On flag transitive $c . c^{*}$-geometries admitting a duality

Barbara Baumeister

Abstract

We continue the classification of flag-transitive $c . c^{*}$-geometries (Γ, G) started in [Ba1, Ba2]. We consider those geometries which admit a duality. We show that, if Γ is not covered by a truncated Coxeter complex of type D_{n} and if the stabilizer of a point G_{p} has no regular normal subgroup, then (Γ, G) is one of 4 exceptional examples or the stabilizer G_{p} is a linear group $L_{2}(q)$, where $(q-1) \equiv 0(4)$ or $q=2^{r}, r$ even or G_{p} is a unitary group. Moreover, we reduce the problem to determine the geometries with $G_{p} \cong U_{3}(q)$ to the problem to determine those with $G_{p} \cong L_{2}(q), q=p^{r}, r$ even. We apply our results to flag-transitive C_{2}.c-geometries having exactly two points on a line.

1 Introduction.

We follow [Bue2] for the terminology and notation of diagram geometry. A c.c*geometry is a geometry with diagram as follows:

where n is a positive integer, called the order of the geometry. The integers above the nodes are the types. As usual we also call the elements of type 0 points, those of type 1 lines and those of type 2 circles. We recall that the stroke

[^0]
means the class of circular spaces with $n+2$ points and

has the dual meaning. We also recall that a circular space is a complete graph with at least three vertices, viewed as a geometry of rank 2 with vertices and edges as points and lines, respectively. Let \mathcal{P} be the set of points and \mathcal{C} the set of circles of Γ. A duality of Γ is an incidence preserving bijective map of Γ which exchanges the points and circles.

A class of $c . c^{*}$-geometries is provided by the semibiplanes, where a semibiplane is a connected incidence structure satisfying:
(i) any two points are incident with 0 or 2 common blocks;
(ii) any two blocks are incident with 0 or 2 common points.
(see for example [Wi]). A semibiplane where each pair of points is incident with exactly two blocks, is called biplane.

In [Ca] and [CaKa] biplanes Γ are considered which admits some polarity, i.e. a duality of order two. They also assume that all points of Γ are absolute points. There are biplanes having a polarity without any or only some absolute points, for example the unique biplanes with 4 or 11 points, respectively. In this paper we classify the flag-transitive $c . c^{*}$-geometries which admit a duality. As an application we obtain a classification of the flag-transitive $C_{2} . c$-geometries with thin lines. The main result of this paper is used in the general classification of flag-transitive $c . c^{*}$-geometries, see [BaBue].

Notation. Let G act flag-transitively on Γ and let $\{p, l, c\}$ be a maximal flag. Then for $x \in\{p, l, c\}$, we denote by G_{x} the stabilizer of x in G and by K_{x} the kernel of the action of G_{x} on Γ_{x}, the residue of x in Γ. In order to simplify the notation we will also write G_{0}, G_{1} and G_{2} instead of G_{p}, G_{l} and G_{c}. As usual we denote by B the stabilizer of the maximal flag $\{p, l, c\}$ and abbreviate $G_{i} \cap G_{j}$ by $G_{i, j}$.

Let $\bar{\Gamma}=\Gamma\left(G,\left(G_{0}, G_{1}, G_{2}\right)\right)$ be the group geometry whose objects of type i are the cosets of G_{i} in $G, \quad 0 \leq i \leq 2$; incidence being non trivial intersection. As $\bar{\Gamma}$ is isomorphic to Γ we are sometimes identifying both geometries.

According to [Ba1] the stabilizer of a point, G_{0}, is a doubly transitive permutation group, so either an affine or an almost simple group, [Ca]. The known examples of $c . c^{*}$-geometries are given in [Ba2], but see also [BaPa] or [BaBue].

In [Ba 2] the following has been shown. If G_{0} is an almost simple group, then G_{0} is a group of Lie-type of rank 1 in its natural action or $G_{0} \cong L_{3}(2), L_{2}(11), A_{7}$ of degree $7,11,15$, respectively, or Γ is covered by a $\{1, \ldots, n-3\}$-truncation of the dual Coxeter complex of type $D_{n}, \operatorname{Tr}\left(\Delta_{n}\right)$. If $G_{0} \cong L_{3}(2), L_{2}(11)$, A_{7}, then $G \cong U_{3}(3), M_{12}, M_{22}$ or $3 M_{22}$ and Γ has $36,144,176$ or 352 points, respectively, see [Ba2, Theorems A and B]. Theorem B of [Ba2] moreover states, if G_{0} is a group of Lie-type of rank 1 in its natural action and if Γ is of order at most 20, then
$\operatorname{soc}\left(G_{0}\right) \cong L_{2}(q)$ and one of the following holds:
(i) $q=4, G \cong L_{2}(11)$ and Γ has 11 points;
(ii) $q=5, E(G) \cong A_{6}$ or $3 A_{6}$ and Γ has 6 or 18 points, respectively;
(iii) $q=9, E(G) \cong L_{3}(4)$ or $2 L_{3}(4)$ and Γ has 56 or 112 points, respectively;
(iv) $q=11, E(G) \cong M_{12}$ and Γ has 144 points.

See also the paper of Grams and Meixner [GM], where they studied some of the geometries assuming $n \leq 10$.

Notice, that all known flag-transitive $c . c^{*}$-geometries having an almost simple stabilizer of a point admit a duality except the example (iv).

The flat flag-transitive $c . c^{*}$-geometries are determined in $[\mathrm{BaPa}]$, where flat means that each point is incident with each circle. They are either a gluing of two copies of an affine n-dimensional space over $G F(2)$ or the flat $J v T$-geometry (the geometry which is listed in (ii) having 6 points).

In [BaBue] the following situation is considered. Suppose G_{0} is not an affine group. If (Γ, G) is a minimal not known example with respect to its order and for that order with respect to the number of points, then G is a group of Lie-type [BaBue, Theorems 1 and 2].

We prove
Theorem 1.1. Let (Γ, G) be a simply connected flag-transitive c.c*-geometry. Suppose that Γ admits a duality α which fixes a flag of type $\{0,2\}$. Then one of the following holds.
(1) Γ is the truncated dual Coxeter-complex of type $D_{n}, \operatorname{Tr}\left(\Delta_{n}\right)$;
(2) G_{0} is an affine group;
(3) $\operatorname{soc}\left(G_{0}\right) \cong L_{2}(q),(q-1) \equiv 0(4)$ or $q=2^{r}$, r even or $\operatorname{soc}\left(G_{0}\right) \cong U_{3}(q)$. In both cases $\operatorname{soc}\left(G_{0}\right)$ acts naturally on the circles in res $\left(x_{0}\right)$;
(4) $G_{0} \cong L_{3}(2)($ in its action of degree 7$)$ and $G \cong U_{3}(3)$
$G_{0} \cong L_{2}(11)$ (in its action of degree 11) and $G \cong M_{12}$ or $G_{0} \cong A_{7}$ (in its action of degree 15) and $G \cong M_{22}$ or $2 M_{22}$.

This theorem can be applied to flag-transitive $C_{2} . c$-geometries. A $C_{2} . c$-geometry is a geometry having the following diagram.

where m and n are positive integers. Here we call the elements of type 0 , points, those of type 1 lines and those of type 2 quads.

Since any simply connected flag-transitive $C_{2} . c$-geometry gives rise to a simply connected flag-transitive $c . c^{*}$-geometry which admits a duality α which fixes a flag of type $\{0,2\}$, (see Section 5), Theorem 1.1 yields the following result.

Corollary 1.2. Let (Λ, G) be a flag-transitive $C_{2} . c-$ geometry, whose lines are incident with exactly two points. Then one of the following holds.
(1) Λ is covered by the $\{1, \ldots, n-3\}$-truncation of the dual of the Coxeter complex of type C_{n};
(2) G_{0} is an affine group;
(3) $\operatorname{soc}\left(G_{0}\right) \cong L_{2}(q),(q-1) \equiv 0(4)$ or $q=2^{r}$, r even or $\operatorname{soc}\left(G_{0}\right) \cong U_{3}(q)$. In both cases $\operatorname{soc}\left(G_{0}\right)$ acts naturally on the circles in res $\left(x_{0}\right)$;
(4) $G_{0} \cong L_{3}(2)$ and $G \cong U_{3}(3) \times 2$
$G_{0} \cong L_{2}(11)$ (in its action of degree 11) and $G \cong \operatorname{Aut}\left(M_{12}\right)$ or $G_{0} \cong A_{7}$ and $G \cong \operatorname{Aut}\left(M_{22}\right)$ or $2 \operatorname{Aut}\left(M_{22}\right)$.

The method of proof of Theorem 1.1 will be as follows. According to [Ba2, Theorems A and B] we are only considering $\operatorname{soc}\left(G_{0}\right)$ a group of Lie-type of rank 1. In [Ba 2] the generators and relations of the groups acting flag-transitively on the truncation $\operatorname{Tr}\left(\Delta_{n}\right)$ where given. For any $c . c^{*}$-geometry Γ with $\operatorname{soc}\left(G_{0}\right) \cong L_{2}(q), q=$ p^{r}, r odd and $p-1 \not \equiv 0 \bmod 4$ or $\operatorname{soc}\left(G_{0}\right) \cong S z(q)$ or $\operatorname{soc}\left(G_{0}\right) \cong R(q)$ we show that these relations have to hold, which will prove Theorem 1.1. This will be done in Sections 2,3 and 6. In Section 4 we consider $\operatorname{soc}\left(G_{0}\right) \cong U_{3}(q)$. We construct some subgeometry, which is again a flag-transitive $c . c^{*}$-geometry whose stabilizer of a point is isomorphic to $L_{2}(q)$. In Section 5 we discuss the relation between c.c* and $C_{2} . c$-geometries. Corollary 1.2 will be proved in Section 6 .

2 Flag-transitive $c . c^{*}$-geometries.

First we list some known facts.
Lemma 2.1. [Ba1] A group G acts flag-transitively on a c.c*-geometry Γ, if and only if there are pairwise distinct subgroups $G_{0}, G_{1}, G_{2} \leq G$, satisfying the following conditions:
(1) G_{i} is a doubly transitive permutation group on $\left\{G_{0,2} g, g \in G_{i}\right\}, i \in\{0,2\}$.
(2) $B \unlhd G_{1}, G_{1} / B \cong E_{4}, G_{1 i} / B \cong \mathbb{Z}_{2}$ and $G_{i}=\left\langle a_{i}, G_{0,2}\right\rangle, a_{i} \in G_{1, i} \backslash B, i \in\{0,2\}$, and $B=G_{0,1,2}$.
(3) $G_{0,2} \cap G_{0,2}^{a_{i}}=B$.
(4) $G=\left\langle G_{0}, G_{2}\right\rangle$.

Proposition 2.2. [Ba1, Corollary 3.5] The geometry Γ is covered by $\operatorname{Tr}\left(\Delta_{n}\right)$ if and only if there exist a flag-transitive subgroup G of $\operatorname{Aut}(\Gamma)$ and an isomorphism φ from G_{0} onto G_{2} such that φ centralizes $G_{0,2}$ and such that $\left(a_{0} a_{0}^{\varphi}\right)^{2}=1$ for some $a_{0} \in N_{G_{0}}(B) \backslash B$.

Lemma 2.3. Suppose that G_{0} is an almost simple group of Lie type of rank 1 and suppose $G_{0} \neq R(3) \cong L_{2}(8): 3$. Then $H=\left\langle\operatorname{soc}\left(G_{0}\right)\right.$, $\left.\operatorname{soc}\left(G_{2}\right)\right\rangle$ acts flag-transitively on Γ.

Proof. Let K be the two point stabilizer of G_{0} in its doubly transitive permutation representation. As G_{0} is an almost simple group of Lie type of rank 1 and $G_{0} \not \approx R(3)$, we have $G_{0}=K \operatorname{soc}\left(G_{0}\right)$. Since the Borel subgroup B is a two point stabilizer in G_{0} and in G_{2} as well, we obtain $G_{0}=\operatorname{soc}\left(G_{0}\right) B$ and $G_{2}=\operatorname{soc}\left(G_{2}\right) B$. Hence $G=H B$, which yields that H acts flag-transitively.

We are also able to prove the converse as is shown next.
Lemma 2.4. Let Γ be simply connected and suppose that G_{0} is isomorphic to $L_{2}(q)$, q odd, acting naturally on the circles in res $\left(x_{0}\right)$. Then Γ admits as group of automorphisms a group \widetilde{G}, such that $|\widetilde{G}: G|=2$ and $\widetilde{G}_{0} \cong P G L_{2}(q)$.

Proof. We have

$$
G_{0} \cong L_{2}(q) \cong G_{2}, G_{1} \cong \mathbb{Z}_{(q-1) / 2} E_{4}, G_{i, 1} \cong D_{2(q-1) / 2}, i=0,2, G_{0,2} \cong E_{q} \mathbb{Z}_{(q-1) / 2}
$$

and the Borel subgroup B is isomorphic to $\mathbb{Z}_{(q-1) / 2}$. Due to [Ba2, Lemma (4.4)] there are elements $a_{0}, c, d, a_{2} \in G$, such that

$$
\begin{aligned}
G_{0}=\left\langle a_{0}, c, d\right\rangle, G_{1} & =\left\langle a_{0}, d, a_{2}\right\rangle, G_{2}=\left\langle a_{2}, c, d\right\rangle, G_{0,2}=\langle c, d\rangle, \\
G_{i, 1} & =\left\langle a_{i}, d\right\rangle, i=0,2, \quad B=\langle d\rangle,
\end{aligned}
$$

where $o(d)=(q-1) / 2, o\left(a_{i}\right)=2, d^{a_{i}}=d^{-1}, i=0,2$ and $o(c)=p$. Further there is an isomorphism $\phi: G_{0} \rightarrow G_{2}$ with $\phi_{\mid G_{0,2}}=i d$, cf. [Ba], and we may suppose $a_{2}=a_{0}^{\phi}$. Since Γ is simply connected, G is the universal completion of this amalgam, [Pa1].

Let e be a diagonal automorphism of G_{0} such that $e^{2}=d$. Then $c^{e} \in\left\langle c^{\langle d\rangle}\right\rangle$, $[d, e]=1, e^{a_{0}}=e^{-1}$ and $a_{0}^{e}=a_{0} d$.

We claim that e extends to an automorphism of G by setting $a_{2}^{e}=a_{2} d$. For any relation $R\left(a_{0}, c, d, a_{2}\right)$ in G, we have to show that the relation $R\left(a_{0}^{e}, c^{e}, d^{e}, a_{2}^{e}\right)$ holds in G, as well.

By the existence of ϕ and by our choice of a_{2} the map e defines not only an automorphism of G_{0}, but also an automorphism of $G_{2}, G_{0,1}$ and $G_{2,1}$. In G there is one further relation, namely $\left(a_{0} a_{2}\right)^{2}=d^{i}$ for some $i \in\{1, \ldots,(q-1) / 2\}$, cf. [Ba2, p.17] or Lemma 2.1. As $\left(a_{0} a_{2}\right)^{2 e}=d^{i e}=d^{i}$ and $\left(a_{0}^{e} a_{2}^{e}\right)^{2}=\left(a_{0} d a_{2} d\right)^{2}=\left(a_{0} a_{2}\right)^{2}=$ $\left(\left(a_{0} a_{2}\right)^{2}\right)^{e}$, the map e extends to an homomorphism of G.

It remains to show that e is an automorphism of G. Obviously e is a surjection. Since e is surjective and G finite (see [Wi]), indeed e defines a bijection.

Hence e is an automorphism of G which normalizes G_{0}, G_{1} and G_{2} and therefore e induces an automorphism on Γ which proves the lemma.

Observe that in Lemma 2.4 the condition that Γ is simply connected is neccessary. There is for example a quotient of $\operatorname{Tr}\left(\Delta_{16}\right)$ with 2^{8} points, which admits as a point stabilizer $L_{2}(17)$, but not $P G L_{2}(17)$.

Using exactly the same argumentation as in Lemma 2.4 we obtain the following.
Lemma 2.5. Let Γ be simply connected and suppose that G_{0} is isomorphic to $U_{3}(q)$ with $(q+1,3)=3$. Then Γ admits as group of automorphisms a group \widetilde{G}, such that $|\widetilde{G}: G|=3$ and $\widetilde{G}_{0} \cong P G U_{3}(q)$.

3 $c . c^{*}$-geometries with point stabilizer a linear, a Suzuki group or a group of Ree type.

Let $G=A u t(\Gamma)$.
Lemma 3.1. Let (Γ, G) be a simply connected flag-transitive c.c*-geometry. If Γ admits a polarity α which interchanges G_{0} and G_{2} and which centralizes $G_{0,2}$, then $\left(a_{0} a_{0}^{\alpha}\right)^{4}=1$ for any $a_{0} \in N_{G_{0}}(B) \backslash B$.

Proof. Set $a_{2}=a_{0}^{\alpha}$. Then $\left(a_{0} a_{2}\right)^{2}=\left(a_{0} a_{2}\right)^{2 \alpha}=\left(a_{2} a_{0}\right)^{2}=\left(a_{0} a_{2}\right)^{-2}$. Hence $\left(a_{0} a_{2}\right)^{4}=$ 1.

Proposition 3.2. Let (Γ, G) be a simply connected flag-transitive c.c*-geometry and let $\operatorname{soc}\left(G_{0}\right) \cong L_{2}(q), q=p^{r}$, r odd, $S z(q)$ or $R(q)$. If Γ admits a duality α which fixes a flag of type $\{0,2\}$, then there is a polarity π which acts trivially on $\operatorname{soc}\left(G_{0}\right) \cap \operatorname{soc}\left(G_{2}\right)$. Moreover, $\left(a_{0} a_{0}^{\pi}\right)^{4}=1$ for any $a_{0} \in N_{G_{0}}(B) \backslash B$.

Proof. Let α be chosen such that its order is a power of 2 and let $\left\{x_{0}, x_{2}\right\}$ be a flag, such that α interchanges x_{0} and x_{2}. Hence α interchanges G_{0} and G_{2} and normalizes $G_{0,2}$.

For $\operatorname{soc}\left(G_{0}\right) \not \approx L_{2}(q)$ set $H_{i}=\operatorname{soc}\left(G_{i}\right)$ and for $\operatorname{soc}\left(G_{0}\right) \cong L_{2}(q)$ set $H_{i} \cong$ $P G L_{2}(q)$, respectively. By [Ba2] we may assume $G_{0} \not \approx R(3) \cong L_{2}(8) 3$ of degree 28. Note that according to Lemma $2.3\left\langle\operatorname{soc}\left(G_{0}\right), \operatorname{soc}\left(G_{2}\right)\right\rangle$ acts flag-transitively on Γ. So, by Lemma $2.4 H=\left\langle H_{0}, H_{2}\right\rangle$ is a flag-transitive subgroup of G. Moreover, as H_{i} char G_{i}, the automorphism α interchanges H_{0} and H_{2}.

Since $H_{0} \cong P G L_{2}(q), S z(q)$ or $R(q)$ we have $H_{0,2}=O_{p}\left(H_{0,2}\right): B$ and $B \cong \mathbb{Z}_{q-1}$.
Set $Q=O_{p}\left(H_{0,2}\right)$. For $\Phi(Q)$ the Frattini subgroup of Q we have $\bar{Q}=Q / \Phi(Q) \cong$ E_{q} and B acts regularly on $\bar{Q}^{*}=\bar{Q} \backslash\{1\}$, cf. [HuIII, XI, 3.1 and 13.2].

As α normalizes Q and $H_{0,2}$, the group B^{α} is a complement in $H_{0,2}$ to Q. Hence by the Theorem of Schur-Zassenhaus there is a $q \in Q$ with $[B, q \alpha] \leq B$.

We have $\bar{Q}: B \cong \Gamma L_{1}(q)$. Hence $q \alpha \in N_{G L_{r}(p)}(B) \cong \mathbb{Z}_{q-1}: \mathbb{Z}_{r}$ [HuI, II, 7.3].
Assume $q \alpha \notin B$ as an automorphism of \bar{Q}. As r is odd, $O_{2}\left(N_{G L_{r}(p)}(B)\right)=$ $O_{2}(B)$. Since α induces on \bar{Q} an automorphism whose order is a power of 2 , we have $\alpha \in O_{2}(B)$ in contradiction to our assumption.

Thus $q \alpha \in B$ as an automorphism of \bar{Q} and there exists an $b \in B$ such that $[\bar{Q}, q b \alpha]=1$ and due to the Three-Subgroup-Lemma $[B, q b \alpha] \leq C_{B}(\bar{Q})=1$. Set $\pi=q b \alpha$. We claim that $\left[H_{0,2}, \pi\right]=1$. The restriction of π on $H_{0,2}$ induces an automorphism β on $H_{0,2}$, which normalizes B. Hence due to [Ba 2] β can be extended to some automorphism γ of H_{2}. Then γ centralizes the semidirect product X of \bar{Q} with B. Hence $\gamma \in C_{A u t\left(H_{0}\right)}(B)=B$ and $\gamma \in C_{\left.N_{\text {Aut }\left(H_{0}\right)}\right)}(Q)(\bar{Q})=Q$, so $\gamma \in B \cap Q=1$ and $\gamma=1$. This gives $\beta=1$ and $\left[H_{0,2}, \pi\right]=1$ as claimed.

As $q b \in H_{0,2}$ the automorphism π interchanges H_{0} and H_{2}. Since $C_{A u t\left(H_{i}\right)}\left(H_{0,2}\right)=$ 1 , it follows that π^{2} acts trivially on H_{i}, for $i=0,2$. Thus $\pi^{2}=1$. This proves the first part of the proposition.

As π is of order 2 , it interchanges a_{0} and a_{2}. Now Lemma 3.1 implies the last part of the assertion.

Corollary 3.3. Let Γ be simply connected and suppose that $\operatorname{soc}\left(G_{0}\right) \cong L_{2}(q)$, $(q-1) \equiv 2(4)$ or $q=2^{r}, r$ odd or $\operatorname{soc}\left(G_{0}\right) \cong S z(q)$. If Γ admits a duality α which fixes a flag of type $\{0,2\}$, then Γ is $\operatorname{Tr}\left(\Delta_{n}\right)$.

Proof. We may assume $G_{i}=\operatorname{soc}\left(G_{i}\right)$ for $i=0,2$. By Proposition $3.2\left(a_{0} a_{0}^{\alpha}\right)^{4}=1$ for any $a_{0} \in N_{G_{i}}(B) \backslash B$. Since $\left(a_{0} a_{0}^{\alpha}\right)^{2} \in B$ and $O_{2}(B)=1$, in fact $\left(a_{0} a_{0}^{\alpha}\right)^{2}=1$. Thus Proposition 2.2 yields the assertion.

Next let us consider $\operatorname{soc}\left(G_{0}\right) \cong R(q)$. Then the Borel subgroup B is of even order. Hence, we have to use more elaborated arguments as for $L_{2}(q),(q-1) \equiv 2(4)$ or $q=2^{r}, r$ odd or $S z(q)$ to show that Γ is covered by $\operatorname{Tr}\left(\Delta_{n}\right)$. We first use the fact that $\left(a_{0} a_{0}^{\alpha}\right)^{4}=1$ for the polarity α (Proposition 3.2) which reduces the problem to the determination of the $c . c^{*}$-geometries with point stabilizer isomorphic to $R(3)$. The latter was already done in [Ba2].

Let $G=\left\langle\operatorname{soc}\left(G_{0}\right), \operatorname{soc}\left(G_{2}\right)\right\rangle \leq \operatorname{Aut}(\Gamma)$. By Lemma 2.3 G acts flag-transitively on Γ and we have

$$
G_{0} \cong G_{2} \cong R(q), G_{1} \cong \mathbb{Z}_{q-1} E_{4}, G_{0,2}=O_{p}\left(G_{0,2}\right) B, B \cong \mathbb{Z}_{q-1}
$$

and $G_{i, 1} \cong D_{2(q-1)}, \quad i=0,2$.
Corollary 3.4. Let Γ be simply connected and suppose $\operatorname{soc}\left(G_{0}\right) \cong R(q)$. If Γ admits a duality α which fixes a flag of type $\{0,2\}$, then Γ is $\operatorname{Tr}\left(\Delta_{n}\right)$.

Proof. If $G_{0} \cong R(3)$ of degree 28, then according to [Ba 2 , page 19] Γ is isomorphic to $\operatorname{Tr}\left(\Delta_{26}\right)$. Therefore by Lemma 2.3 we may assume $G_{0}=\operatorname{soc}\left(G_{0}\right)$. According to Proposition 3.2 we may assume that α is a polarity, which exchange G_{0} and G_{2} and centralizes $G_{0,2}$. Let $g \in B$ be an involution. Then $\left(a_{0} a_{0}^{\alpha}\right)^{2} \in\langle g\rangle$ by Proposition 3.2.

Let H_{0} be a subgroup of G_{0} isomorphic to $R(3)$ and let a_{0} be chosen such that $a_{0} \in H_{0}$. Set $H=\left\langle H_{0}, H_{0}^{\alpha}\right\rangle$. Then, as $g \in H_{0}$, the group geometry

$$
\Gamma\left(H,\left(H_{0},\left\langle a_{0}, H_{0} \cap B, a_{0}^{\alpha}\right\rangle, H_{0}^{\alpha}\right)\right)
$$

is a $c . c^{*}$-geometry with point stabilizer isomorphic to $R(3)$. By ([Ba2, page 19]) $\left(a_{0} a_{0}^{\alpha}\right)^{2}=1$, so Proposition 2.2 yields that Γ is covered by $\operatorname{Tr}\left(\Delta_{n}\right)$.

Remark 3.5. If (Γ, G) is a c.c*-geometry which does not admit a duality and whose stablizer of a point is isomorphic to $R(q)$, then we would be able to determine Γ under the assumption that we know all flag-transitive c.c*-geometries with point stabilizer a linear group $L_{2}(q)$, using the same method as described in the next section. There we consider an element g of order $q+1$, here we would have to consider an involution.

$4 \quad c . c^{*}$-geometries with point stabilizer a unitary group.

If G_{0} is a unitary group, then $q=p^{r}$ with r even. Therefore we can not use the idea of the proof of Proposition 3.2 to determine the flag-transitive c.c c^{*}-geometries whose point stabilizers are unitary groups. But we can reduce this problem to the problem to determine the $c . c^{*}$-geometries whose point stabilizers are isomorphic to $L_{2}(q)$.

Let $\operatorname{soc}\left(G_{0}\right) \cong U_{3}(q)$. By Lemma 2.3 we may assume $G_{0} \cong G_{2} \cong P G U_{3}(q)$. Then,

$$
G_{0} \cong G_{2} \cong P G U_{3}(q), G_{1} \cong \mathbb{Z}_{\left(q^{2}-1\right)} E_{4},, G_{0,2}=O_{p}\left(G_{0,2}\right) B, B \cong \mathbb{Z}_{\left(q^{2}-1\right)}
$$

and $G_{i, 1} \cong D_{2\left(q^{2}-1\right)}, \quad i=0,2$.
Let $g \in B$ be an element of order $q+1$ and let B be the stabilizer of the flag $\left\{x_{0}, x_{1}, x_{2}\right\}$ in Γ. Then g fixes $q+1$ circles on the point x_{0} and $q+1$ points on the circle x_{2} [HuI, II. (10.12)]. Moreover, $E\left(K_{i}\right) \cong L_{2}(q)$, where $K_{i}=C_{G_{i}}(g) /\langle g\rangle$ ($i=0,2$).

Let Δ be the subgeometry of Γ whose set of elements of type i are the elements of Γ of type i which are fixed by $g, i=0,2$, and whose lines are the lines of Γ, whose residue is fixed elementwise by g. Let incidence be the one inherited from Γ. For $i=0,2$ set $C_{i}=E\left(K_{i}\right)$.

Lemma 4.1. Let $\widetilde{\Delta}$ be a connected component of Δ containing the flag $\left\{x_{0}, x_{1}, x_{2}\right\}$. Then $\widetilde{\Delta}$ is a c.c*-geometry with flag-transitive group of automorphism $C=\left\langle C_{0}, C_{2}\right\rangle$ and point stabilizer $C_{0} \cong L_{2}(q)$.
Proof. Let y_{0} be a point in $\widetilde{\Delta}$. Let y_{2}, z_{2} be two circles being incident with the point y_{0}. Then there is exactly one line y_{1} in Γ in $\operatorname{res}\left(y_{0}\right)$ which is incident with y_{2} and z_{2}. Hence y_{1} is fixed by g and, as a line is incident with two points and two circles, g fixes the residue of y_{1} elementwise. So $y_{1} \in \widetilde{\Delta}$.

Thus by the definition of the lines in $\widetilde{\Delta}$, the residue of a point is a complete graph with at least 3 vertices. Then the same holds for the residue of a circle. Thus, as the residue of a line is a generalized two-gon, $\widetilde{\Delta}$ is a $c . c^{*}$-geometry.

In $\widetilde{\Delta}$ the residue of a plane (resp. point) contains $q+1$ points (resp. planes) on which C_{2} (resp. C_{0}) acts faithfully. Therefore, C_{i} acts doubly transitively on $\operatorname{Res}\left(x_{i}\right)(i=0,2)$ and C acts flag-transitively on $\widetilde{\Delta}$.

Suppose that we know all flag-transitive simply connected geometries of type $c . c^{*}$ with point stabilizer a linear group $L_{2}(q)$. We conjecture that they are truncations $\operatorname{Tr}\left(\Delta_{q-1}\right)$ for $q \geq 27$. Let (Γ, G) be a flag-transitive $c . c^{*}$-geometry with $\operatorname{soc}\left(G_{0}\right) \cong$ $U_{3}(q)$ and let $a_{0} \in N_{G_{0}}(B) \backslash B$. Then, if the conjecture holds, the previous Lemma implies that there is an $a_{2} \in N_{G_{2}}(B) \backslash B$ such that $\left(a_{0} a_{2}\right)^{2} \in\langle g\rangle$ and that $\widetilde{\Delta}$ would be a quotient of $\operatorname{Tr}\left(\Delta_{q-1}\right)$. Therefore, $C_{G}(g)$ would have as a factor either $2^{q} L_{2}(q)$ or $2^{(q-1) / 2} L_{2}(q)$. In [BaBue] we consider the minimal not known examples whose stabilizer of a point is not an affine group; minimal with respect to the order n and for that n with a minimal number of points. We proved

Theorem 4.2. [BaBue, Corollary (1.3)] Let (Γ, G) be a flag-transitive c.c*-geometry. Suppose that (Γ, G) is a minimal not known example whose stabilizer of a point is not an affine group. Then G is a group of Lie-type.

Moreover, it is well known that a c.c*-geometry of order n has at most 2^{n-1} points and is isomorphic to $\operatorname{Tr}\left(\Delta_{n-1}\right)$ if and only if Γ has exactly 2^{n-1} points.

Hence, if the conjecture holds, then it remains to determine those groups of Lietype G, which contains a subgroup U isomorphic to $U_{3}(q)$ such that $|G: U|<2^{q^{3}}$ and which possess an element g of order $q+1$ whose centralizer in G has a factor as described above.

5 Relation between $c . c^{*}$ and $C_{2} . c-$ geometries.

To any $c . c^{*}$-geometry Γ a $C_{2} . c$-geometry is related in a natural way. Relate to a $c . c^{*}$-geometry Γ the following rank three geometry $\Lambda=\Lambda(\Gamma)$.
Let Δ be the point-circle incidence graph of Γ and call a quadrangle of Δ geometric if its four vertices are incident with a common line in Γ. Define the rank three geometry $\Lambda=\Lambda(\Gamma)$ as follows. Take as points, lines and quads of Λ the vertices, the edges and the geometric quadrangles of Δ, respectively.

Lemma 5.1. The geometry Λ is of type $C_{2} . c$. Further if Γ is flag-transitive and possesses a duality which fixes a flag of type $\{0,1,2\}$, then Λ is flag-transitive, as well.

Proof. It is straightforward to check that Λ is of type $C_{2} . c$.
If G acts flag-transitively on Γ, then G extended by the duality acts transitively on the maximal flags of Λ.

Observe that those $C_{2} . c$-geometries whose point-line truncation is a bipartite graph are exactly those obtained from a $c . c^{*}$-geometry. If Λ is a $C_{2} . c$-geometry whose point-line truncation is a bipartite graph, then we get a $c . c^{*}$-geometry Γ by taking as set of points one part, as set of circles the other part of the bipartition and as set of lines the quads of Λ. A point is incident to a circle if and only if they are on a common line in Λ and incidence between points (circles) and lines is defined by inclusion.

Lemma 5.2. Let Λ be a $C_{2} . c-g e o m e t r y ~ w i t h ~ t w o ~ p o i n t s ~ o n ~ a ~ l i n e . ~ T h e n ~ t h e ~ p o i n t-~$ line truncation of the universal cover $\widetilde{\Lambda}$ of Λ is a bipartite graph.

Proof. This follows immediately from [Neu] or [Ri, Theorem 1].

Corollary 5.3. Each simply connected C_{2}.c-geometry with two points on each line is related to exactly one simply connected c.c*-geometry up to exchange of 'points' and 'circles'. Moreover, if Λ is related to a c.c*-geometry than each cover of Λ is related to a c.c*-geometry.

Recall the two properties of geometries. The first condition is equivalent to the Intersection Property in [Bue1].
(IP) For any two elements x and y, the set of points incident with x and y coincide, if not empty, with the set of points incident with some element z, which is incident with both x and y;
and
(LL) Each pair of points is incident with at most one line.

Lemma 5.4. The following statements are equivalent.
(i) (LL) holds in Γ.
(ii) (IP) holds in Γ.
(iii) (IP) holds in $\Lambda(\Gamma)$.
(iv) Δ is a rectagraph, that is each path of length three lies in a unique quadrangle.

Proof. According to [Pa2, Lemma (7.25)] (i) and (ii) are equivalent.
Now we want to prove the euivalence of (iii) and (i). Assume first (i). Since in Λ the points and the lines are the vertices and the edges of Δ and since Δ is a bipartite graph, (IP) holds for x or y a point or a line. Two quads intersect in $0,1,2$ or 4 points, since in Δ each path of length 3 lies in exactly one geometric quadrangle. If two different quads intersect in exactly two points, then, by (i), these two points are incident with a line. Hence (iii) holds. Assume that (i) does not hold. Then there are two points, which are incident with at least two lines. Hence in $\Lambda(\Gamma)$ there are two points at distance two which are incident with two quads. Thus for these two quads the Intersection Property does not hold, i.e. (iii) implies (i).

Finally we claim that Δ is a rectagraph under the assumption of (i). Since in Δ each path of length 3 lies in a geometric quadrangle, we have to show that Δ only contains geometric quadrangles. Assume that $\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}$ are the vertices of a non-geometric quadrangle, c_{i} being a neighbour of c_{i+1}. Then c_{1}, c_{2}, c_{3} as well as c_{1}, c_{4}, c_{3} lie in a geometric quadrangle. Hence in Γ the elements c_{1} and c_{3} are incident with two lines. Since c_{1} and c_{3} are either points or circles, in both cases the property (LL) does not hold in contradiction to our assumption. If Δ is a rectagraph, then obviously (i) holds. This proves the lemma.
Remark. Let Λ be a $C_{2} . c$-geometry, whose lines are incident with exactly two points. Then obviously (IP) holds if and only if the point-line truncation of Λ is a rectagraph.

6 Proofs of Theorem 1.1 and Corollary 1.2.

In order to show Theorem 1.1 we still need the following statement.
Lemma 6.1. Let Γ be a flag-transitive c.c*-geometry. Suppose that Γ possesses a duality, which fixes a flag of type $\{0,2\}$. Then the universal cover $\widetilde{\Gamma}$ of Γ possesses as well a duality which fixes a flag of type $\{0,2\}$.

Proof. Associate to Γ the $C_{2} . c$-geometry $\Lambda=\Lambda(\Gamma)$. Then by Lemma 5.1Λ is flagtransitive as well. According to Lemma 5.3 the universal cover $\widetilde{\Lambda}$ of Λ is related to the universal cover $\widetilde{\Gamma}$ of Γ. As $\operatorname{Aut}(\widetilde{\Lambda})=\operatorname{Corr}(\widetilde{\Gamma})$ the assertion follows.

Remark 6.2. As pointed out by Pasini [pers. comm.] Lemma 6.1 is part of a general fact: Any correlation of a geometry can always be lifted to a correlation of the universal cover.

Proof of Theorem 1.1.

According to [Ba2, Theorems A and B] else (1),(2) or (4) holds or $\operatorname{soc}\left(G_{0}\right)$ is a simple group of Lie-type of rank 1. Hence assume that $\operatorname{soc}\left(G_{0}\right)$ is a group of Lie-type of rank 1. Now Lemma 6.1 yields that we may assume Γ to be simply connected. Then the Corollaries 3.3 and 3.4 prove the assertion.

Proof of Corollary 1.2.

Let $\widetilde{\Lambda}$ be the universal cover of Λ. Then by Lemma $5.3 \widetilde{\Lambda}=\widetilde{\Lambda}(\Gamma)$ for some simply connected $c . c^{*}$-geometry. Moreover Γ is flag-transitive admitting a duality, which fixes a flag $\{p, l, c\}$ of type $\{0,1,2\}$ and the stabilizer of a point is isomorphic to G_{0}.

Notice, if Γ is $\operatorname{Tr}\left(\Delta_{n}\right)$, then Λ is the $\{1, \ldots, n-3\}$-truncation of an apartment of type C_{n}. Therefore, application of Theorem 1.1 proves the corollary.

Acknowledgement. I like to thank F. Buekenhout and A. Pasini for their helpful advice.

References

[Ba1] B. Baumeister, Two new sporadic semibiplanes related to M_{22}, Eur. J. Comb., 15 (1994), 325-336.
[Ba2] B. Baumeister, On flag-transitive c.c*-geometries, in Proceeedings of the Ohio State Conference (May 1993), ed. by K.T. Arasu et all, 3-23.
[BaBue] B. Baumeister, F. Buekenhout, On the classification of flag-transitive c.c*geometries, Geom. Dedicata, 75 (1999), 1-18.
[BaPa] B. Baumeister, A. Pasini, On flat flag-transitive $c . c^{*}$ geometries, Alg. Comb. 6 (1997), 5-26.
[Bue1] F. Buekenhout, Diagrams for geometries and groups, J. Comb. Th. Serie A 27 (1979), 121-151.
[Bue2] F. Buekenhout, Handbook of Incidence Geometry, (F. Buekenhout ed.), North Holland 1995.
[Ca1] P. Cameron, Biplanes, Math. Z. 131 (1973), 85-101.
[Ca2] P. Cameron, Finite Permutation Groups and Finite Simple Groups, Bull. Lond. Math. Soc. 13 (1981), 1-22.
[CaKa] P. Cameron, W. M. Kantor, Rank 3 groups and biplanes, J. Comb. Th. Serie A 24 (1978), 1-23.
[GM] G. Grams and T. Meixner, Some results about flag-transitive diagram geometries using coset enumeration, Ars Comb. 33 (1994) 129-146.
[HuI] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, Heidelberg 1979.
[HuIII] B. Huppert, N. Blackburn, Finite Groups III, Springer-Verlag, Berlin, Heidelberg (1982).
[Neu] A. Neumaier, Rectagraphs, diagrams, and Suzuki's sporadic simple group, Ann. Discr. Math. 15 (1982), 305-318.
[Pa1] A. Pasini, Some remarks on covers and apartments, in: Finite Geometries (Baker and Batten, eds), Dekker, New York, 1985, 223-250.
[Pa2] A. Pasini, Diagram Geometries, Oxford University Press, 1994.
[Wi] P. Wild, Generalized Hussain Graphs and semibiplanes with $k \leq 6$, Ars Comb. 14 (1982), 147-167.

Barbara Baumeister
Department of Mathematics
Huxley Building,
Imperial College of Science,
Technology and Medicine,
180 Queen's Gate, London, SW7 2BZ
United Kingdom

[^0]: Received by the editors October 1997.
 Communicated by J. Doyen.
 1991 Mathematics Subject Classification : 20B25, 51E24.
 Key words and phrases : Semibiplanes, Duality, Dual extended quadrangles, Buekenhout geometry.

