal{G})$ in

Definition 2. A hyperquadric L_{4} of a Pappian projective 4 -space is called Lie quadric, if L_{4} has no vertex and if L_{4} contains a line. A generatrix of L_{4} is a line g with $g \subset L_{4}$.

In the Proof of Proposition 1 we shall find that \mathcal{E} is a "flockoid" of the Lie quadric $\lambda(\mathcal{G})$; we define the concept "flockoid", as follows

Definition 3. A collection \mathcal{D} of conics contained in a Lie quadric L_{4} of a Pappian projective 4-space is called a flockoid of L_{4}, if the following two conditions hold:
(FD1) For each generatrix g of L_{4} there exists exactly one conic $k \in \mathcal{D}$ with $g \cap k \neq \emptyset$.
(FD2) There are at most two improper conics in \mathcal{D}.
The extended Thas-Walker construction starts with a flockoid \mathcal{D} of a Lie quadric $L_{4} \subset H_{5}$. Then $\cup\left(\left(\lambda^{-1}(k)\right)^{c} \mid k \in \mathcal{D}\right)$ is a spread of Π admitting the regulization $\left\{\left(\lambda^{-1}(k)\right)^{c} \mid k \in \mathcal{D}\right\}$ which is either unisymplecticly complemented or elliptic; cf. Proposition 2. Each flock of an elliptic quadric Q_{e} can be interpreted as flockoid of a Lie quadric L_{4} containing Q_{e}; cf. Remark 9. Note, a flock of a quadric Q covers
Q, but a flockoid of a Lie quadric L_{4} is no covering of L_{4}. By \mathbb{K} we denote the (commutative) coordinatizing field of Π, i.e., $\Pi=P G(3, \mathbb{K})$. We combine Remark 7 and the Propositions 1 and 2 and get

Theorem 1. To each spread of $\mathrm{PG}(3, \mathbb{K})$ with a unisymplecticly complemented or an elliptic regulization there corresponds a flockoid of a Lie quadric contained in the Klein quadric of $\Pi_{5}=\operatorname{PG}(5, \mathbb{K})$, and vice versa.

In Section 4 we state further properties of the extended Thas-Walker construction. The present paper will be continued by [9] wherein we apply the Thas-Walker construction to get topological spreads with unisymplecticly complemented regulization.

2 Preliminaries

If \mathcal{S} is a spread of Π and Σ an arbitrary regulization of \mathcal{S}, then each point of Π is incident with at least one line of \mathcal{S}_{Σ}^{c} and \mathcal{S}_{Σ}^{c} contains at least one proper regulus. Thus \mathcal{S}_{Σ}^{c} cannot be part of a degenerate linear congruence \mathcal{C} of lines since such a \mathcal{C} consists of all lines meeting two intersecting lines. Consequently,
(S1) Each multisymplecticly complemented regulization is either net generating or preparabolic, and vice versa.

If \mathcal{S}_{Σ}^{c} belongs to a special linear complex of lines, then Σ is hyperbolic, parabolic or preparabolic by virtue of [7, Remark 2.7]. As an immediate consequence we obtain the following two statements.
(S2) Let \mathcal{S} be a spread of Π and let Ω be a symplecticly complemented regulization of \mathcal{S}. Then there exists at least one general linear complex \mathcal{G} of lines with $\mathcal{S}_{\Omega}^{c} \subset \mathcal{G}$.
(S3) Let \mathcal{S} be a spread of Π and let Ω be a unisymplecticly complemented regulization of \mathcal{S}. Then the linear complex \mathcal{H} of lines with $\mathcal{S}_{\Omega}^{c} \subset \mathcal{H}$ is general.

If Π_{n} is an arbitrary n-dimensional projective space, then the set of all subspaces of Π_{n} is a lattice with respect to the operations \cap and \vee; we write $\operatorname{Lat}\left(\Pi_{n}\right)$ for this lattice and \mathcal{P}_{n} for the point set of Π_{n}. By [7, Theorem 2.8] (compare also [3, Corollary 5.7]), a spread with net generating regulization is also a dual spread; we generalize this result in

Theorem 2. Let \mathcal{S} be a spread of Π and let Φ be a covering of \mathcal{S} by (proper or improper) reguli. If $\cup\left(\mathcal{R}^{c} \mid \mathcal{R} \in \Phi\right)$ is contained in a general linear complex \mathcal{G} of lines, then \mathcal{S} is also a dual spread.

Proof. The null polarity γ associated with \mathcal{G} is an antiautomorphism of Lat(Π) fixing \mathcal{G} elementwise. If \mathcal{X} is an arbitrary regulus of Φ, then $\mathcal{X}^{c} \subset \mathcal{G}$ implies $\gamma\left(\mathcal{X}^{c}\right)=\mathcal{X}^{c}$. Consequently, $\gamma(\mathcal{X})=\mathcal{X}$ for all $\mathcal{X} \in \Phi$. Therefore $\gamma(\mathcal{S})=\mathcal{S}$ since \mathcal{S} is covered by the reguli of Φ. As \mathcal{S} is a spread, so $\gamma(\mathcal{S})$ is a dual spread.

Corollary 1. If a spread \mathcal{S} of Π admits a symplecticly complemented regulization, then \mathcal{S} is also a dual spread.

A spread \mathcal{S} of Π is called symplectic, if \mathcal{S} belongs to a linear complex of lines.
Corollary 2. A symplectic spread \mathcal{S} of Π is also a dual spread.
Proof. Let \mathcal{H} be a linear complex with $\mathcal{S} \subset \mathcal{H}$. By [7, Remark 4.1.3], \mathcal{H} is general. Hence \mathcal{S} and the collection $\Phi_{0}:=\{\{x\} \mid x \in \mathcal{S}\}$ of improper reguli satisfy the assumptions of Theorem 2.

In connection with the Klein mapping λ we often use Plücker coordinates. We may assume that $\Pi=\mathrm{PG}(3, \mathbb{K})$ and $\Pi_{5}=\mathrm{PG}(5, \mathbb{K})$ are the projective spaces on \mathbb{K}^{4} and $\mathbb{K}^{4} \wedge \mathbb{K}^{4}$, respectively, and that λ maps $\mathbf{c} \mathbb{K} \vee \mathbf{d} \mathbb{K} \in \mathcal{L}$ onto $(\mathbf{c} \wedge \mathbf{d}) \mathbb{K} \in \mathcal{P}_{5}$. The standard basis \mathbf{B} of \mathbb{K}^{4} yields the ordered basis $\left(\mathbf{p}_{0}, \ldots, \mathbf{p}_{5}\right)=: \mathbf{B}_{5}$ of $\mathbb{K}^{4} \wedge \mathbb{K}^{4}$ with

$$
\begin{aligned}
& \mathbf{p}_{0}:=\mathbf{b}_{0} \wedge \mathbf{b}_{1}, \mathbf{p}_{1}:=\mathbf{b}_{0} \wedge \mathbf{b}_{2}, \mathbf{p}_{2}:=\mathbf{b}_{0} \wedge \mathbf{b}_{3}, \mathbf{p}_{3}:=\mathbf{b}_{2} \wedge \mathbf{b}_{3}, \\
& \mathbf{p}_{4}:=\mathbf{b}_{3} \wedge \mathbf{b}_{1}, \mathbf{p}_{5}:=\mathbf{b}_{1} \wedge \mathbf{b}_{2}
\end{aligned}
$$

Thus

$$
\begin{equation*}
H_{5}=\left\{\mathbf{p} \mathbb{K} \in \mathcal{P}_{5} \mid \mathbf{p}=\sum_{k=0}^{5} \mathbf{p}_{k} p_{k} \text { and } p_{0} p_{3}+p_{1} p_{4}+p_{2} p_{5}=0\right\} \tag{1}
\end{equation*}
$$

Next we give some properties of Lie quadrics.
Remark 1. Let L_{4} be a Lie quadric of $\Pi_{4}=\operatorname{PG}(4, \mathbb{K})$. We may assume that Π_{4} is the projective space on \mathbb{K}^{5}. By $[10,(7.40),(7.41),(7.49)]$ there exists a basis $\left(\mathbf{a}_{0}, \ldots, \mathbf{a}_{4}\right)$ of \mathbb{K}^{5} such that

$$
\begin{equation*}
L_{4}=\left\{\mathbf{x} \mathbb{K} \in \mathcal{P}_{4} \mid \mathbf{x}=\sum_{k=0}^{4} \mathbf{a}_{k} x_{k} \text { and } x_{0} x_{3}+x_{1} x_{4}-x_{2}^{2}=0\right\} . \tag{2}
\end{equation*}
$$

This shows that in Π_{4} there exists an essentially unique Lie quadric.
Remark 2. Throughout this paper, the polarities associated with a Lie quadric L_{4} and with a Klein quadric H_{5} are denoted by π_{4} and π_{5}, respectively. From (1) we deduce that π_{5} always is an antiautomorphism of $\operatorname{Lat}\left(\Pi_{5}\right)$. Yet, π_{4} is an antiautomorphism of $\operatorname{Lat}\left(\Pi_{4}\right)$ if, and only if, Char $\mathbb{K} \neq 2$.

Remark 3. Let H_{5} be the Klein quadric of $\operatorname{PG}(5, \mathbb{K})$ and let U be a hyperplane of $\operatorname{PG}(5, \mathbb{K})$ which is not tangent to H_{5}. Then $H_{5} \cap U$ is a Lie quadric.

Remark 4. From Remark 1 and 3 we deduce that each Lie quadric of $\operatorname{PG}(4, \mathbb{K})$ is embeddable into the Klein quadric of $\operatorname{PG}(5, \mathbb{K})$.

Remark 5. Let L_{4} be a Lie quadric of an arbitrary Pappian projective 4 -space Π_{4}. A simple application of Witt's theorem (cf. e.g. [2, p.376]) shows that the group Aut $L_{4}:=\left\{\xi \in \operatorname{P\Gamma L}\left(\Pi_{4}\right) \mid \xi\left(L_{4}\right)=L_{4}\right\}$ operates transitively both on the points of L_{4} and on the set of all generatrices of L_{4}.

Lemma 1. Let L_{4} be a Lie quadric of an arbitrary Pappian projective 4-space.
(i) If $P \in L_{4}$, then the intersection of L_{4} and the tangent hyperplane $\pi_{4}(P)$ of L_{4} at P is a quadratic cone ("tangent cone of L_{4} at P ").
(ii) If g is a generatrix of L_{4}, then $L_{4} \cap \pi_{4}(g)=g$.
(iii) If the intersection of a plane α and L_{4} consists of a single point, say P, then $\alpha \subset \pi_{4}(P)$ and the tangent cone of L_{4} at P has no generatrix in α.
(iv) There exists a plane α with $\#\left(\alpha \cap L_{4}\right)=1$ if, and only if, there exist $p, q \in \mathbb{K}$ such that $x^{2}+q x \neq p$ for all $x \in \mathbb{K}$.

We leave the proof of Lemma 1 to the reader.
Remark 6. Let L_{4} and \widetilde{L}_{4} be Lie quadrics contained in the Klein quadric H_{5} of $\operatorname{PG}(5, \mathbb{K})$. By Remark 1 and the theorem of Witt, there exists a collineation κ of $\operatorname{PG}(5, \mathbb{K})$ with $\kappa\left(L_{4}\right)=\widetilde{L}_{4}$ and $\kappa\left(H_{5}\right)=H_{5}$.

Lemma 2. Let L_{4} be a Lie quadric which belongs to the Klein quadric H_{5} of $\Pi_{5}=$ $\operatorname{PG}(5, \mathbb{K})$. If a plane α of span L_{4} intersects L_{4} in a single point, say P, then $\pi_{5}(\alpha) \cap H_{5}=\{P\}$.

Proof. We may assume that $\Pi_{5}=\operatorname{PG}(5, \mathbb{K})$ is the projective space on $\mathbb{K}^{4} \wedge \mathbb{K}^{4}$. In $\mathbb{K}^{4} \wedge \mathbb{K}^{4}$ we change coordinates according to

$$
\begin{equation*}
p_{j}=p_{j}^{\prime} \quad(j=0, \ldots, 4), \quad p_{5}=-p_{2}^{\prime}+p_{5}^{\prime} \tag{3}
\end{equation*}
$$

and denote the corresponding basis by $\left(\mathbf{p}_{0}^{\prime}, \ldots, \mathbf{p}_{5}^{\prime}\right)$. From (1) follows

$$
\begin{equation*}
H_{5}=\left\{\mathbf{p} \mathbb{K} \in \mathcal{P}_{5} \mid \quad \mathbf{p}=\sum_{k=0}^{5} \mathbf{p}_{k}^{\prime} p_{k}^{\prime} \quad \text { and } \quad p_{0}^{\prime} p_{3}^{\prime}+p_{1}^{\prime} p_{4}^{\prime}-p_{2}^{\prime 2}+p_{2}^{\prime} p_{5}^{\prime}=0\right\} \tag{4}
\end{equation*}
$$

The hyperplane η with $p_{5}^{\prime}=0$ is not tangent to H_{5}. By Remark 5 and 6 , we may assume that L_{4} is the intersection of H_{5} and η, and that $P=\mathbf{p}_{0}^{\prime} \mathbb{K}$. There must be $a_{1}, a_{2} \in \mathbb{K}$ such that $p_{5}^{\prime}=p_{3}^{\prime}=a_{1} p_{1}^{\prime}+a_{2} p_{2}^{\prime}+p_{4}^{\prime}=0$ describes α and such that $x^{2}+a_{2} x+a_{1} \neq 0$ for all $x \in \mathbb{K}$. The plane $\pi_{5}(\alpha)$ is spanned by $\left(\mathbf{p}_{2}^{\prime}+\mathbf{p}_{5}^{\prime} 2\right) \mathbb{K}=: P_{1}$, $\mathbf{p}_{0}^{\prime} \mathbb{K}$, and $\left(\mathbf{p}_{1}^{\prime}+\mathbf{p}_{4}^{\prime} a_{1}+\mathbf{p}_{5}^{\prime} a_{2}\right) \mathbb{K}=: P_{2}$. Because of $\mathbf{p}_{0}^{\prime} \mathbb{K} \in \alpha \Rightarrow \pi_{5}(\alpha) \subset \pi_{5}\left(\mathbf{p}_{0}^{\prime} \mathbb{K}\right)$, the determination of $\pi_{5}(\alpha) \cap H_{5}$ is equivalent to finding $\left(P_{1} \vee P_{2}\right) \cap H_{5}$ and, consequently, equivalent solving the equation $x^{2}+a_{2} x+a_{1}=0$.

3 The extended Thas-Walker construction

This Section generalizes [7, Section 3]. In the subsequent, the star of lines with vertex A is denoted by $\mathcal{L}[A]:=\{x \in \mathcal{L} \mid A \in x\}$; let α be a plane, then the set of lines $\mathcal{L}[\alpha]:=\{x \in \mathcal{L} \mid x \subset \alpha\}$ is called a ruled plane. If $A \in \alpha$, then $\mathcal{L}[A, \alpha]:=\mathcal{L}[A] \cap \mathcal{L}[\alpha]$ is a pencil of lines.

Proposition 1. Let \mathcal{S} be a spread of Π and let Ω be a unisymplecticly complemented regulization of \mathcal{S}. Then $\left\{\lambda\left(\mathcal{R}^{c}\right) \mid \mathcal{R} \in \Omega\right\}=: \mathcal{D}$ is a flockoid of a uniquely determined Lie quadric $L_{4} \subset H_{5}$.

Proof. Clearly, (RZ2) implies (FD2).
We consider $i(\Omega):=\#(\cap(\mathcal{X} \mid \mathcal{X} \in \Omega)) \in\{0,1,2\}$, cf. [7, (2,1) and Remark 2.4]. First we show $i(\Omega)=0$. Assume, to the contrary, $i(\Omega) \in\{1,2\}$ then, by [7, Remarks 2.5 and 2.6], Ω is a parabolic or preparabolic $(i(\Omega)=1)$ or a hyperbolic
($i(\Omega)=2$) regulization. From statement (S1) of Section 2 follows that Ω is a multisymplecticly complemented regulization, a contradiction to the hypothesis.

By statement (S3), the linear complex \mathcal{G} of lines with $\mathcal{S}_{\Omega}^{c} \subset \mathcal{G}$ is general, hence the conics of \mathcal{D} are contained in the Lie quadric $\lambda(\mathcal{G}) \subset H_{5}$. By γ we denote the null polarity associated with \mathcal{G}. Let g be an arbitrary generatrix of $\lambda(\mathcal{G})$, then $\lambda^{-1}(g)$ is a pencil $\mathcal{L}[A, \gamma(A)]$ of lines. If $\lambda\left(\mathcal{R}^{c}\right)$ is a conic of \mathcal{D} with $g \cap \lambda\left(\mathcal{R}^{c}\right) \neq \emptyset$, then the regulus \mathcal{R}^{c} contains a line of $\mathcal{L}[A, \gamma(A)]$ and, consequently, \mathcal{R}^{c} has a unique directrix $d \in \mathcal{R} \subset \mathcal{S}$ incident with $\gamma(A)$. By Corollary $1, \mathcal{L}[\gamma(A)]$ and \mathcal{S} have a single line $s_{0}=d$ in common. Because of $i(\Omega)=0$ and (RZ1), in Ω there exists exactly one regulus \mathcal{R}_{d} with $d \in \mathcal{R}_{d}$. Conversely, $d \in \mathcal{R}_{d}$ and $d \subset \gamma(A)$ imply that there is exactly one line $h \in \mathcal{R}_{d}^{c}$ incident with $\gamma(A)$, and from $\mathcal{R}_{d}^{c} \subset \mathcal{S}_{\Omega}^{c} \subset \mathcal{G}$ we deduce $h \in \mathcal{L}[A, \gamma(A)]$ and $\lambda(h) \in g \cap \lambda\left(\mathcal{R}_{d}^{c}\right)$ with $\lambda\left(\mathcal{R}_{d}^{c}\right) \in \mathcal{D}$ because of $\mathcal{R}_{d} \in \Omega$. Thus \mathcal{D} is a flockoid of the Lie quadric $\lambda(\mathcal{G})$.

Remark 7. Let \mathcal{S} be a spread of Π and let Ω be an elliptic regulization of \mathcal{S}. Then there exists a Lie quadric L_{4} of H_{5} such that $\left\{\lambda\left(\mathcal{R}^{c}\right) \mid \mathcal{R} \in \Omega\right\}=: \mathcal{D}$ is a flockoid of L_{4}.

Proof. (a) There exists a general linear complex \mathcal{G} of lines which contains the elliptic net \mathcal{S}_{Ω}^{c}. The Lie quadric $\lambda(\mathcal{G})$ contains the elliptic quadric $\lambda\left(\mathcal{S}_{\Omega}^{c}\right)$ and $\operatorname{span} \lambda\left(\mathcal{S}_{\Omega}^{c}\right)$ is a hyperplane of the 4 -space span $\lambda(\mathcal{G})$. By [7, Proposition 3.1], \mathcal{D} is a flock of $\lambda\left(\mathcal{S}_{\Omega}^{c}\right)$.
(b) An arbitrary generatrix g of $\lambda(\mathcal{G})$ has exactly one common point G with $\operatorname{span} \lambda\left(\mathcal{S}_{\Omega}^{c}\right)$ and $G \in \lambda\left(\mathcal{S}_{\Omega}^{c}\right)$. In the flock \mathcal{D} there exists a unique conic k containing G. Thus (FD1) is valid for \mathcal{D} and $\lambda(\mathcal{G})$.

Remark 8. Remark 7 does not hold true for a hyperbolic, parabolic or preparabolic regulization Ω. Part (a) of the above Proof can be done, mutatis mutandis. Part (b) splits into two cases. If the generatrix g does not belong to the hyperbolic quadric resp. quadratic cone $\lambda\left(\mathcal{S}_{\Omega}^{c}\right)$, then, as above, there is a unique conic $k \in \mathcal{D}$ with $g \cap k \neq \emptyset$. If the generatrix g belongs to $\lambda\left(\mathcal{S}_{\Omega}^{c}\right)$, then $g \cap k \neq \emptyset$ holds for all conics $k \in \mathcal{D}$; such a generatrix of the Lie quadric $\lambda(\mathcal{G})$ could be called a transversal of \mathcal{D}.

Remark 9. By [8, 2.1], each elliptic quadric Q_{e} of $\operatorname{PGL}(3, \mathbb{K})$ is embeddable into the Klein quadric H_{5} of $\operatorname{PGL}(5, \mathbb{K})$, shortly $Q_{e} \subset H_{5}$. There exists a 4 -space V of $\operatorname{PGL}(5, \mathbb{K})$ containing span Q_{e} and being not tangent to H_{5}. Now $V \cap H_{5}$ is a Lie quadric with $V \cap H_{5} \supset Q_{e}$, consequently, each elliptic quadric Q_{e} of $\operatorname{PGL}(3, \mathbb{K})$ is embeddable into the Lie quadric L_{4} of $\operatorname{PGL}(4, \mathbb{K})$. If \mathcal{F} is a flock of Q_{e} with $Q_{e} \subset L_{4}$, then \mathcal{F} is a flockoid of L_{4} (see part (b) of the above Proof).

Before formulating and proving the converse of Proposition 1 and Remark 7 in Proposition 2 we state some Lemmas about flockoids. The following two Lemmas are immediate consequences of (FD1) and the properties of a plane section of a quadric.
Lemma 3. Let \mathcal{D} be a flockoid of the Lie quadric L_{4}.
(i) Then different conics of \mathcal{D} are disjoint.
(ii) If $\left\{P_{1}\right\}$ and $\left\{P_{2}\right\}$ are different improper conics of \mathcal{D}, then $P_{1} \vee P_{2} \not \subset L_{4}$.
(iii) If g is a generatrix of L_{4} and $k \in \mathcal{D}$ satisfies $k \cap g \neq \emptyset$, then $g \not \subset \operatorname{span} k$ and $\#(k \cap g)=1$.

Lemma 4. Let \mathcal{D} be a flockoid of the Lie quadric L_{4} and let k_{1} be a proper conic of \mathcal{D}. If $k_{2} \in \mathcal{D} \backslash\left\{k_{1}\right\}$, then there exists no tangent cone C_{3} of L_{4} with $k_{1} \cup k_{2} \subset C_{3}$.

Proposition 2. If \mathcal{D} is a flockoid of the Lie quadric L_{4} with $L_{4} \subset H_{5}$, then

$$
\begin{equation*}
\cup\left(\left(\lambda^{-1}(k)\right)^{c} \mid k \in \mathcal{D}\right)=: T_{E}(\mathcal{D}) \tag{5}
\end{equation*}
$$

is a spread of Π admitting the regulization

$$
\begin{equation*}
\left\{\left(\lambda^{-1}(k)\right)^{c} \mid k \in \mathcal{D}\right\}=: T_{R}(\mathcal{D}) \tag{6}
\end{equation*}
$$

and $T_{R}(\mathcal{D})$ is either unisymplecticly complemented or elliptic.
Proof. Let X be an arbitrary point of Π. In $T_{E}(\mathcal{D})$ there exists a line incident with X if, and only if, there is a conic $k_{X} \in \mathcal{D}$ such that X is on a line h of the regulus $\lambda^{-1}\left(k_{X}\right)$. But $\lambda^{-1}\left(k_{X}\right) \subset \lambda^{-1}\left(L_{4}\right)$ implies $h \in \mathcal{L}[X, \gamma(X)]$, wherein γ denotes the null polarity associated with $\lambda^{-1}\left(L_{4}\right)$. By (FD1) there is a unique $k_{X} \in \mathcal{D}$ with $k_{X} \cap \lambda(\mathcal{L}[X, \gamma(X)]) \neq \emptyset$. Hence there is a unique regulus $\left(\lambda^{-1}\left(k_{X}\right)\right)^{c} \subseteq T_{E}(\mathcal{D})$ which contains a line through X. Consequently, $T_{E}(\mathcal{D})$ is a spread.

Next we prove the validity of (RZ1) and (RZ2) for $T_{R}(\mathcal{D})$. Clearly, (FD2) \Rightarrow (RZ2). Instead of (RZ1) we show even more:
(RZ1*) Each line of $T_{E}(\mathcal{D})$ belongs to exactly one regulus of $T_{R}(\mathcal{D})$.
Let $b \in T_{E}(\mathcal{D})$ be arbitrary. We assume

$$
\begin{equation*}
b \in\left(\lambda^{-1}\left(k_{1}\right)\right)^{c} \cap\left(\lambda^{-1}\left(k_{2}\right)\right)^{c}, \quad\left\{k_{1}, k_{2}\right\} \subseteq \mathcal{D}, \quad k_{1} \neq k_{2} . \tag{7}
\end{equation*}
$$

In the case that both $\left(\lambda^{-1}\left(k_{1}\right)\right)^{c}$ and $\left(\lambda^{-1}\left(k_{2}\right)\right)^{c}$ are improper reguli with $\left(\lambda^{-1}\left(k_{i}\right)\right)^{c}=$ $\left\{g_{i}\right\}$ and $g_{i} \in \mathcal{L}, \quad i=1,2$, the lines g_{1} and g_{2} are skew and (7) yields the absurdity $b \in\left\{g_{1}\right\} \cap\left\{g_{2}\right\}=\emptyset$. Hence we may assume, without loss of generality, that $\left(\lambda^{-1}\left(k_{1}\right)\right)^{c}$ is a proper regulus. Each line of $\left(\lambda^{-1}\left(k_{1}\right)\right) \cup\left(\lambda^{-1}\left(k_{2}\right)\right)$ meets b. Thus $k_{1} \cup k_{2}$ is contained in the tangent cone of L_{4} at the point $\lambda(b)$, a contradiction to Lemma 4. Therefore $T_{R}(\mathcal{D})$ is a regulization and, because of $k \subset L_{4}$ for all $k \in \mathcal{D}, T_{R}(\mathcal{D})$ is symplecticly complemented.

As $\left(\mathrm{RZ1}^{*}\right)$ holds for $T_{R}(\mathcal{D})$, so $i\left(T_{R}(\mathcal{D})\right)=0$ and, by [7, Remarks 2.5 and 2.6], $T_{R}(\mathcal{D})$ is neither hyperbolic nor parabolic nor preparabolic.

Now Theorem 1 is proved completely. The process of gaining a spread from a flockoid via formula (5) is called extended Thas-Walker construction. Using Proposition 1, Remark 7, and Proposition 2 we see: The construction of all spreads of $\operatorname{PG}(3, \mathbb{K})$ with unisymplecticly complemented or elliptic regulization is equivalent to the construction of all flockoids of the Lie quadric of $\mathrm{PG}(4, \mathbb{K})$.

4 Thas-Walker line sets

This Section is a generalization of [8, Section 2.2]. For the rest of this paper, we assume that the Lie quadric L_{4} is contained in the Klein quadric H_{5}. We want a proper conic $k \subset L_{4}$ to be uniquely determined by the line $\pi_{4}(\operatorname{span} k)$, hence we assume Char $\mathbb{K} \neq 2$ throughout Section 4. Thus span $L_{4}=: \overline{L_{4}}$ and the pole Z of $\overline{L_{4}}$ with respect to H_{5} are complementary subspaces of Π_{5}, and the projection
$\Delta: \mathcal{P}_{5} \backslash Z \rightarrow \overline{L_{4}}, X \mapsto(X \vee Z) \cap \overline{L_{4}}$ is well-defined. A set T_{ℓ} of lines contained in $\overline{L_{4}}$ is called Thas-Walker line set with respect to L_{4}, if

$$
\begin{equation*}
D\left(T_{\ell}\right):=\left\{\pi_{4}(x) \cap L_{4} \mid x \in T_{\ell}^{\prime}\right\} \quad \text { with } \quad T_{\ell}^{\prime}:=\left\{x \in T_{\ell} \mid \pi_{4}(x) \cap L_{4} \neq \emptyset\right\} \tag{8}
\end{equation*}
$$

is a flockoid of L_{4}. By Lemma 1 (ii), a Thas-Walker line set with respect to L_{4} must not contain a generatrix of L_{4}. If \mathbb{K} is quadratically closed, then, by virtue of Lemma 1 (iv), formula (8) does not yield flockoids of L_{4} which contain improper conics. We put

$$
\begin{equation*}
T_{\ell}^{p}:=\left\{x \in T_{\ell} \mid \#\left(\pi_{4}(x) \cap L_{4}\right)>1\right\} . \tag{9}
\end{equation*}
$$

Remark 10. Let $\{P\} \subset L_{4}$ be an improper conic. In the case $\mathbb{K}=\mathbb{R}$ there are infinitely many lines a with $\pi_{4}(a) \cap L_{4}=\{P\}$; see Lemma 1 (iii). In other words, if $T_{\ell 1}$ and $T_{\ell 2}$ are Thas-Walker line sets with respect to L_{4}, then $D\left(T_{\ell 1}\right)=D\left(T_{\ell 2}\right)$ implies $T_{\ell 1}^{p}=T_{\ell 2}^{p}$, but not $T_{\ell 1}^{\prime}=T_{\ell 2}^{\prime}$.

Lemma 5. Denote by $\mathcal{G}\left[L_{4}\right]$ the set of all generatrices of the Lie quadric L_{4} and put $\mathcal{G}^{*}\left[L_{4}\right]:=\pi_{4}\left(\mathcal{G}\left[L_{4}\right]\right)$. A set A of lines is a Thas-Walker line set with respect to L_{4} if, and only if, the following four conditions hold true:
(TL1) $a \subset \operatorname{span} L_{4}=: \overline{L_{4}}$ for all $a \in A$.
(TL2) $\#\left(A_{e}\right) \leq 2$ with $A_{e}:=\left\{a \in A \mid a \cap \pi_{4}(a) \neq \emptyset\right\}$.
(TL3) If $a_{e} \in A_{e}$, then $\#\left(\pi_{4}\left(a_{e}\right) \cap L_{4}\right)=1$.
(TL4) For each plane $\xi \in \mathcal{G}^{*}\left[L_{4}\right]$ there exists exactly one line $a \in A$ with $\xi \cap a \neq \emptyset$.
Proof. If the intersection of the line $a \in A$ and the plane $\pi_{4}(a)$ is empty, then $\pi_{4}(a) \cap L_{4}$ is either a proper conic or empty, and conversely. We define $D(A)$ according to (8). Now (TL2) and (TL3) imply that all elements of $D(A)$ are proper or improper conics and that $D(A)$ satisfies (FD2), and vice versa. Finally, (TL4) $\Leftrightarrow(\mathrm{FD} 1)$.

If $k \subset L_{4}$ is a proper conic, then

$$
\begin{equation*}
\left(\lambda^{-1}(k)\right)^{c}=\lambda^{-1}\left(Z \vee \pi_{4}(\operatorname{span} k)\right) \text { and }(\Delta \circ \lambda)\left(\left(\lambda^{-1}(k)\right)^{c}\right)=\pi_{4}(\operatorname{span} k) \tag{10}
\end{equation*}
$$

If $\alpha \subset L_{4}$ is a plane such that $\alpha \cap L_{4}$ is the improper conic $\{A\}$, then, by Lemma 2 ,

$$
\begin{equation*}
\left(\lambda^{-1}(\{A\})\right)^{c}=\lambda^{-1}\left(Z \vee \pi_{4}(\alpha)\right) \quad \text { and } \quad(\Delta \circ \lambda)\left(\left(\lambda^{-1}(\{A\})\right)^{c}\right)=\{A\} \tag{11}
\end{equation*}
$$

Thus we have the subsequent modification of the extended Thas-Walker construction:

Lemma 6. Let H_{5} be the Klein quadric of a classical projective 5-space. If T_{ℓ} is a Thas-Walker line set with respect to the Lie quadric $L_{4} \subset H_{5}$, then

$$
\begin{equation*}
\mathcal{T}_{\ell}:=\cup\left(\lambda^{-1}(x \vee Z) \mid x \in T_{\ell}\right) \quad \text { with } \quad Z=\pi_{5}\left(\operatorname{span} L_{4}\right) \tag{12}
\end{equation*}
$$

is a spread of Π admitting the regulization

$$
\begin{equation*}
\Theta_{\ell}:=\left\{\lambda^{-1}(x \vee Z) \mid x \in T_{\ell}^{\prime}\right\} \tag{13}
\end{equation*}
$$

wherein T_{ℓ}^{\prime} is defined by (8); Θ_{ℓ} is either unisymplecticly complemented or elliptic.

Remark 11. If T_{ℓ}^{\prime} is contained in a 3 -space σ, then \mathcal{T}_{ℓ} is a symplectic spread, since $\lambda\left(\mathcal{T}_{\ell}\right)$ belongs to the hyperplane $Z \vee \sigma$ of Π_{5}.
Remark 12. If all lines of T_{ℓ}^{\prime} have a common point, then Θ_{ℓ} is an elliptic regulization.

Remark 13. If T_{ℓ}^{p} contains two skew lines, then Θ_{ℓ} is a unisymplecticly complemented regulization of \mathcal{T}_{ℓ}.

The image of a proper conic m under any projection through a point $Z \in$ span $m=: \bar{m}$ onto a line of \bar{m} (not through Z) will be called a linear segment. We say that $\Phi\left(T_{\ell}^{\prime}\right):=\cup\left(t \mid t \in T_{\ell}^{\prime}\right)$ is the ruled surface determined by T_{ℓ}^{\prime} and that each line $t \in T_{\ell}^{\prime}$ is a T_{ℓ}^{\prime}-generatrix of $\Phi\left(T_{\ell}^{\prime}\right)$.

Lemma 7. Suppose that the conditions (and notations) of Lemma 6 hold. If each linear segment s_{x} with $s_{x} \subset \Phi\left(T_{\ell}^{\prime}\right)$ is contained in a T_{ℓ}^{\prime}-generatrix of $\Phi\left(T_{\ell}^{\prime}\right)$ and if $\Phi\left(T_{\ell}^{\prime}\right)$ contains no proper conic which is the Δ-image of a conic of H_{5}, then
(1) each proper regulus contained in \mathcal{T}_{ℓ} belongs to Θ_{ℓ};
(2) \mathcal{T}_{ℓ} admits exactly one regulization, namely Θ_{ℓ}.

Proof. Assume, to the contrary, that \mathcal{R} is a proper regulus with $\mathcal{R} \subset \mathcal{T}_{\ell}$ and $\mathcal{R} \notin \Theta_{\ell}$. Put $\bar{r}:=\operatorname{span} \lambda(\mathcal{R})$. If $Z \notin \bar{r}$, then $(\Delta \circ \lambda)(\mathcal{R}) \subset \Phi\left(T_{\ell}^{\prime}\right)$ is a proper conic which is the Δ-image of the proper conic $\lambda(\mathcal{R}) \subset H_{5}$. If $Z \in \bar{r}$, then $(\Delta \circ \lambda)(\mathcal{R})=: s_{r}$ is a linear segment with $s_{r} \subset \Phi\left(T_{\ell}^{\prime}\right)$. From $\mathcal{R} \notin \Theta_{\ell}$ follows that s_{r} is not contained in a T_{ℓ}^{\prime}-generatrix of $\Phi\left(T_{\ell}^{\prime}\right)$.

Remark 14. Using the language of descriptive geometry we can say that L_{4} is the contour (silhouette) of H_{5} under Δ. Without proof we mention: If c is a proper conic of H_{5} with $c \not \subset L_{4}$ and $Z \notin \bar{c}:=\operatorname{span} c$, then $\Delta(c)$ is "doubly tangent to L_{4} ", i.e., the determination of $L_{4} \cap \Delta(c)$ is equivalent to the determination of the zeroes of a biquadratic polynomial which splits into two (not necessarily different) quadratic polynomials. An arbitrary biquadratic polynomial $A x^{4}+B x^{3}+C x^{2}+D x+E \in \mathbb{K}[x]$ splits into two quadratic polynomials if, and only if,

$$
\begin{equation*}
A D^{2}-E B^{2}=0 \quad \text { and } \quad 8 A^{2} D+B^{3}-4 A B C=0 \tag{14}
\end{equation*}
$$

(extend [1, p.60] where $\mathbb{K}=\mathbb{R}$ is assumed). In geometric terms: If $\overline{L_{4}} \cap \bar{c}=: l_{4}$ is not tangent to L_{4}, then $\Delta(c)$ and L_{4} determine the same involution of conjugate points in l_{4} and the pole of l_{4} with respect to $\Delta(c)$ is incident with $\pi_{4}\left(l_{4}\right)$; if l_{4} is tangent to L_{4} at the point H, then $\Delta(c)$ hyperosculates $L_{4} \cap \operatorname{span} \Delta(c)$ at H. The converse is not always true: Let $b \subset \overline{L_{4}}$ be a proper conic which is tangent to L_{4} at the different points D_{1} and D_{2}. The quadratic cone $Z \vee b$ and the quadric $H_{5} \cap \operatorname{span}(Z \vee b)=: h_{5}$ have common tangent planes at D_{1} and D_{2}. If $h_{5} \cap(Z \vee b) \neq\left\{D_{1}, D_{2}\right\}$, then $h_{5} \cap(Z \vee b)$ consists of two (not necessarily different) conics. But for $\mathbb{K}=\mathbb{R}$ it is easy to give an example of a quadratic cone and a quadric such that their complete intersection consists of two different points.

Lemma 8. Suppose that the conditions of Lemma 7 hold and that T_{ℓ}^{p} contains two skew lines t_{1}, t_{2}. Let $\kappa \in$ Aut $\mathcal{I}_{\ell} \subset \mathrm{P} \Gamma(\Pi)$ and let κ_{λ} be the collineation of Π_{5} induced by κ (i.e., $\lambda \circ \kappa=\kappa_{\lambda} \circ \lambda$). Then
(3)

$$
\kappa_{\lambda}(Z)=Z \quad \text { and } \quad \kappa_{\lambda}\left(L_{4}\right)=L_{4}
$$

(4) $\quad \kappa_{\lambda}\left(T_{\ell}^{p}\right)=T_{\ell}^{p}$.
(5) If Θ_{ℓ} contains two different improper reguli $\left\{g_{1}\right\}$ and $\left\{g_{2}\right\}$, then $\left\{g_{1}\right\}$ and $\left\{g_{2}\right\}$ are fixed or interchanged by κ. The points $\lambda\left(g_{1}\right)$ and $\lambda\left(g_{2}\right)$ are fixed or interchanged by κ_{λ}.

Proof. Now $\left(Z \vee t_{j}\right) \cap H_{5}=: c_{j}^{*}$ are proper conics with $\lambda^{-1}\left(c_{j}^{*}\right) \in \Theta_{\ell}(j=1,2)$. As t_{1} and t_{2} are skew, so

$$
\begin{equation*}
Z=\operatorname{span} c_{1}^{*} \cap \operatorname{span} c_{2}^{*} . \tag{15}
\end{equation*}
$$

By Lemma $7(1), \kappa\left(\lambda^{-1}\left(c_{j}^{*}\right)\right) \in \Theta_{\ell}$, hence $Z \in \kappa_{\lambda}\left(\operatorname{span} c_{j}^{*}\right)$ for $j=1,2$. Consequently, $\kappa_{\lambda}(Z)=Z$ and $\kappa_{\lambda}\left(L_{4}\right)=L_{4}$.

If $t \in T_{\ell}^{p}$, then $\mathcal{R}_{t}:=\lambda^{-1}(t \vee Z) \in \Theta_{\ell}$ is a proper regulus contained in \mathcal{T}_{ℓ} and hence, by Lemma $7(1), \kappa\left(\mathcal{R}_{t}\right) \in \Theta_{\ell}$. Thus $\kappa_{\lambda}(t)=\operatorname{span} \lambda\left(\kappa\left(\mathcal{R}_{t}\right)\right) \cap \overline{L_{4}} \in T_{\ell}^{p}$, i.e., (4) is valid.

By Remark 13, Θ_{ℓ} is a unisymplecticly complemented regulization and $i\left(\Theta_{\ell}\right)=0$, because of [7, Remarks 2.5 and 2.6]. By Lemma 7 (1) and [7, Remark 2.8], there is no proper regulus $\mathcal{X} \subset \mathcal{T}_{\ell}$ with $\left\{g_{k}\right\} \subset \mathcal{X}$, thus there is no proper regulus $\mathcal{Y} \subset \mathcal{T}_{\ell}$ with $\kappa\left(\left\{g_{k}\right\}\right) \in \mathcal{Y}$ and, consequently, $\kappa\left(\left\{g_{k}\right\}\right) \in\left\{\kappa\left(\left\{g_{1}\right\}\right), \kappa\left(\left\{g_{2}\right\}\right)\right\}, k=1,2$.

Remark 15. By Remark 10, the statement $\kappa_{\lambda}\left(T_{\ell}^{\prime}\right)=T_{\ell}^{\prime}$ is not necessarily true.
Lemma 9. Assume $\mathbb{K}=\mathbb{R}$ and let \mathcal{T}_{ℓ} be a spread constructed from a Thas-Walker line set T_{ℓ} via (12). Put $\overline{L_{4}}:=\operatorname{span} L_{4}$ and

$$
\operatorname{Aut}\left(L_{4}, T_{\ell}^{p}\right):=\left\{\xi \in \operatorname{PGL}\left(\overline{L_{4}}\right) \mid \xi\left(L_{4}\right)=L_{4} \text { and } \xi\left(T_{\ell}^{p}\right)=T_{\ell}^{p}\right\} .
$$

If each collineation $\kappa \in$ Aut $\mathcal{T}_{\ell} \subseteq \operatorname{PGL}(\Pi)$ induces a collineation κ_{λ} of Π_{5} with $\kappa_{\lambda}\left(L_{4}\right)=L_{4}$ and $\kappa_{\lambda}\left(T_{\ell}^{p}\right)=T_{\ell}^{p}$, then

$$
g: \operatorname{Aut} \mathcal{T}_{\ell} \rightarrow \operatorname{Aut}\left(L_{4}, T_{\ell}^{p}\right), \quad \eta \mapsto \eta_{\lambda} \mid \overline{L_{4}}
$$

is an isomomorphism and $\operatorname{Aut} \mathcal{T}_{\ell}=\left\{\mathrm{id}_{\left.\mathrm{Lat}^{(\Pi)}\right)}\right\} \Leftrightarrow \operatorname{Aut}\left(L_{4}, T_{\ell}^{p}\right)=\left\{\mathrm{id}_{\mathrm{Lat}^{\left(\overline{\mathrm{L}_{4}}\right)}}\right\}$.
Proof. The assumptions imply that g is a map from the group Aut \mathcal{T}_{ℓ} into the group Aut $\left(L_{4}, T_{\ell}^{p}\right)$. Clearly, g is homomorphic. Up to notational modifications, the proof of the surjectivity of g can be taken from the proof of [8, Lemma 2.2.4]; we point out that a quadratic form which describes the Lie quadric L_{4} has signature $(+++--)$ or (---++). Finally,

$$
\xi_{\lambda}\left|\overline{L_{4}}=\operatorname{id}_{\operatorname{Lat}^{\left(\overline{L_{4}}\right)}} \Leftrightarrow \xi_{\lambda}\right| L_{4}=\operatorname{id}_{L_{4}} \Leftrightarrow \xi \mid \lambda^{-1}\left(L_{4}\right)=\operatorname{id}_{\lambda^{-1}\left(L_{4}\right)} \Leftrightarrow \xi=i d_{\operatorname{Lat}(\Pi)}
$$

implies ker $g=\left\{\operatorname{id}_{\mathrm{Lat}(\Pi)}\right\}$.
Remark 16. A spread \mathcal{S} of Π with $\operatorname{Aut} \mathcal{S}=\left\{i d_{\mathrm{Lat}(\Pi)}\right\}$ is called rigid. Explicitly given examples of rigid spreads are very rare; cf. [4] for the finite case and [6] for $\operatorname{PG}(3, \mathbb{R})$.

I would like to express my thanks to H. HAVLICEK (Vienna) for valuable suggestions in the preparation of this article.

References

[1] H. Dörrie. Kubische und biquadratische Gleichungen. Leibniz Verlag, München, 1948.
[2] H. Gross. Quadratic forms in infinite dimensional vector spaces. Birkhäuser, Boston, Basel, Stuttgart, 1979.
[3] N. L. Johnson. Derivable nets may be embedded in nonderivable planes. Preprint.
[4] W. M. Kantor. Spreads, translation planes and Kerdock sets. II. SIAM J. Algebraic Discrete Methods, 3, pp. 308-318, 1982.
[5] G. Pickert. Analytische Geometrie. Akad. Verlagsges. Geest \& Portig, 7. Aufl., Leipzig, 1976.
[6] R. Riesinger. Beispiele starrer, topologischer Faserungen des reellen projektiven 3-Raums. Geom. Dedicata, 40, pp. 145-163, 1991.
[7] R. Riesinger. Spreads admitting net generating regulizations. Geom. Dedicata, 62, pp.139-155, 1996.
[8] R. Riesinger. Spreads admitting elliptic regulizations. J. Geom., 60, pp. 127145,1997.
[9] R. Riesinger. A class of topological spreads with unisymplecticly complemented regulization. In preparation.
[10] E. M. Schröder. Vorlesungen über Geometrie, Band 3: Metrische Geometrie. BI-Wissenschaftsverlag, Mannheim, Leipzig, Wien, Zürich, 1992.
[11] M. Walker. A class of translation planes. Geom. Dedicata, 5, pp.135-146, 1976.

Rolf Riesinger
Patrizigasse 7/14
A-1210 Vienna
Austria

[^0]: Received by the editors June 1997.
 Communicated by J. Thas.
 1991 Mathematics Subject Classification : 51A40.
 Key words and phrases : spread, flock.

