
Derivable affine planes and translation planes

Norbert Knarr

Abstract

It was proved by Johnson that every derivable affine plane admits a natural
embedding into a 3-dimensional projective space over some skewfield. We
show that under this embedding the lines of the affine plane which do not
belong to the derivation set correspond to spreads of the projective space.
Furthermore, we investigate the spreads associated with derivable translation
planes or derivable dual translation planes more closely. Finally, we study
derivable affine planes admitting a so-called affine Hughes group.

1 Derivable affine planes and associated spreads

Let A = (A,G) be an affine plane and denote the projective extension of A by
Ā = (Ā, Ḡ), where Ḡ = G ∪ {L∞}. For a subset D ⊂ L∞ we put G(D) = {L ∈
G|L ∧ L∞ ∈ D} and we denote by B(D) the set of the Baer subplanes of A which
intersect L∞ in D. A subset D ⊂ L∞ is called a derivation set of A if for any two
distinct points p, q ∈ A with p ∨ q ∈ G(D) there exists a Baer subplane Ap,q,D of A
which contains p, q and D. By [7], Lemma 2.4 the Baer subplane Ap,q,D is uniquely
determined by p, q and D, under the assumption that D is a derivation set. If D is
a derivation set of A we can form a new affine plane A′ with the same set of points
by replacing the lines in G(D) with the Baer subplanes in B(D). An affine plane A
admitting a derivation set is called derivable and A′ is called the derived plane of A
with respect to D. The plane A′ can be derived in such a way that A′′ is isomorphic
to A.

Extending results of Cofman [3], Johnson [8] has shown that every derivable affine
plane admits a natural embedding into a 3-dimensional projective space. Johnson’s
theorem is most easily formulated as follows.
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Consider the geometry S = (G(D), A,B(D)) with the incidence inherited fromA.
Then there exists a 3-dimensional projective space PG3F = (P,L, E) over a skewfield
F and a line S ∈ L such that S is isomorphic to the geometry obtained from PG3F
by deleting all points on S, all lines intersecting S and all planes containing S. Note
that the planes through S correspond to the parallel classes of lines in G(D). Dually,
the points on S correspond to the parallel classes of elements of B(D) viewed as lines
of A′.

It follows easily from the definition of a derivation set that the geometry S admits
a diagram of the following type

© Af∗ © Af ©.

Geometries with this type of diagram have been investigated by Cuypers [4], and
Johnson’s theorem on derivable affine planes, as well as the generalization of this
theorem to subplane covered nets [10], can

In the sequel we identify the point set A of A with the set LS = {L ∈ L|L∩S =
∅}. The lines of A which are not in G(D) then become certain sets of lines of PG3F
and the question arises what kind of properties these sets of lines have. The answer
is given by the following theorem, whose proof goes back to Ostrom [15], at least in
the finite case.

1.1 Theorem Let G ∈ G \ G(D). Then the set B = B(G) = {x|x ∈ G} ∪ {S} ⊂ L
is a spread and a dual spread of PG3F .

Proof. Since G is a line of A whose slope is not in D, it intersects every line
M ∈ G(D) in precisely one point. It follows that the point of PG3F corresponding
to M is contained in precisely one element of B \ {S}. Of course the points of S
are contained in S and hence B is a spread of PG3F . Since G is also a line of the
derived plane A′, the same reasoning shows that B is also a dual spread. �

The translation plane associated with the spread B(G) will be called A(G).

In the sequel we use the methods for the description of spreads of PG3F given in
[11]. We coordinatize PG3F using the 4-dimensional right vector space F 2×F 2 over
F such that S = {0} × F 2. Then every line of PG3F which does not intersect S is
the graph of a linear mapping from F 2 to F 2, which we identify with its associated
2 × 2-matrix. Assume now that B is a spread of PG3F which contains S. Then
the linear mappings whose graphs are contained in B \ {S} form a spread set M
of F 2, i.e. for any two distinct λ1, λ2 ∈ M the linear mapping λ1 − λ2 is bijective
and for any x ∈ F 2 \ {0} the mapping %x : M → F 2 : λ 7→ λ(x) is bijective, cp
e.g. [11], Proposition 1.11. It follows from [11], 2.2. that there exists a mapping
f = (f1, f2) : F 2 → F 2 such that

M =

{(
a f1(a, b)
b f2(a, b)

)∣∣∣∣∣ a, b ∈ F
}

and f is transversal, i.e. f is bijective and there holds
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(T1) For any two distinct points x, y ∈ F 2 the lines x ∨ y and f(x) ∨ f(y) are not
parallel in the affine plane associated with F 2.

(T2) For each dilatation δ of the affine plane F 2 the mapping δ◦f has a fixed point.

1.2 Lemma A mapping f : F 2 → F 2 is transversal if and only if it satisfies

(S) For every s ∈ F the mapping f − id · s : F 2 → F 2 : x 7→ f(x)− xs is bijective.

Proof. Assume first that f is transversal. Let s ∈ F and assume that f − id · s
is not injective. Since f is bijective we may assume s 6= 0. Then there are distinct
x, y ∈ F 2 with f(x) − xs = f(y) − ys. It follows that f(x) − f(y) = (x − y)s and
hence the lines x ∨ y and f(x) ∨ f(y) are parallel, violating (T1).

The dilatations of F 2 are precisely the mappings δ : F 2 → F 2 : x 7→ xs−1 + t, s ∈
F×, t ∈ F 2. From (T2) we infer that the equation f(x)s−1 + t = x has a solution
for every s ∈ F×, t ∈ F 2. It follows that f − id · s is surjective for s 6= 0 and f is
surjective anyhow.

The proof of the reverse direction is similar. �

If B is also a dual spread then f is also ∗-transversal by[11], 2.3, i.e. besides (T1)
it also satisfies

(T2∗) For any two parallel lines H1, H2 of the affine plane F 2 we haveH1∩f(H2) 6= ∅.

Note that if F is finite or if F ∈ {R,C,H} and f is continuous, then f is
transversal if and only if it is ∗-transversal, cp. [11], 1.6.

2 Translation planes and dual translation planes

In this section we examine derivable translation planes and derivable dual translation
planes and their associated spreads.

2.1 Proposition Let A be a derivable affine plane, then every dilatation τ of A is
induced by a linear mapping of F 4 whose matrix is of the form(

I
C D

)
,

where I is the identity matrix and C and D are 2 × 2-matrices over F with D
invertible.

Moreover, τ is a translation if and only if D = I and if τ is a nontrivial homology
then Dy 6= y for all y ∈ F 2 \ {0}.

Proof. According to [9], Theorem 2.9, every collineation of A which fixes the
derivation set D is induced by a semilinear bijection of F 4 which fixes S. Since the
planes through S correspond to the parallel classes of lines in G(D) the dilatation τ
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fixes all planes through S. Hence τ even is induced by a linear mapping ϕ : F 4 → F 4

and the matrix of ϕ looks as follows:(
aI
C D

)
with a ∈ Z(F )×, C ∈ F 2×2, D ∈ GL2F,

where Z(F ) denotes the center of F . Since we use homogeneous coordinates we may
assume a = 1. This proves the first part of the proposition.

Let τ be a translation. Then τ is also a translation of the derived plane A′ and
hence ϕ fixes all points on S. It follows that D = bI for some b ∈ Z(F )×. Let
M ∈ F 2×2, then ϕ maps the graph of M to the graph of DM + C = bM + C . If
b 6= 1 then the equation DM + C = M has a solution M and hence τ cannot be a
translation.

Assume now that τ is a nontrivial homology. Then the equation DM + C = M
has precisely one solution M ∈ F 2×2. This implies that the matrix D−I is invertible
and hence the equation Dy = y has no solution y ∈ F 2 \ {0}. �

2.2 Corollary The translation group of a derivable affine plane is isomorphic to a
subgroup of the additive group of some vector space, in particular it is abelian and
all nonidentity translations have the same order.

2.3 Proposition Let v ∈ L∞ \D and assume that Γ[v,L] is a transitive translation
group. Let G be a line of A which passes through v, then the translation plane A(G)
is of Lenz type V.

Proof. The group Γ[v,L] acts on PG3F as follows. It fixes the line S elementwise
and acts regularly on B(G) \ {S}. Hence it induces a transitive group of shears on
A(G). �

2.4 Corollary Let A be a derivable translation plane and let G 6∈ G(D) be a line
of A. Then the translation plane A(G) is of Lenz type V.

Let B be a spread of a 3-dimensional pappian projective space PG3F which
contains a regulus R. Then B′ = B \ R ∪ R′ is also a spread of PG3F , where R′
denotes the opposite regulus of R. The translation plane A′ associated with B′ is
derived from the translation plane A associated with B and the derivation is said
to be obtained by reversion of reguli.

2.5 Lemma Let F be a commutative field and let M⊂ F 2×2 be a spread set. Then
the translation plane associated with M is pappian if and only if M is an affine
subspace of the F -vector space F 2×2.

Proof. This is a well-known fact, it follows e.g. from [11], Proposition 4.8. �

2.6 Proposition Let A = (A,G) be a derivable translation plane. Then the deriva-
tion is obtained by reversion of reguli if and only if for every line G ∈ G \ G(D) the
translation plane A(G) associated with the spread B(G) is pappian.
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Proof. Assume first that the derivation of A is obtained by reversion of reguli.
Then the point set of A can be taken to be a vector space F 4 for some commutative
field F . Furthermore, we can assume that the spread B of A contains the standard
regulus consisting of the subspaces {(x, y, xs, ys)|x, y ∈ F} for s ∈ F and S =
{(0, 0, u, v)|u, v ∈ F}. The identification of the points of A with the elements of

F 2×2 can be made in such a way that (x, y, u, v) corresponds to

(
x u
y v

)
. It follows

that for each line G ∈ G \ G(D) the spread set for B(G) is an affine subspace of
F 2×2. By 2.5 the translation plane A(G) is pappian.

Assume now that for each G ∈ G \ G(D) the translation plane A(G) is pappian.
Since F is contained in the kernel of A(G) this implies that F is commutative. We
identify the point set of A with F 2×2 in such a way that the elements of G(D)

correspond to the translates of the subspaces

{(
x xs
y ys

)∣∣∣∣∣x, y ∈ F
}

for s ∈ F and{(
0 u
0 v

)∣∣∣∣∣u, v ∈ F
}

. Now each line G ∈ G \ G(D) corresponds to a spread set in

F 2×2. Since A(G) is pappian each of these spread sets is an affine subspace of F 2×2.
It follows that the spread B of A is contained in F 2×2 and that B contains the
standard regulus. �

The following result is essentially due to Ostrom [15].

2.7 Proposition Let B be a spread and a dual spread of a 4-dimensional vector
space V over a skewfield F and let A denote the translation plane associated with
B.

For each 3-dimensional affine subspace U of V there is precisely one component
S ∈ B such that U contains a coset of S. Then the set DU consisting of L∞ and of
all cosets of S that are contained in U is a derivation set of the dual plane Ad of A.
Let G be any line of Ad not in DU , then the translation plane A(G) is isomorphic
to A.

Proof. The fact that DU is a derivation set of Ad was obtained by Bose and
Barlotti [2].

We may assume that the line G corresponds to the origin of V . Note that the
lines in G(DU) are precisely the points in U and the points of L∞. So the derivation
set DU is already embedded in a 3-dimensional projective space over F . In order to
find B(G) we just have to take the lines of A passing through the origin of V and
intersect them with U . Obviously, this yields a spread which is equivalent to B. �
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3 Planes admitting affine Hughes groups

Let A be an affine plane which contains a desarguesian Baer subplane Q ∼= AG2F
such that the improper line of A belongs to Q. A collineation group Θ of A which
leaves Q invariant and induces an overgroup of ASL2F on Q in its natural action
is called an affine Hughes group of A. This notion is taken from Löwen [13], who
studies the case F = R and assumes that Θ even induces the group AGL+

2 R or
AGL2R. For the general approach it seems to be convenient to allow the smaller
group ASL2F . We are mainly interested in derivable affine planes which admit an
affine Hughes group such that the Baer subplane Q belongs to B(D), where we have
used the notation from Section 1. According to [13], Theorem 7, this situation is
realized in every 4-dimensional locally compact affine plane which admits an affine
Hughes group.

We now give a description of planes admitting affine Hughes groups using the
results on derivable planes obtained so far. It turns out to be more convenient to
exchange the roles of G(D) and B(D), i.e. we identify the Baer subplanes in B(D)
with the points of PG3F not on S.

3.1 Proposition Let A be a derivable affine plane admitting an affine Hughes group
Θ such that the corresponding Baer subplane Q belongs to B(D). Assume moreover
that Q ∼= AG2F is pappian, i.e. that F is commutative. Let Λ be the largest
subgroup of Θ which induces ASL2F on Q. Then Λ is the direct product of a group
Ω ∼= ASL2F and a group K consisting of Baer collineations with respect to Q. The
point set of A can be identified with F 2×2 in such a way that Q corresponds to the
point (1, 0, 0, 0)tF and Ω acts on PG3F as the group{(

I
B A

)∣∣∣∣∣ A ∈ SL2F,B =

(
0 s
0 t

)
, s, t ∈ F

}
.

Proof. The elements of Θ leave the derivation set D invariant. Consequently they
induce permutations of G(D) and B(D). It follows now from Johnson [9], Theorem
2.9, that the group induced by Θ on PG3F is contained in the subgroup of PΓL4F
which fixes S. Since Θ induces the natural action on Q this group is even contained
in PGL4F . Up to conjugation, we may assume that Q = (1, 0, 0, 0)tF . Then Θ is
contained in the group

Φ =

{(
C
B A

)∣∣∣∣∣ C =

(
a b
0 d

)
, a, d ∈ F×, b ∈ F,B =

(
0 s
0 t

)
, s, t ∈ F,A ∈ GL2F

}
.

Since F is commutative and the action is projective we can assume a = 1. It follows
that Φ is isomorphic to the direct product of the subgroups AGL2F and AGL1F
which are obtained by setting C = I or B = 0, A = I , respectively. The group
AGL1F is precisely the kernel of the action of Φ on the plane Q, cp. also [3],
Theorem 3. Let K ≤ AGL1F be the kernel of the action of Λ on Q. It follows that
A ∈ SL2F and there exists a mapping χ : ASL2F → AGL1F such that

Λ =

{(
χ(A,B)C

B A

)∣∣∣∣∣ A ∈ SL2F,B =

(
0 s
0 t

)
, s, t ∈ F, C ∈ K

}
.
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Let Ξ be the group generated by K and by the elements χ(A,B), then K is normal
in Ξ and the induced mapping χ̄ : ASL2F → Ξ/K is a surjective homomorphism.
Since Ξ/K is solvable the group SL2F is contained in the kernel of χ̄ and hence χ̄ is
trivial. So we may assume that χ itself is trivial and the proof is complete. �

Remark. In the case F = R and Θ = AGL+
2 R the action is determined by a

homomorphism of the group P ∼= R of positive real homotheties to AGL1R. These
homomorphisms yield exactly the actions determined in [13], Theorem 4.

3.2 Theorem Let the conditions of 3.1 be satisfied. Then there exists a family T
of mappings f : F 2 → F 2 with f(0) = 0 such that the following hold

(P1) Every f ∈ T is transversal and ∗-transversal.

(P2) For every A ∈ SL2F, f, g ∈ T the mapping A ◦ f ◦ A−1 − g is either bijective
or identically zero.

(P3) For every x1, x2, y ∈ F 2 with x1 − x2 and y linearly independent there exist
f ∈ T and A ∈ SL2F such that Ay = (f ◦ A)(x1)− (f ◦ A)(x2).

The point set of A can be identified with F 4 = F 2×2 in such a way that the lines
are the following sets

(I)

{(
x u

mx + s mu+ t

)∣∣∣∣∣x, u ∈ F
}

for m, s, t ∈ F and

{(
c d
y v

)∣∣∣∣∣ y, v ∈ F
}

for

c, d ∈ F .

(II)

{
A

(
x f1(x, y)
y f2(x, y)

)
+

(
0 s
0 t

)∣∣∣∣∣x, y ∈ F
}

for A ∈ SL2F, s, t ∈ F, f ∈ T .

The group ASL2F acts as follows(
x u
y v

)
7→ A

(
x u
y v

)
+

(
0 s
0 t

)
for A ∈ SL2F, s, t ∈ F.

Conversely, every family T of mappings f : F 2 → F 2 with f(0) = 0 satisfying
(P1) to (P3) yields a derivable affine Hughes plane in the way just described.

Proof. We use the notation of the preceding proposition.
The line of PG3F corresponding to the matrix M ∈ F 2×2 is the set {(z,Mz) ∈

F 2 × F 2|z ∈ F 2}. The matrix(
I
B A

)
∈ Ω ∼= ASL2F

maps this set to {(z, Bz + AMz)|z ∈ F 2}. This proves the assertion on the the
action of ASL2F .
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Since we exchanged the roles of lines and Baer subplanes the lines in G(D)
correspond to the planes of PG3F not containing S. Such a plane has a basis
consisting either of the vectors

1
0
0
s

 ,


0
1
0
t

 ,


0
0
1
m

 , m, s, t ∈ F or


1
0
c
0

 ,


0
1
d
0

 ,


0
0
0
1

 , c, d ∈ F.
The line of PG3F corresponding to the matrix

M =

(
x u
y v

)
∈ F 2×2

is contained in such a plane if and only if there holds y = mx + s, v = mu + t or
x = c, v = d in the respective cases. This proves the assertion on the lines of type
(I).

Every other line of A is a spread set and a dual spread set of F 2×2 and hence
can be written as {(

x f1(x, y)
y f2(x, y)

)∣∣∣∣∣x, y ∈ F
}

for a suitable mapping f : F 2 → F 2 which is transversal and ∗-transversal. Every
line can be mapped onto a line through the origin by an element of the group Ω.
Thus A is determined by a collection T of selfmappings of F 2 which fix the origin.
Also, (P1) is satisfied.

Let f, g ∈ T , A ∈ SL2F, s, t ∈ F and put h = A ◦ f ◦ A−1. Then the lines{(
x h1(x, y) + s
y h2(x, y) + t

)∣∣∣∣∣x, y ∈ F
}

and

{(
x g1(x, y)
y g2(x, y)

)∣∣∣∣∣x, y ∈ F
}

are either equal or parallel or they intersect in precisely one point. It follows that
h− g is either bijective or identically zero, which yields (P2).

Note that two points M1,M2 ∈ F 2×2 are on a line of type (I) if and only if
det(M1 − M2) = 0. So let M1,M2 ∈ F 2×2 with det(M1 − M2) 6= 0 and denote
the row vectors of Mi by xi and yi, i = 1, 2. Then x1 − x2 and y = y1 − y2

are linearly independent. Since M1 and M2 are on a line of type (II) there exists
f ∈ T , A ∈ SL2F and w ∈ F 2 such that yi = (A ◦ f ◦ A−1)(xi) + w for i = 1, 2.
Subtracting these two equations gives us (P3).

The proof of the converse is similar. �

Remarks. (1) The lines of type (II) can also be written inthe form{
A

(
x u

g1(x, u) g2(x, u)

)
+

(
0 s
0 t

)∣∣∣∣∣x, u ∈ F
}
, A ∈ SL2F, s, t ∈ F,

for suitable mappings g : F 2 → F 2. However, in this description there seems to be
no easy way to formulate conditions on the defining functions.

(2) If F is finite or if F ∈ {R,C} and all elements of T are continuous, then
every transversal mapping is also ∗-transversal. It follows from 1.2 that then (P1)
can be replaced by
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(P1’) For every f ∈ T and every s ∈ F the mapping f − id · s : F 2 → F 2 : x 7→
f(x)− xs is bijective.

In general, it is not clear how many transversal mappings one has to choose in
order to determine the plane A. If f, g ∈ T and if there exists A ∈ SL2F with
A ◦ f ◦ A−1 = g, then one of them is superfluous. Because of condition (P2) one
only has to check whether (A ◦ f ◦ A−1)(1, 0) = g(1, 0).

3.3 Lemma Let the conditions of 3.1 be satisfied and let f, g ∈ T with f2(1, 0) =
g2(1, 0), then there exists A ∈ SL2F withA ◦ f ◦ A−1 = g.

Proof. Since f ist ∗-transversal it maps the x-axis to a set which intersects each
parallel to the x-axis in precisely one point. It follows that the mapping x 7→ f2(x, 0)
from F to F is a bijection. Now f2(0, 0) = 0 and hence f2(1, 0) 6= 0. Let

A =

(
1 t

1

)
with t ∈ F,

then we have

(A ◦ f ◦ A−1)

(
1
0

)
=

(
f1(1, 0) + tf2(1, 0)

f2(1, 0)

)
.

Since f2(1, 0) = g2(1, 0) we can choose t such that A ◦ f ◦ A−1 = g. �

In the particular case F = R this lemma can be improved as follows.

3.4 Proposition Let the conditions of 3.1 be satisfied and assume that F = R and
that all functions f ∈ T are continuous. Let f, g ∈ T with f2(1, 0)g2(1, 0) > 0, then
there exists A ∈ SL2R with A ◦ f ◦A−1 = g. Hence A is determined by at most two
transversal mappings.

Proof. As was noted in the proof of the last lemma, the mapping h : R → R
with h(a) = f2(a, 0) is bijective and we have h(0) = 0. Since h is continuous this
implies that each b ∈ R which has the same sign as f2(1, 0) can be written as ah(a)
for a suitable a ∈ R. Consider now the matrix

A =

(
a−1

a

)
with a ∈ R×,

then we have

(A ◦ f ◦ A−1)

(
1
0

)
=

(
a−1f1(a, 0)
af2(a, 0)

)
.

The result now follows from the considerations above and from 3.3. �

3.5 Proposition Let the conditions of 3.1 be satisfied. Then A is a translation
plane if and only if all mappings f ∈ T are additive homomorphisms.

Proof. Assume first that A is a translation plane. Then it follows from 2.3 that
for each line G of A which is not contained in the derivation set the translation
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plane A(G) is of Lenz type V. Consequently, all transversal mappings f ∈ T are
additive homomorphisms, cp. e.g. [11], Proposition 4.6.

Assume now that all mappings f ∈ T are additive homomorphisms of F 2. Then
it is easily seen that the mappings(

x u
y v

)
7→
(
x u
y v

)
+

(
z s
w t

)

for z, w, s, t ∈ F form a transitive translation group of A. It follows that A is a
translation plane. �

The planes constructed in [1], Satz 5, are examples of translation planes which
admit an affine Hughes group.

Remark. It is known that the finite Hughes planes are derivable. Using the de-
scription of these planes given by Ostrom [16] one can show that the translation
plane obtained from a line not belonging to the derivation set is isomorphic to the
plane over the nearfield from which the respective Hughes plane is constructed.
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