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Abstract
The cone-length in spheres of a space X , clS(X), is the least integer n

such that there are homotopy cofibrations:

∨r∈RSnr −→ Xi −→ Xi+1 0 ≤ i < n

with X0 ∼ ∗ and Xn ∼ X . We first prove a cancellation phenomenom for this
notion. Let p be a prime and X be a 1-connected p-local space. If X ∨ Sn is
the cofibre of a map between two wedges of spheres, then X is such a cofibre
as well. In particular clS(X ∨ Sn) ≤ 2 is equivalent to clS(X) ≤ 2. From
this property, we deduce two extensions of the result of Félix and Thomas on
spaces of Lusternik-Schnirelmann category two, first, for p-local spaces whose
loop space has a decomposition and second, for rational spaces of infinite type.

In this paper spaces and maps are always based. The Lusternik-Schnirelmann
category of a space X, catX, is the least integer n ∈ N ∪ {∞} with the property
that X can be covered by n + 1 open subsets contractible in X. This homotopy
invariant is hard to determine and several approximations have been introduced.
Among them, the strong category, CatX of a space X [7]: CatX is the least integer
n ∈ N ∪ {∞} with the property that X has the homotopy type of a CW-complex
which may be covered by n + 1 self-contractible subcomplexes. Strong category is
an upper bound for LS category; indeed, if X is path-connected, one has [15]:

catX ≤ CatX ≤ catX + 1 .

We use Ganea and Cornea’s characterizations of strong category. For a path
connected space, Ganea proved [7] that CatX is the least integer n such that there
are n cofibrations:

Li → Xi → Xi+1 0 ≤ i < n ,
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with X0 = ∗ and Xn ∼ X. In [3] Cornea improves this construction: He shows
that one obtains the same invariant by requiring the spaces Li to be i-suspensions,
Li = ΣiZi, i ≥ 1. In particular, for the spaces we are concerned with, one has
CatX ≤ 2 iff there exists a cofibration ΣZ1 → ΣZ0 → Y , with Y ∼ X. If we require
that the spaces Li are wedges of spheres, we get a homotopy invariant called the
cone-length in spheres which is denoted by clS. One has CatX ≤ clSX, and there are
examples where the inequality is strict. First we prove a cancellation phenomenon
for the cone-length in p-local spheres:

Theorem 1: Let p be a prime and X be a p-local, 1-connected, space of finite
type. We denote by Sn the p-local sphere. If X ∨ Sn is the cofibre of a map be-
tween two wedges of p-local spheres, then X is such a cofibre as well. In particular,
clS(X ∨ Sn) ≤ 2 is equivalent to clSX ≤ 2.

It is an open question how to characterize spaces X for which one has catX =
CatX. For instance, the spaces of LS-category one are the co-H spaces and the
spaces of strong category one are the suspensions. The existence of co-H-spaces
that are not suspensions implies thus that there are spaces X with catX = 1 and
CatX = 2.

Rational 1-connected co-H-spaces are wedges of rational spheres, [8], [13]. There-
fore, the previous class of examples is not valid in the rational setting. In [10],
Lemaire and Sigrist conjectured that for rational 1-connected spaces, X0, one has
catX0 = CatX0. Recently, Dupont [5] found a rational space with catX0 = 3 and
CatX0 = 4. For rational spaces of LS-category 2, there is no counterexample to the
Lemaire-Sigrist conjecture, since in [6] Félix and Thomas proved that if catX0 = 2
and Hk(X0;Q) is finite dimensional for all k then CatX0 = 2 . From Theorem 1,
we deduce some extensions of this result of Félix and Thomas.

If p is a prime, we denote by X(p) the p-localisation of X (see [9]). As usual, set:

Ωk =

{
Sk k = 2n− 1
ΩSk+1 k = 2n

Definition: Let p be a prime. A space Y is weakly p-decomposable if there exists
an integer m (possibly ∞) such that Y has the homotopy type of an m-dimensional
CW -complex and ΩY ∼(p)

∏
i∈J Ωni ×E, with E m-connected.

Note that a decomposable space in the sense of [1], [14] is weakly p-decomposable
for any prime p.

Theorem 2: Let p be a prime. If X is a weakly p-decomposable 1-connected
space of finite type such that catX(p) ≤ 2, then CatX(p) ≤ clSX(p) ≤ 2.

In [12] McGibbon and Wilkerson proved that if X is a 1-connected finite CW -
complex, with Σrrank πr(X) < ∞, then ΩX ∼p

∏
i∈J Ωni for almost all primes p,

that is, X is weakly p-decomposable for p large enough. The following corollary
comes directly from their result and Theorem 2:
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Corollary : Let X be a 1-connected finite CW-complex, with catX ≤ 2
and such that Σrrank πr(X) < ∞, then for almost all primes p, one has
CatX(p) ≤ clSX(p) ≤ 2.

In the rational case, we may prove more:

Theorem 3: Let X be a 1-connected rational space.

1) If X ∨ ∨i∈L Sni is the cofibre of a map between wedges of rational spheres,
then X is as well.

2) If catX ≤ 2 then CatX ≤ 2.

Remark: Theorems 1 and 2 give obstructions to the decomposability of a space
X in the sense of [1], [14]. For that, remark that the existence of cohomology
operations P i1, P i2, P i3 such that P i1 ◦ P i2 ◦ P i3(α) 6= 0, α ∈ H∗(X), implies
3 ≤ clS(X). Therefore if catX ≤ 2, the existence of such cohomology operations
implies the non-decomposability of X. For instance, one can deduce easily that
ΣCP n (n ≥ 3) is not decomposable.

One of the techniques used in the proofs is the notion of homotopy pullback and
pushout. We refer to [11], [2] and [4] for the definitions and main properties. By

definition, a cofibration sequence is a couple of pointed maps A
f→ B

g→ C such that
the following diagram

A
f→ B

↓ g ↓
∗ → C

is a homotopy pushout. A fibration sequence is defined similarly.

In order to prove these theorems, we need some lemmas.

Lemma 1: [11]Consider the following homotopy commutative diagram

A
α−→ B

γ ↓ β ↓
X

δ−→ Y

Denote by Cα, Cβ, Cγ and Cδ the homotopy cofibres of α, β, γ and δ, respectively,
and by β̃ : Cα −→ Cδ and δ̃ : Cγ −→ Cβ the induced maps. We get a homotopy
commutative diagram:

A
α−→ B −→ Cα

γ ↓ β ↓ β̃ ↓
X

δ−→ Y −→ Cδ
↓ ↓ ↓
Cγ

δ̃−→ Cβ −→ C

in which C is the common homotopy cofibre of δ̃ and of β̃.
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The following cofibration sequence is obtained by applying Proposition 2.1. of
[2] to the second Ganea fibration ∗2ΩX −→ B2ΩX −→ X.

Lemma 2: If X has LS-category 2, one has a cofibration sequence:

∗2ΩX ∨ (∧2ΩX ∧ ΣH)
j−→ ΣΩX ∨ (ΩX ∧ ΣH)

ρ−→ X ∨ ΣH ,

with H = Ω(∗3ΩX).

Lemma 3: Let p a prime number and let q be a number prime to p. Let Sn be
a p-local sphere and denote by ιn a generator of Hn(S

n). Let ψ : Sn −→W ∨ Sn be
a continuous map such that Hn(ψ)(ιn) = qιn + ωn, where ωn ∈ Hn(W ).

Then the homotopy cofibre of ψ has the homotopy type of W .

Proof of Lemma 3:
Denote by Ψ : W ∨ Sn −→ W ∨ Sn the sum of ψ and of the canonical inclusion

W −→W ∨ Sn. The map Ψ : W ∨ Sn −→ W ∨ Sn is an isomorphism in homology,
and thus Ψ is a homotopy equivalence. Therefore the homotopy cofibres of the
canonical inclusion ι : Sn −→W ∨ Sn and ψ = Ψ ◦ ι have the same homotopy type.

�

Proof of Theorem 1:
In this proof all spaces are p-local. We start from a cofibration sequence∨

i∈I
Sni

j−→
∨
k∈K

Snk
ρ−→ X ∨ Sn (∗∗)

Let ιn be a generator of Hn(S
n). Remark that in the homology long exact

sequence of (∗∗),

. . . Hn

(∨
i∈I
Sni

)
Hn(j)−→ Hn

 ∨
k∈K

Snk

 Hn(ρ)−→ Hn(X) ⊕Hn(S
n)

δ−→ Hn

(∨
i∈I
Sni+1

)
. . .

there are only two possibilities:
Case 1: There exists αn ∈ Hn (

∨
k∈K S

nk) such that Hn(ρ)(αn) = ιn and, by
construction, the element αn is not divisible by p.

Case 2: δ(ιn) 6= 0. Thus one can write δ(ιn) = prβn ∈ Hn(
∨
i S

ni+1), where βn is
not divisible by p.

Case 1: Let α : Sn −→ ∨
k∈K S

nk be a map such that Hn(α)(ιn) = αn. Since
αn is not divisible by p we have

∨
k∈K S

nk = Snαn ∨
∨
k∈K′ S

nk . By Lemma 3, the
homotopy cofibre of α is the wedge of spheres

∨
k∈K′ S

nk .
Consider now the following homotopy diagram, constructed in the same way as

in Lemma 1,
∗ −→ Sn = Sn

↓ α ↓ ↓ρ◦α∨
i∈I S

ni j−→ ∨
k∈K S

nk
ρ−→ X ∨ Sn

‖ ↓ ↓∨
i∈I S

ni j′−→ ∨
k∈K′ S

nk
ρ′−→ X ′
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Note that Hn(ρ ◦ α)(ιn) = Hn(ρ)(αn) = ιn. Using again Lemma 3, for q = 1 we
obtain X ′ ∼ X, so clSX ≤ 2.

Case 2: δ(ιn) = prβn 6= 0, βn not divisible by p.

2.1) If r = 0 we can decompose
∨
i∈I S

ni+1 = Snβn ∨
∨
i∈I′ S

ni+1.
By Lemma 1, we may construct the following diagram:∨

i∈I′ S
ni −→ ∨

k∈K S
nk −→ X ′

↓ ‖ ↓ι̃∨
i∈I S

ni j−→ ∨
k∈K S

nk
ρ−→ X ∨ Sn δ−→ ∨

i∈I S
ni+1

↓ ↓ ↓π′ ↓
Sn−1
βn −→ ∗ −→ Snβn

∼=−→ Snβn

Let ι̃ be the map induced between the cofibres, we will see that the composite π ◦ ι̃
is an homological isomorphism, where π : X ∨Sn −→ X is the canonical projection.

Consider the long exact sequence associated to the cofibration X ′
ι̃−→ X∨Sn π′−→ Sn

0→ Hn(X
′)
Hn(ι̃)−→ Hn(X)⊕Hn(S

n)
Hn(π′)−→ Hn(S

n) −→ Hn−1(X
′) −→ Hn−1(X)→ 0

Since δ(ιn) = βn, we deduce that Hn(π
′)(ιn) is a generator of Hn(S

n
βn), so Hn(π

′) is
surjective and Hn−1(π ◦ ι̃) is an isomorphism between Hn−1(X

′) and Hn−1(X).
We can consider the following diagram:

∗ −→ X ′ −→ X ′

↓ ι̃ ↓ ↓ π◦ι̃
Sn

ι−→ X ∨ Sn π−→ X
↓ π′ ↓ ↓
Sn

π′◦ι−→ Sn −→ ∗
Since π′ ◦ ι is a homotopy equivalence so is π ◦ ι̃ by Lemma 1.

2.2) δ(ιn) = prβn, with r > 0. Looking at the long exact sequence we note
that Hn(j)(βn) = 0, because Hn (

∨
i∈I S

ni+1) is a free Z(p)-module. Therefore there
exists υn ∈ Hn(X) ⊕Hn(S

n) such that δ(υn) = βn. The element υn can be written
υn = sιn + ωn, ωn ∈ Hn(X) (note that υn is a torsion free element). We decom-
pose ιn − prυn = (1 − prs)ιn + prωn. Set q = 1 − prs; remark that (p, q) = 1.
From δ(ιn − prυn) = 0, we deduce the existence of αn ∈ Hn (

∨
k∈K S

nk) such that
Hn(ρ)(αn) = qιn − prωn.

Let β : Sn −→ ∨
k∈K S

nk be a map such that Hn(β)(ιn) = αn. Because (p, q) = 1,
αn is not divisible by p. As before, the cofibre of β is a wedge

∨
k∈K′ S

nk and the
following diagram

∗ −→ Sn = Sn

↓ β ↓ ↓ρ◦β∨
i∈I S

ni j−→ ∨
k∈K S

nk
ρ−→ X ∨ Sn

‖ ↓ ↓∨
i∈I S

ni j′−→ ∨
k∈K′ S

nk
ρ′−→ X ′

together with Lemma 3 implies that X ∼ X ′ and thus clSX ≤ 2.
�
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Proof of Theorem 2: Recall that all spaces are p-local. From Lemma 2, we get
a cofibration sequence:

∗2ΩX(p) ∨ (∧2ΩX(p) ∧ ΣH)
j−→ ΣΩX(p) ∨ (ΩX(p) ∧ ΣH)

ρ−→ X(p) ∨ ΣH (∗)

with H = Ω(∗3ΩX(p)). As X is weakly p-decomposable, we may suppose that X
has the homotopy type of a m-dimensional CW-complex such that:

ΩX∼(p)

∏
i∈J

Ωni ×E

with E m-connected. By using the well-known formula Σ(A × B) = ΣA ∨ ΣB ∨
Σ(A ∧B), we get :

ΣΩX∼(p)Σ(
∏
i∈J

Ωni × E) = ΣE ∨
[
Σ(E ∧

∏
i∈J

Ωni)

]
∨ Σ(

∏
i∈J

Ωni).

Denote by E ′ = ΣE∨ [Σ(E∧∏i∈J Ωni)], the space E ′ is of course (m+1)-connected.
The formula Σ (

∏
i∈J Ωni) =

∨
i∈Λ S

ni implies

ΣΩX∼(p)

∨
i∈Λ

Sni ∨ E ′.

Replacing ΣΩX(p) by this in the cofibration sequence (∗) we obtain :∨
i∈I
Sni ∨E1

j−→
∨
k∈K

Snk ∨ E2
ρ−→ X ∨

∨
l∈L

Snl ∨E3

where E1, E2 and E3 are at least (m+ 1)-connected. By the cellular approximation
theorem, we may assume that there exists a cofibration sequence:∨

i∈I
Sni

j−→
∨
k∈K

Snk
ρ−→ X ∨

∨
l∈L

Snl

(We keep the notation j, ρ for all restrictions of the previous maps.) Since all spaces
are of finite type, Theorem 2 is a consequence of Theorem 1.

�

Proof of Theorem 3:
The proof is analogous to those of Theorem 1 and 2. In the rational setting, we

have a homotopy cofibration:∨
i∈I
Sni

j−→
∨
k∈K

Snk
ρ−→ X0 ∨

∨
l∈L

Snl (∗)

The homology long exact sequence of (∗) is now an exact sequence of rational vector
spaces :

. . . −→ Hn(
∨
i∈I
Sni)

Hn(j)−→ Hn(
∨
k∈K

Snk)
Hn(ρ)−→ Hn(X0)⊕Hn(

∨
l∈L

Snl) −→ . . . (∗∗)

We can split Hn(
∨
l∈LS

nl) = Hn(
∨
l∈L1

Snl) ⊕ Hn(
∨
l∈L2

Snl) in such a way that∨
l∈L1

Snl comes from a subwedge of
∨
k∈K S

nk via ρ and
∨
l∈L2

Snl goes to a subwedge
of
∨
i∈I S

ni+1 via the connecting homomorphism. Using the same diagrams as in case
1 and case 2.1 for Theorem 2, we obtain CatX0 ≤ 2.

�
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Remark: For the p-local case (Theorem 1) the cancellation phenomenon is
applied to one sphere each time. In the rational setting (Theorem 3), since this
exact sequence splits, we can cancel any family of spheres.
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