
The function epsilon for complex Tori and

Riemann surfaces

Andrea Loi

Abstract

In the framework of the quantization of Kähler manifolds carried out in [3],
[4], [5] and [6], one can define a smooth function, called the function epsilon,
which is the central object of the theory. The first explicit calculation of this
function can be found in [10].

In this paper we calculate the function epsilon in the case of the complex
tori and the Riemann surfaces.

1 Introduction

A quantization of a Kähler manifold (M,ω) is a pair (L, h), where L is a holomorphic
line bundle over M and h is a hermitian structure on L such that curv(L, h) =
−2πiω. The curvature curv(L, h) is calculated with respect to the Chern connection,
i.e. the unique connection compatible with both the holomorphic and the hermitian
structure. Not all manifolds admit such a pair. In terms of cohomology classes, a
Kähler manifold admits a quantization if and only if the form ω is integral [7], i.e.
its cohomology class [ω]dR in the de Rham group, is in the image of the natural
map H2(M,Z) ↪→ H2(M,C). In particular, when M is compact, the integrality of
ω implies, by a well-known theorem of Kodaira, that M is a projective algebraic
manifold.

In the framework of the quantization of a Kähler manifold (M,ω) one can define a
smooth function ε(L,h) on M , depending on the pair (L, h), which is the central object
of the theory and which is one of the main ingredients needed to apply a procedure
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called quantization by deformation introduced by Berezin in his foundational paper
[1]. The work of Berezin was later developed and generalized in a series of papers
[3], [4], [5] and [6] which are the starting point of the present article.

In this paper, we give an explicit calculation of the function epsilon in terms
of theta functions for the 1-dimensional complex torus (see section 3). We also
calculate the function epsilon for a Riemann surface of genus g > 1 endowed with
the hyperbolic metric ( see section 4).
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2 Preliminaries

Let (L, h) be a quantization of a Kähler manifold (M,ω). Consider the separable
complex Hilbert space Hh consisting of global holomorphic sections s of L, which
are bounded with respect to

〈s, s〉h = ‖s‖2
h =

∫
M
h(s(x), s(x))

ωn(x)

n!

(see [3]). Let x ∈M and q ∈ L0 a point of the fibre over x. If one evaluates s ∈ Hh

at x, one gets a multiple δq(s) of q, i.e. s(x) = δq(s)q. The map δq : Hh → C is
a continuous linear functional [3] hence by Riesz’s theorem, there exists a unique
eq ∈ Hh such that δq(s) = 〈s, eq〉h, i.e.

s(x) = 〈s, eq〉hq. (1)

It follows, by (1), that
ecq = c−1eq, ∀c ∈ C∗.

Definition 2.1. The holomorphic section eq is called the coherent states relative to
the point q.

Then, one can define a real valued function on M by the formula

ε(L,h)(x) := h(q, q)‖eq‖2
h, (2)

where q ∈ L0 is any point on the fibre of x. Let (s0, . . . , sN ) (N ≤ ∞) be a unitary
basis for (Hh, 〈 · , · 〉h). Take λj ∈ C such that sj(x) = λjq, j = 0, . . . , N . Then

s(x) =
N∑
j=0

〈s, sj〉hsj(x) =
N∑
j=0

〈s, sj〉hλjq = 〈s,
N∑
j=0

λ̄jsj〉hq.

By (1) it follows that

eq =
N∑
j=0

λ̄jsj, (3)
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and

ε(L,h)(x) = h(q, q)‖eq‖2
h =

N∑
j=0

h(sj(x), sj(x)). (4)

One can calculate the function ε(Lk,hk) for every natural number k. Namely,
one considers the Kähler form kω on M and (Lk, hk) the quantum line bundle for
(M, kω), where Lk is the k-tensor power of L and hk := h⊗ · · · ⊗ h, k-times.

We say that a quantization (L, h) of a Kähler manifold (M,ω) is regular if, for
any natural number k, ε(Lk,hk) is constant. If a manifold (M,ω) admits a regu-
lar quantization then on can define a ∗-product on C∞(M) the algebra of smooth
functions on the manifold M (see [3], [4], [5] and [6]). One of the main tool in
constructing this ∗-product is the following Rawnsley’s result [10], saying that, if
the above regulariy condition is satisifed, then the Kähler forms kω are projectively
induced i.e. for every natural number k there exists a natural number N(k) and a
holomorphic map into the complex N(k)-dimensional projective space

φk : M → PN(k)(C)

such that φ∗kΩk = kω, for Ωk the Fubini-Study form on PN(k)(C).

3 Quantization of complex tori

Let M = V/Λ be an n-dimensional complex torus, where V is an n-dimensional
complex vector space and Λ is a 2n-lattice on V . Let H be a hermitian form on V
and

ω :=
i

2
∂∂̄H.

Since ω is invariant by translations it descends to a globally defined Kähler form ω
on M which makes (M,ω) into a homogeneous Kähler manifold. It is well-known
[9] that ω is integral iff the imaginary part of H takes integral values on Λ, i.e.
=H(Λ,Λ) ⊂ Z. Under this hypothesis it follows by [7] that (M,ω) admits a quanti-
zation (L, h). On the other hand a theorem in [11] asserts that ω can not projectively
induced and so by the discussion at the end of the previous section the quantization
(L, h) can not be regular.

An explicit description of the line bundle L and of the hermitian structure h can
be found in [9, Chapter 1] to whom we refer for the proof of the following assertions.
First of all the global holomorphic sections of L can be seen as holomorphic functions
θ on V satisfying

θ(v + λ) = A(λ, v)θ(v), (5)

where
A(λ, v) = χ(λ)eπH(v,λ)+π

2
H(λ,λ)

and χ : Λ→ S1 belongs to the group of semicharacter of H, i.e.

χ(λ+ µ) = χ(λ)χ(µ)eπi=H(λ,µ), ∀λ, µ ∈ Λ. (6)

Given θ a holomorphic section of L define

h(θ(v), θ(v)) = e−πH(v,v)|θ(v)|2.
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It follows easily by (5) that the function h is invariant under the action of the lattice,
i.e.

h(θ(v + λ), θ(v + λ)) = h(θ(v), θ(v)) ∀λ ∈ Λ,

and so it defines a hermitian structure on L. Furthermore,

curv(L, h) = −∂∂̄ log h = π∂∂̄H = −2πiω,

which shows that (L, h) is a quantization for (V/Λ, ω).

3.1 The function epsilon for the 1-dimensional complex torus

Let
Λ = {p + iq | p, q ∈ Z}

be the lattice in C generated by (1, 0) and (0, 1) and C/Λ be the 1-dimensional
complex torus. Let H(z, w) = zw̄ be the standard hermitian form on C and

ω =
i

2
∂∂̄|z|2 =

i

2
dz ∧ dz̄

the flat Kähler form on C/Λ. A simple calculation shows that

=H(λ, µ) = mq − pn, ∀λ = p+ iq, µ = m + in,

i.e. H is integral on the lattice. By the previous section there exists a holomor-
phic line bundle L whose global holomorphic sections can be identified with the
holomorphic functions θ on C such that

θ(z + λ) = A(λ, z)θ(z) = eiπpqeπzλ̄+π
2
|λ|2θ(z), ∀λ = p+ iq ∈ Λ,

where we choose
χ(λ) = eiπpq, ∀λ = p + iq ∈ Λ

as a semicharacter of H.
More generally, given any natural number k let Lk be the k-th tensor power of

L.
The global holomorphic sections of Lk, can be seen as the holomorphic functions

θ on C satisfying

θ(z + λ) = ekiπpqekπzλ̄+kπ
2
|λ|2θ(z), ∀λ = p + iq ∈ Λ, (7)

and the hermitian structure hk such that curv(Lk, hk) = −2πkiω is given by

hk(θ(z), θ(z)) = e−kπ|z|
2 |θ(z)|2, ∀θ ∈ H0(Lk).

By the Riemann-Roch theorem Hhk is k-dimensional. Given j = 0, . . . , k − 1
define

θj(z) = ek
π
2
z2 ∑
m∈Z

e
−π
k

(km+j)2+2πi(km+j)z

It is not hard to see that the functions θj’s satisfy the functional equation (7).
Furthermore
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Proposition 3.1.
{
( 2
k
)

1
4 θ0, . . . , (

2
k
)

1
4θk−1

}
form a unitary basis for (Hhk , 〈 · , · 〉hk).

Proof : For a, b = 0, 1, . . . , k − 1

〈θa, θb〉hk
=

∑
m,p∈Z

e
−π
k

((km+a)2+(kp+b)2)
∫
C/Λ

e−kπ|z|
2

e
kπ
2

(z2+z̄2)e2πi(km+a)ze−2πi(km+a)z̄kω.

If z = x+ iy, the previous integral can be written as

∑
m,p∈Z

e
−π
k

((km+a)2+(kp+b)2)
∫ 1

0

∫ 1

0
e−2kπy2

e2πi(k(m−p)+(a−b))xe−2π(k(m+p)+(a+b))ykdx ∧ dy.

Integrating with respect to x we obtain

∫ 1

0
e2πi(k(m−p)+(a−b))xdx = δ0k(m−p)+b−a = δmpδab,

where the last equality follows from the fact that b− a is divisible by k if and only
if b = a. Thus,

〈θa, θb〉hk = kδab
∑
m∈Z

e
−π
k

((km+a)2+(km+b)2)
∫ 1

0
e−2kπy2

e−4π(km+a+b
2

)ydy.

Therefore the θj’s form an orthogonal basis for (Hhk , 〈 · , · 〉hk). For a = b = j one
gets:

‖θj‖2
hk = k

∫ 1

0
e−2kπy2 ∑

m∈Z
e
−2π
k

(km+j)2

e−4π(km+j)ydy

= k
∑
m∈Z

∫ 1

0
e−2kπ(y+m+ j

k
)2

dy.

By the change of variable t = y +m + j
k

one obtains:

‖θj‖2
hk = k

∫ +∞

−∞
e−2kπt2dt =

√
k

2
.

�

By (4) and 3.1, the function epsilon can be calculated as

ε(Lk,hk)(z) = e−kπ|z|
2

√
2

k

k−1∑
j=0

|θj(z)|2.

Remark 3.2. The previous calculation can be generalized to the case where Λ is a
general lattice in C. Similar calculations can be found in [2].
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4 Quantization of Riemann surfaces

Let Σg be a compact Riemann surface of genus g ≥ 2. One can realize Σg as the
quotient D/Γ of the unit disk D ⊂ C under the fractional linear transformations of
a Fuchsian subgroup Γ of

SU(1, 1) = {
(
a b

b̄ ā

)
| |a|2 − |b|2 = 1}.

Here the action of γ =
(
a b
b̄ ā

)
∈ Γ is given by z 7→ γ(z) = az+b

b̄z+ā
. It is immediate to

check that the Kähler form

ωhyp =
i

π

dz ∧ dz̄
(1− zz̄)2

is invariant under fractional linear transformations, so it defines a Kähler form on
Σg, denoted by the same symbol ωhyp. Let L be the canonical bundle over Σg, i.e.
the holomorphic line bundle whose global holomorphic sections are the holomorphic
forms of type (1, 0) on Σg. Let p : D → D/Γ be the natural projection map. The
line bundle p∗(L) is holomorphically trivial and its global holomorphic sections are
the form of type (1, 0) on D, i.e. f(z)dz where f(z) is a holomorphic function on
D. Hence, the global holomorphic sections of L can be seen as the forms s = fdz
invariant by the action of Γ, i.e.

f(γ(z))d(γ(z)) = f(γ(z))γ′(z)dz = f(z)dz, ∀γ ∈ Γ, (8)

where γ′(z) denotes the derivative of γ(z) with respect to z (if γ(z) = az+b
b̄z+ā

then

γ′(z) = (b̄z + ā)−2). In other words if

σ : D→ D× C : z → (z, 1)

is the section of the trivial bundle over D, then the space of holomorphic sections of
L can be identify with the space of all s = fσ, where f is a holomorphic function
on D such that

f(γ(z)) = (γ′(z))−1f(z).

More generally, given k a natural number, one can show that the global holo-
morphic sections of Lk can be seen as s = fσ, where f is holomorphic function on
D, such that

f(γ(z)) = (γ′(z))−kf(z). (9)

Given such a section s = fσ define

hk(s(z), s(z)) = (1− |z|2)2k|f(z)|2.
One can easily check that

(1− |γ(z)|2)2k = |γ′(z)|2k(1− |z|2)2k, (10)

so
hk(s(γ(z)), s(γ(z))) = hk(s(z), s(z)), ∀γ ∈ Γ.

Therefore hk defines a hermitian structure on Lk. Moreover

curv(L, h) = −2∂∂̄ log(1− |z|2) =
2dz ∧ dz̄

(1− |z|2)2
= −2πiωhyp, (11)

which shows that the pair (Lk, hk) is a quantization for (Σg , kωhyp).
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4.1 The function epsilon for the Riemann surfaces

Given a natural number k define a function on D×D by the formula

ek(z, w) =
2k − 1

2k

∑
γ∈Γ

(1− γ(z)w̄)−2k(γ
′
(z))k. (12)

Classical theorems going back to Poincare (see [8, pp. 101-104]) assert that the
series (12) converges almost uniformly for all z ∈ D. It is easily seen that for every
w ∈ D

ek(γ(z), w) = (γ
′
(z))−kek(z, w), ∀γ ∈ Γ. (13)

Hence ekσ(w)(z) := ek(z, w)σ(z) is a holomorphic section of Lk. Let U be a funda-
mental domain in D for the action of Γ. Given any s = fσ a holomorphic section
for Lk it follows by (9) and (13) that

〈s, ekσ(w)〉hk =
∫

Σg
f(z)ek(z, w)(1− |z|2)2kkωhyp(z)

=
2k − 1

2k

∑
γ∈Γ

∫
U
f(z)(1− γ(z)w)−2k(γ′(z))k(1− |z|2)2kkωhyp(z)

=
2k − 1

2k

∑
γ∈Γ

∫
U
f(γ(z))(1− γ(z)w)−2k(1− |γ(z)|2)2kkωhyp(z)

=
∫
D
f(z)(1− z̄w)−2k(1− |z|2)2kkωhyp(z) = f(w),

where the last equality follows by a direct calculation (cfr. [5, p10]). Hence

〈s, ekσ(w)〉hkσ(w) = f(w)σ(w),

i.e. ekσ(w) is the coherent state relative to σ(w). By the very definition of coherent

states one has ‖ekσ(z)‖2
hkσ(z) = ek(z, z)σ(z) and by (2)

ε(Lk,hk)(z) = ‖ekσ(z)‖2
hkh

k(σ(z), σ(z)) =
2k − 1

2k
(1− |z|2)2k

∑
γ∈Γ

(1− γ(z)z̄)−2k(γ
′
(z))k.
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