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Abstract

Existence of positive solutions are established for second and higher order
boundary value problems even in the case when y ≡ 0 may also be a solution.

1 Introduction.

We are concerned with boundary value problems of nonsingular type. In particular
in Section 2 we discuss the second order problem

(1.1)

{
y′′ + φ(t) f(t, y, y′) = 0, 0 < t < 1
y(0) = y′(1) = 0,

and in Section 3 we discuss the nth order focal problem

(1.2)


(−1)n−p y(n) = φ(t) f(t, y, y′, ...., y(p−1)), 0 < t < 1
y(i)(0) = 0, 0 ≤ i ≤ p− 1
y(i)(1) = 0, p ≤ i ≤ n− 1;

here 1 ≤ p ≤ n− 1 is fixed. We are interested in solutions y to (1.1) or (1.2) with
y > 0 on (0, 1] even if y ≡ 0 is a solution of (1.1) or (1.2). This paper provides
a new technique for showing that (1.1) or (1.2) has a solution y > 0 on (0, 1].
The stategy involves using (i). approximating problems, (ii). a Leray–Schauder
alternative, (iii). lower type inequalities [2], and (iv). a limiting argument (via
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the Arzela–Ascoli Theorem). This technique will enable us to obtain new and very
general existence results for both (1.1) and (1.2).

To conclude this section we gather together some results which will be used
throughout this paper. Suppose y ∈ Cn−1[0, 1] ∩ Cn(0, 1) satisfies

(−1)n−p y(n) > 0 on (0, 1)
y(i)(0) = a ≥ 0, 0 ≤ i ≤ p− 1
y(i)(1) = 0, p ≤ i ≤ n− 1.

In [2] we showed

(1.3) y(i)(t) ≥ tp−i y(i)(1) = tp−i sup
t∈[0,1]

|y(i)(t)|

for t ∈ [0, 1] and i ∈ {0, ..., p− 1}.
Next we present an existence principle for

(1.4)


y′′ + φ(t)F (t, y, y′) = 0, 0 < t < 1
y(0) = a ≥ 0
y′(1) = b ≥ 0.

Theorem 1.1. [8]. Suppose

(1.5) φ ∈ C(0, 1) with φ > 0 on (0, 1) and φ ∈ L1[0, 1]

and

(1.6) F : [0, 1]×R2 → R is continuous

are satisfied. In addition suppose there is a constant M > a+ b, independent of λ,
with

|y|1 = max {|y|0 , |y′|0} 6= M

for any solution y ∈ C1[0, 1] ∩ C2(0, 1) to

(1.7)λ


y′′ + λφ(t)F (t, y, y′) = 0, 0 < t < 1
y(0) = a
y′(1) = b

for each λ ∈ (0, 1); here |u|0 = sup[0,1] |u(t)|. Then (1.4) has a solution y ∈
C1[0, 1] ∩ C2(0, 1) with |y|1 ≤ M .

Finally we present an existence principle for

(1.8)


(−1)n−p y(n) = φ(t)F (t, y, y′, ...., y(p−1)), 0 < t < 1
y(i)(0) = a ≥ 0, 0 ≤ i ≤ p− 1
y(i)(1) = 0, p ≤ i ≤ n− 1.
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Theorem 1.2. [4]. Suppose (1.5) and

(1.9) F : [0, 1]×Rp → R is continuous

hold. In addition suppose there is a constant M > a
∑p−1
i=0

1
i!

, independent of λ,
with

|y|p−1 = max
{
|y|0, ........, |y(p−1)|0

}
6= M

for any solution y ∈ Cn−1[0, 1] ∩ Cn(0, 1) to

(1.10)λ


(−1)n−p y(n) = λφ(t)F (t, y, y′, ...., y(p−1)), 0 < t < 1
y(i)(0) = a, 0 ≤ i ≤ p− 1
y(i)(1) = 0, p ≤ i ≤ n − 1

for each λ ∈ (0, 1). Then (1.8) has a solution y ∈ Cn−1[0, 1] ∩ Cn(0, 1) with
|y|p−1 ≤M .

2 Second order problems.

In this section we discuss the second order problem

(2.1)

{
y′′ + φ(t) f(t, y, y′) = 0, 0 < t < 1
y(0) = y′(1) = 0.

Throughout this section we will assume the following conditions hold:

(2.2) φ ∈ C(0, 1) with φ > 0 on (0, 1) and φ ∈ L1[0, 1]

(2.3)

{
f : [0, 1]× [0,∞)× [0,∞)→ [0,∞) is continuous with
f(t, u, p) > 0 for (t, u, p) ∈ [0, 1]× (0,∞)× (0,∞)

(2.4)

{
f(t, u, p) ≤ w(max{u, p}) on [0, 1]× (0,∞) × (0,∞) with
w ≥ 0 continuous and nondecreasing on [0,∞)

(2.5) sup
c∈(0,∞)

c

w(c)
∫ 1
0 φ(s) ds

> 1

and

(2.6)


for a constant H > 0 there exists a function ψH continuous
on [0, 1] and positive on (0, 1), and constants α ≥ 0, β ≥ 0
with α + β < 1 and with f(t, u, p) ≥ ψH(t)uα pβ

on [0, 1]× [0, H]× [0, H].
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Theorem 2.1. Suppose (2.2)−−(2.6) hold. Then (2.1) has a solution y ∈ C1[0, 1]∩
C2(0, 1) with y > 0 on (0, 1].

Proof : Choose M > 0 with

(2.7)
M

w(M)
∫ 1
0 φ(s) ds

> 1.

Next choose ε > 0 and ε < M
2

with

(2.8)
M

w(M)
∫ 1

0 φ(s) ds + 2 ε
> 1.

Let n0 ∈ {1, 2, .....} be chosen so that 1
n0
< ε and let N0 = {n0, n0 + 1, .... }. We

first show that

(2.9)m
{
y′′ + φ(t) f?(t, y, y′) = 0, 0 < t < 1
y(0) = y′(1) = 1

m

has a solution for each m ∈ N0; here

f?(t, u, p) =


f(t, u, p), u ≥ 1

m
, p ≥ 1

m

f(t, u, 1
m

), u ≥ 1
m
, p < 1

m

f(t, 1
m
, p), u < 1

m
, p ≥ 1

m

f(t, 1
m
, 1
m

), u < 1
m
, p < 1

m
.

To show (2.9)m has a solution we consider the family of problems

(2.10)mλ

{
y′′ + λφ(t) f?(t, y, y′) = 0, 0 < t < 1
y(0) = y′(1) = 1

m
, m ∈ N0

for 0 < λ < 1. Let y ∈ C1[0, 1]∩C2(0, 1) be any solution of (2.10)mλ . Then y′ ≥ 1
m

and y ≥ 1
m

on [0, 1]. Also from (2.4) we have

−y′′(t) ≤ φ(t)w(|y|1) for t ∈ (0, 1);

here |y|1 = max{|y|0, |y′|0} and |u|0 = sup[0,1] |u(t)|. Integrate from t to 1 to
obtain

(2.11) y′(t) ≤ w(|y|1)
∫ 1

t
φ(x) dx+

1

m
for t ∈ [0, 1].

In particular

(2.12) y′(0) ≤ w(|y|1)
∫ 1

0
φ(x) dx+ ε.

Also

(2.13) y(1) ≤ w(|y|1)
∫ 1

0
φ(x) dx+ 2 ε.

Combine (2.12) and (2.13) to obtain

(2.14)
|y|1

w(|y|1)
∫ 1

0 φ(x) dx+ 2 ε
≤ 1.
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Now (2.8) together with (2.14) implies |y|1 6= M .
Thus Theorem 1.1 implies (2.9)m has a solution ym with |ym|1 ≤ M . In fact

(2.15)
1

m
≤ ym(t) ≤ M and

1

m
≤ y′m(t) ≤ M for t ∈ [0, 1]

and ym satisfies {
y′′ + φ(t) f(t, y, y′) = 0, 0 < t < 1
y(0) = y′(1) = 1

m
.

Now (2.6) guarantees the existence of a function ψM (t) continuous on [0, 1] and
positive on (0, 1), and constants α ≥ 0, β ≥ 0 with α + β < 1 and with
f(t, ym(t), y′m(t)) ≥ ψM(t) [ym(t)]α [y′m(t)]β for (t, ym(t), y′m(t)) ∈ [0, 1] × [0,M ]2.
The differential equation and (1.3) now imply

−[y′m(t)]−β y′′m(t) ≥ ψM(t)φ(t) tα [ym(1)]α for t ∈ (0, 1).

Integrate from t to 1 and then from 0 to 1 to obtain

ym(1) ≥ [ym(1)]
α

1−β

∫ 1

0

(
(1− β)

∫ 1

t
ψM(s)φ(s) sα ds

) 1
1−β

dt

and so

(2.16) ym(1) ≥
∫ 1

0

(
(1− β)

∫ 1

t
ψM(s)φ(s) sα ds

) 1
1−β

dt


1−β

1−(α+β)

≡ a0.

This together with (1.3) gives

(2.17) ym(t) ≥ a0 t for t ∈ [0, 1].

Of course it is immediate that

(2.18)

{
{y(j)

m }m∈N0 is a bounded, equicontinuous
family on [0, 1] for each j = 0, 1.

The Arzela–Ascoli Theorem guarantees the existence of a subsequence N of
N0 and a function y ∈ C1[0, 1] with y(j)

m converging uniformly on [0, 1] to y(j) as
m → ∞ through N ; here j = 0, 1. Also y(0) = 0 = y′(1) and y(t) ≥ a0 t for
t ∈ [0, 1] (in particular y > 0 on (0, 1]). Now ym, m ∈ N , satisfies

ym(t) =
1

m
+

1

m
t+
∫ t

0
s φ(s) f(s, ym(s), y′m(s)) ds+t

∫ 1

t
φ(s) f(s, ym(s), y′m(s)) ds

for t ∈ [0, 1].

Fix t ∈ [0, 1] and let m→∞ through N to obtain

y(t) =
∫ t

0
s φ(s) f(s, y(s), y′(s)) ds+ t

∫ 1

t
φ(s) f(s, y(s), y′(s)) ds.

�
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Example 2.1. Consider the boundary value problem

(2.19)

{
y′′ + yα (y′)

β
= 0, 0 < t < 1

y(0) = y′(1) = 0

with α ≥ 0, β ≥ 0 and α+β < 1. Then (2.19) has a solution y ∈ C1[0, 1]∩C2(0, 1)
with y > 0 on (0, 1].

Remark 2.1. Notice y ≡ 0 is also a solution of (2.19) if α+ β 6= 0.

To see this we will apply Theorem 2.1. Notice (2.2), (2.3), (2.4) (with w(x) =
xα+β), and (2.6) (with ψH = 1, α = α and β = β) hold. Also

sup
c∈(0,∞)

c

w(c)
∫ 1

0 φ(s) ds
= sup

c∈(0,∞)

c

cα+β
= ∞

so (2.5) is satisfied. Theorem 2.1 now establishes the result.

Example 2.2. Consider the boundary value problem

(2.20)

{
y′′ + µ

(
yα (y′)

β
+ η0 y

γ + η1

)
= 0, 0 < t < 1

y(0) = y′(1) = 0

with α ≥ 0, β ≥ 0, α+ β < 1, γ > 0, η0 ≥ 0, η1 ≥ 0, and µ > 0. If

(2.21) µ < sup
c∈(0,∞)

c

cα+β + η0 cγ + η1

then (2.20) has a solution y ∈ C1[0, 1] ∩ C2(0, 1) with y > 0 on (0, 1].
Again we apply Theorem 2.1. It is easy to check (2.2), (2.3), (2.4) (with w(x) =

xα+β + η0 x
γ + η1), and (2.6) (with ψH = 1, α = α and β = β) hold. Also

sup
c∈(0,∞)

c

w(c)
∫ 1
0 φ(s) ds

= sup
c∈(0,∞)

c

µ[cα+β + η0 cγ + η1]

so (2.21) guarantees that (2.5) holds. Theorem 2.1 now establishes the result.

3 Higher order problems.

In this section we discuss the nth order focal boundary value problem (here 1 ≤
p ≤ n− 1 is a fixed integer)

(3.1)


(−1)n−p y(n) = φ(t) f(t, y, y′, ...., y(p−1)), 0 < t < 1
y(i)(0) = 0, 0 ≤ i ≤ p− 1
y(i)(1) = 0, p ≤ i ≤ n − 1;

here n ≥ 2. Throughout this section we will assume the following conditions hold:

(3.2) φ ∈ C(0, 1) with φ > 0 on (0, 1) and φ ∈ L1[0, 1]

(3.3)

{
f : [0, 1]× [0,∞)p → [0,∞) is continuous with
f(t, u0, ....., up−1) > 0 for (t, u0, ....., up−1) ∈ [0, 1]× (0,∞)p
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(3.4)

{
f(t, u0, ....., up−1) ≤ w(|u|) on [0, 1]× (0,∞)p with w ≥ 0 continuous
and nondecreasing on [0,∞); here |u| = max{u0, ....., up−1}

(3.5)

{
supc∈(0,∞)

c
w(c)

> k0 where k0 = max{rj : j = 0, ...., p− 1}
and rj = supt∈[0,1]

∫ 1
0 |G(j)(t, s)|φ(s) ds

and

(3.6)


for a constant H > 0 there exists a function ψH continuous on [0, 1]
and positive on (0, 1), and constants αi ≥ 0 for i = 0, ..., p− 1

with
∑p−1
j=0 αi < 1 and with f(t, u0, ....., up−1) ≥ ψH(t)

∏p−1
i=0 u

αi
i

on [0, 1]× [0, H]p;

here G(t, s) is the Green’s function for

(3.7)


y(n) = 0 on [0, 1]
y(i)(0) = 0, 0 ≤ i ≤ p− 1
y(i)(1) = 0, p ≤ i ≤ n− 1

and G(j)(t, s) = ∂j

∂tj
G(t, s).

Theorem 3.1. Suppose (3.2) − −(3.6) hold. Then (3.1) has a solution y ∈
Cn−1[0, 1] ∩ Cn(0, 1) with y > 0 on (0, 1].

Proof : Choose M > 0 and then ε > 0 and ε < m∑p−1

i=0
1
i!

with

(3.8)
M

k0 ψ(M) + ε
(∑p−1

i=0
1
i!

) > 1.

Choose n0 ∈ {1, 2, .....} with 1
n0
< ε and let N0 = {n0, n0 + 1, .... }. We first show

that

(3.9)m


(−1)n−p y(n) = φ(t) f??(t, y, y′, ...., y(p−1)), 0 < t < 1
y(i)(0) = 1

m
, 0 ≤ i ≤ p− 1

y(i)(1) = 0, p ≤ i ≤ n− 1

has a solution for each m ∈ N0; here f?? : [0, 1] × Rp → [0,∞) is a continuous
function with f??(t, u0, ....., up−1) = f(t, u0, ....., up−1) for all t ∈ [0, 1] and all ui ≥
1
m

, i = 0, ..., p−1. To show (3.9)m has a solution we consider the family of problems

(3.10)mλ


(−1)n−p y(n) = λφ(t) f??(t, y, y′, ...., y(p−1)), 0 < t < 1
y(i)(0) = 1

m
, 0 ≤ i ≤ p− 1

y(i)(1) = 0, p ≤ i ≤ n − 1

for 0 < λ < 1. Let y ∈ Cn−1[0, 1] ∩ Cn(0, 1) be any solution of (3.10)mλ . Then

(3.11) y(t) =
1

m

p−1∑
j=0

tj

j!
+λ

∫ 1

0
(−1)n−pG(t, s)φ(s) f??(s, y(s), y′(s), ...., y(p−1)(s)) ds
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for t ∈ [0, 1]; here G(t, s) is the Green’s function for (3.7). From [2, 9] we know

(−1)n−pG(i)(t, s) ≥ 0, 0 ≤ i ≤ p− 1 on [0, 1]× [0, 1]

and
(−1)n−iG(i)(t, s) ≥ 0, p ≤ i ≤ n− 1 on [0, 1]× [0, 1].

Consequently

y(i)(t) ≥ 1

m
for t ∈ [0, 1] and 0 ≤ i ≤ p− 1 with sup

[0,1]

|y(i)(t)| = y(i)(1)

for 0 ≤ i ≤ p− 1.

Also (3.4) and (3.11) imply for j ∈ {0, 1, ..., p− 1} and t ∈ [0, 1] that

|y(j)(t)| ≤ 1

m

p−1∑
i=j

1

(i− j)! +
∫ 1

0
|G(j)(t, s)|φ(s)ψ(|y|p−1) ds ≤ rj ψ(|y|p−1) + ε

p−1∑
i=0

1

i!
;

here |y|p−1 = max{|y|0, ...., |y(p−1)|0} and |u|0 = sup[0,1] |u(t)|. Consequently for
j = 0, 1, ..., p− 1 we have

|y(j)|0 ≤ k0 ψ(|y|p−1) + ε
p−1∑
i=0

1

i!

and so

(3.12)
|y|p−1

k0 ψ(|y|p−1) + ε
(∑p−1

i=0
1
i!

) ≤ 1.

Now (3.8) together with (3.12) implies |y|p−1 6= M and so Theorem 1.2 implies that
(3.9)m has a solution ym with |ym|p−1 ≤M . In fact 1

m
≤ y(i)

m (t) ≤ M for t ∈ [0, 1]
and i = 0, 1, ..., p − 1. Now (3.6) guarantees the existence of a function ψM(t)
continuous on [0, 1] and positive on (0, 1), and constants αi ≥ 0, i = 0, 1, ..., p− 1
with

∑p−1
j=0 αj < 1 and with f(t, ym(t), ......, y(p−1)

m (t)) ≥ ψM(t)
∏p−1
i=0 [y(i)

m (t)]αi for

(t, ym(t), ......, y(p−1)
m (t)) ∈ [0, 1]× [0,M ]p. Thus

(3.13) ym(t) =
1

m

p−1∑
j=0

tj

j!
+
∫ 1

0
(−1)n−pG(t, s)φ(s) f(s, ym(s), y′m(s), ...., y(p−1)

m (s)) ds

and (1.3) will give

y(j)
m (t) ≥

∫ 1

0
(−1)n−pG(j)(t, s)φ(s)ψM(s)

p−1∏
i=0

[
sp−i y(i)

m (1)
]αi

ds

for t ∈ [0, 1] and j = 0, 1, ..., p− 1. Consequently

(3.14) y(j)
m (1) ≥

p−1∏
i=0

[
y(i)
m (1)

]αi ∫ 1

0
(−1)n−pG(j)(1, s)φ(s)ψM (s)

p−1∏
i=0

s(p−i)αi ds
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for j = 0, 1, ..., p− 1. Let

min{ym(1), ....., y(p−1)
m (1)} = y(j0)

m (1).

From (3.14) we have

y(j0)
m (1) ≥

[
y(j0)
m (1)

]∑p−1

i=0
αi
∫ 1

0
(−1)n−pG(j0)(1, s)φ(s)ψM (s)

p−1∏
i=0

s(p−i)αi ds

and so

y(j0)
m (1) ≥

∫ 1

0
(−1)n−pG(j0)(1, s)φ(s)ψM(s)

p−1∏
i=0

s(p−i)αi ds

 1

1−
∑p−1

i=0
αi

≡ b0.

This together with (1.3) gives

(3.15) y(j0)
m (t) ≥ b0 t

p−j0 for t ∈ [0, 1].

Consequently

(3.16) ym(t) ≥ a0 t
p for t ∈ [0, 1];

here

a0 =


b0 if j0 = 0

b0
(p−j0+1)(p−j0+2).....p

if j0 ∈ {1, ..., p− 1}.

The Arzela–Ascoli Theorem guarantees the existence of a subsequence N of N0

and a function y ∈ Cp−1[0, 1] with y(j)
m converging uniformly on [0, 1] to y(j) as

m → ∞ through N ; here j = 0, 1, ..., p− 1. Also y(i)(0) = 0 for 0 ≤ i ≤ p − 1
and y(t) ≥ a0 t

p for t ∈ [0, 1] (in particular y > 0 on (0, 1]). Fix t ∈ [0, 1] and let
m→∞ through N in (3.13) to obtain

y(t) =
∫ 1

0
(−1)n−pG(t, s)φ(s) f(s, y(s), y′(s), ...., y(p−1)(s)) ds.

Thus (−1)n−p y(n) = φ(t) f(t, y, y′, ...., y(p−1)) for t ∈ (0, 1) and y(i)(1) = 0 for
p ≤ i ≤ n− 1. �

Example 3.1. Consider the boundary value problem

(3.17)


(−1)n−p y(n) =

∏p−1
i=0

[
y(i)

]αi
, 0 < t < 1

y(i)(0) = 0, 0 ≤ i ≤ p− 1
y(i)(1) = 0, p ≤ i ≤ n− 1.

with αi ≥ 0 for i = 0, ...., p− 1 and
∑p−1
i=0 αi < 1. Then Theorem 3.1 guarantees

that (3.17) has a solution y ∈ Cn−1[0, 1] ∩ Cn(0, 1) with y > 0 on (0, 1].

Remark 3.1. Notice y ≡ 0 is also a solution of (3.17) if
∑p−1
i=0 αi 6= 0.
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