
Linear Geometries of Baer subspaces

Harm Pralle Johannes Ueberberg

Abstract

In PG(2, q2), q a prime power, we study the set T of Baer subplanes that
contain a fixed triangle PQR. To construct a linear rank 2–geometry over T ,
we determine the dihedral groups, their orders and possible extensions that
are generated by the involutions of two Baer subplanes of T . If q+1 is an odd
prime, the (q+1)2 Baer subplanes through the triangle PQR are the points of
an affine plane Aq+1 of order q + 1. Since it is necessary for this construction
that q+1 is an odd prime, the change of the order from q to q+1 occurs only
for q = 22r , r ∈ IN, i.e. for the Fermat primes.

Coordinatizing the affine plane Aq+1, we show that Aq+1 is desarguesian.
Finally, we generalize the construction of AG(d, q + 1) out of PG(d, q2) to
dimensions d ≥ 2 constructing the corresponding vector space.

1 Introduction

A Baer subspace of a finite desarguesian projective space PG(d, q2) of square order
is a subspace of the same dimension d and order q. Each Baer subspace consists of
the fixed elements of PG(d, q2) of a unique so called Baer involution (for properties
of Baer subspaces and their intersection configurations see [3], [6], [1], [10]). Using
the description of Baer subspaces by involutions, we induce a geometric structure on
the set of Baer subspaces. For, we consider the subgroup in the automorphism group
PΓL(d+ 1, q2) of PG(d, q2) that is generated by the Baer involutions corresponding
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to the set of Baer subspaces under consideration, and we investigate the structure
in this group.

In his programmatic paper [2], Cameron outlines the possible consequences of
Aschbacher’s classification theorem for future research in geometry. Aschbacher’s
theorem gives rise to eight families C1, ..., C8 of ‘large’ subgroups of PGL(d + 1, q).
Cameron indicates how to obtain a geometric interpretation of these groups using
the concepts of buildings and diagram geometry. A description of the state of the
art is included.

In [7], it is shown that, given two disjoint Baer subplanes B1 and B2 of PG(2, q2),
there exists a unique Singer cycle for which the corresponding partition of PG(2, q2)
into Baer subplanes contains B1 and B2. Since Singer groups belong to the class C3,
this theorem is a possible geometric interpretation of a group which belongs to C3

and is a subgroup of a projective linear group of square order.
The Frobenius map GF (q3)→ GF (q3), x 7→ xq, induces a projective collineation

ϕ of order 3 on PG(2, q) ' GF (q3) (mod GF (q)). The conjugates of ϕ are called
Frobenius collineations. In [8], the Frobenius collineations of PG(2, q2) with q ≡
2 mod 3 are used to construct a rank 3–geometry with a group operating transitively
on its maximal flags. The geometries are called Frobenius spaces of order q. The
Frobenius space of order 2 (see [9]) belongs to the diagram

e
2
e
1

c e
6

.

As the Frobenius collineations are induced by a field automorphism fixing a
subfield, the Frobenius spaces can be seen as a geometric interpretation of a group
belonging to C5 and again being a subgroup of a projective linear group of square
order.

The aim of [5] is the geometric interpretation of the dihedral groups generated
by any two Baer involutions. It investigates a certain linear structure on sets of
Baer subplanes of PG(2, q2). More precisely, let B and B ′ be two Baer subplanes
with involutions τ, τ ′, resp. Let δ := ττ ′ be the product of the Baer involutions τ
and τ ′ and let s := ord(δ). For the geometric interpretation of the dihedral group
D := 〈τ, τ ′〉, we define the sets

B0(B,B
′) := { δi(B) | i = 0, 1, ..., s− 1 } ,

B1(B,B
′) := { δi(B ′) | i = 0, 1, ..., s− 1 } and

B(B,B ′) := B0 ∪ B1 .

Considering the Baer subplanes as points and the sets B(B,B ′) as lines, we obtain
a structure in the set of Baer subplanes that is induced by any two Baer subplanes.
In general, the sets B(·, ·) differ for two different pairs of Baer subplanes (B,B ′) and
(C,C ′). On the one hand, this depends on the intersection configuration B ∩B ′, on
the other hand, it depends on the particular site of the two Baer subplanes B and
B ′ in P = PG(2, q2).

So far, the definition of B(B,B ′) may be used for arbitrary pairs (B,B ′) of
Baer subplanes of P . Furthermore, there is no condition on the dimension d of
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P . In this paper, we present a rank 2–geometry in the set T of Baer subplanes
through a common triangle ∆ = PQR of PG(2, q2) studying the corresponding
dihedral groups. In general, it is not linear, but achieves linearity for certain orders
q. Theorem 1.1 determines the dihedral group D and the set B(B,B ′) for two Baer
subplanes B,B ′ ∈ T .

Theorem 1.1. Let B,B ′ be two Baer subplanes of P = PG(2, q2) with involutions
τ, τ ′, resp., that have a triangle PQR in common. Let δ := ττ ′, s := ord(δ),
D := 〈τ, τ ′〉 and let B(B,B ′) be defined as above.

(a) s is a divisor of q + 1.

(b) D is a dihedral group with |D| = 2s. The reflections of D are the involutions
of the Baer subplanes of B(B,B ′).

(c) There exists a Baer subplane B̃ ∈ T such that B(B,B ′) ⊆ B(B, B̃) and
|B(B, B̃)| = q + 1.

Definition 1.2. Let P,Q and R be three non collinear points of P = PG(2, q2) and
let T be the set of Baer subplanes through P,Q and R. The geometry Aq+1 is defined
as follows:

• The points of Aq+1 are the Baer subplanes of T .

• The lines are the sets B(B,B ′) with |B(B,B ′)| = q+ 1 for two Baer subplanes
B,B ′ ∈ T .

• Incidence is inclusion.

Our main result reads as follows:

Theorem 1.3. Let the geometry Aq+1 be defined as in Definition 1.2. If q + 1 is a
prime number, then Aq+1 is a desarguesian affine plane of order q + 1.

A nice example for the presented method is the construction of an affine plane
of order 3 out of PG(2, 4). Let PQR be a triangle in PG(2, 4). Each Baer subplane
of PG(2, 4) through PQR has exactly one point off the lines PQ,QR and PR. So,
there is a bijective map between the points of the geometry A3 and the points of
PG(2, 4) off the triangle lines. We have just to determine the lines of A3. Nine of
the 13 lines of A3 are induced by the lines of PG(2, 4) through the points P,Q and
R different from the triangle lines through these points. The remaining four lines of
A3 cannot be seen in PG(2, 4) without calculating them by means of the dihedral
groups.

Finally, the results generalize in d ≥ 2 dimensions. Considering the set Q of Baer
subspaces of PG(d, q2) that contain a given basis {P0, P1, ..., Pd}, Q is the point set
of a desarguesian affine space AG(d, q + 1), when q + 1 is a prime number.

The paper is organized as follows. In Section 2, we give the necessary information
on Baer subspaces and Baer involutions. In Section 3, we prove Theorems 1.1 and
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1.3. In Section 4, we generalize our results in d ≥ 2 dimensions. To do this, we
define the geometry Ωq+1 that corresponds to the 2–dimensional geometry Aq+1, we
formulate the results corresponding to the plane case in Theorem 4.2 and we sketch
a proof developing the vector space that coordinatizes the affine space Ωq+1 if q + 1
is a prime number.

2 Baer subspaces and dihedral gr oups

Proposition 2.1. Let τ, τ ′ be the involutions of two Baer subspaces B, B ′ of a finite
desarguesian projective space P. There exists a collineation of P mapping B onto
B ′. If α is such a collineation, it follows that τ ′ = ατα−1. Furthermore, the product
δ := ττ ′ is a projectivity.

Proof. Ueberberg [7, Propositions 2.1 and 2.2 ] �

Proposition 2.2. Let τ, τ ′ be the involutions of two Baer subspaces B, B ′ of a finite
desarguesian projective space and let δ := ττ ′ and s := ord(δ). Let τk and τ ′k denote
the involutions of the Baer subspaces Bk := δk(B) and B ′k := δk(B ′), resp.

(a) τk = δ2kτ and τ ′k = δ2kτ ′ .

(b) For s odd, τ ′k = τk+ s−1
2

.

(c) For s even, there is no k ∈ {0, 1, ..., s− 1} such that τ ′ = τk.

Proof. (a) By Proposition 2.1, the involutions of Baer subspaces of B0(B,B ′)
are the conjugates under 〈δ〉. It follows

τk = δkτδ−k = δkτ (ττ ′)−k = δkτ (τ ′τ )k = δk(ττ ′)kτ = δ2kτ

and similarly τ ′k = δ2kτ ′ for the involutions of the Baer subspaces of B1(B,B
′).

(b) By (a), we have τ ′k = δ2kτ ′ = δ2k−1(ττ ′)τ ′ = δ2k−1τ = δ2(k+ s−1
2

)τ = τk+ s−1
2

,

since s is odd.

(c) By (a), it follows τ ′k = δ2kτ ′ = δ2k−1(ττ ′)τ ′ = δ2k−1τ . Since s is even, there
is no k ∈ {0, 1, ..., s− 1} such that 2k− 1 ≡ 0 mod s. Hence there is no k such that
τ ′ = τk. �

A basisM of a d–dimensional projective space P is a set of d+1 points generating
P . A frame of a d–dimensional projective space P is a set of d+ 2 points of which
any d+ 1 points are a basis. It is well known that a Baer subspace of P = PG(d, q2)
is uniquely determined by a frame.

Proposition 2.3. In P = PG(d, q2), there are (q + 1)d Baer subspaces through a
basis.
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Proof. Let the basis be M = {P0, P1, ..., Pd}. Since a Baer subspace is uniquely
determined by a frame, we count the frames that contain the basis M. First, we
count the points off the union of the hyperplanes

Hi := 〈P0, ..., Pi−1, Pi+1, ..., Pd〉 , i = 0, ..., d .

Step 1. There are (q2 − 1)d points in P − ⋃di=0 Hi.
We coordinatize P such that the points Pi get the coordinates

Pi = (p0, p1, ..., pd) with pi = 1 and pj = 0 for all j 6= i, i = 0, 1, ..., d .

Hence the points in P −⋃di=0 Hi are exactly those with nonzero coordinates. There
are (q2 − 1)d such points in P .

Similarly, every Baer subspace B through M contains (q − 1)d points off the
hyperplanes Hi, i = 0, 1, ..., d.

Step 2. There are (q + 1)d Baer subspaces containing M.
Since a Baer subspace is uniquely determined by a frame, the (q2− 1)d points of

P off the hyperplanes Hi are partitioned by the Baer subspaces. Since every Baer
subspace contains (q − 1)d points off the hyperplanes Hi, i = 0, 1, ..., d, there are

(q2 − 1)d

(q − 1)d
= (q + 1)d

Baer subspaces through the basis M. �

We need the following proposition about prime numbers.

Proposition 2.4. If q is a power of a prime number and q + 1 is a prime, there is
an r ∈ IN such that q = 22r .

Proof. Since q is a power of a prime and q + 1 is a prime, it is a power of 2, i.e.
q = 2h. Assume that h has an odd factor m, hence h = mn for an n ∈ IN. Since

2h + 1 = 2mn + 1 = (2n + 1)(2n(m−1) − 2n(m−2) + · · ·+ 2n2 − 2n + 1) ,

h cannot have an odd factor. �

Remark. Prime numbers of the form 22r +1, r ∈ IN, are called Fermat primes.
So far, only five Fermat primes are known, namely for r = 0, 1, 2, 3, 4.

3 Proofs of the main results

Notation. For diagonal (3×3)–matricesA = (ai,j)1≤i,j≤3 we write diag(a11, a22, a33).

Proof of Theorem 1.1. We coordinatize PG(2, q2) such that P = (1, 0, 0), Q =
(0, 1, 0) and R = (0, 0, 1). Since a Baer subplane is uniquely determined by a
quadrangle, every point off the triangle lines PQ,QR and PR is in exactly one
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Baer subplane of T . Let B be defined by S = (1, 1, 1), and let B ′ be defined by
S ′ = (1, a, b) with (1, a, b) /∈ (GF (q))3.

(a) The Baer involution τ corresponding to B is induced by the Frobenius
automorphism

ϕ : GF (q2)→ GF (q2), ϕ(x) = xq .

By Proposition 2.1, B ′ has the involution τ ′ = ατα−1 where α is a projectivity that
maps B onto B ′. For instance, let α be induced by diag(1, a, b). It follows, that the
product δ = ττ ′ = τατα−1 is induced by the linear mappingD := diag(1, aq−1, bq−1).
Hence we get

s = ord(δ) = ord(D) = lcm(ord(aq−1), ord(bq−1)) .

So, s divides q + 1.

(b) One easily checks that D is a dihedral group of order 2s. The reflections of
D are the conjugates of τ and τ ′ under the rotation group 〈δ = ττ ′〉.

(c) Let t be a primitive element of GF (q2). There are e, f ∈ IN, such that
a = te and b = tf . It follows

s = ord(δ) = (q + 1)( q + 1 , (e, f))−1 .

Let h := (e, f) and let Z be the point with coordinates Z = (1, te/h, tf/h). Let B̃
be the Baer subplane in T that contains Z. Since τ (Z) 6= Z, it is B̃ 6= B. The
projectivity γ induced by C := diag(1, te/h, tf/h) maps B onto B̃. By Proposition
2.1, the involution τ̃ of B̃ is τ̃ = γτγ−1. So, the product δ̃ = τ τ̃ is induced by the
mapping D̃ := diag(1, te/h(q−1), tf/h(q−1)) and it follows

ord(δ̃) = ord(D̃) = ord(te/h(q−1)), ord(tf/h(q−1))) = q + 1 .

Furthermore, we have δ = δ̃h. So, it follows D = 〈τ, τ ′〉 = 〈δ, τ〉 ⊆ 〈δ̃, τ〉 = 〈τ, τ̃ 〉
and

B(B,B ′) ⊆ B(B, B̃) .

The cardinality |B(B, B̃)| is the number of different Baer subplanes in B(B, B̃). By
Proposition 2.2, for ord(δ̃) odd, it is B0(B, B̃) = B1(B, B̃) and |B(B, B̃)| = ord(δ̃) =
q + 1, for ord(δ̃) even, we have B0(B, B̃) ∩B1(B, B̃) = ∅ and |B(B, B̃)| = ord(δ̃) =
q + 1. �

Proof of Theorem 1.3. We prove the Theorem in four steps.
Step 1. Aq+1 is an affine plane if q+ 1 is a prime number. The existence of a

line through two points B, B ′ of Aq+1 with Baer involutions τ , τ ′, resp., is given by
Theorem 1.1 (c). The uniqueness of the line follows by the condition on q+ 1 to be
a prime number: For, let B(C,C ′) be a line containing B and B ′. The line B(B,B ′)
consists of all the Baer subplanes of T which have involutions in the dihedral group
D = 〈τ, τ ′〉. The line B(C,C ′) consists of all the Baer subplanes of T that have
involutions in the dihedral group C = 〈γ, γ′〉, where γ and γ′ are the involutions of
C and C ′, resp. So, B,B ′ ∈ B(C,C ′) means τ, τ ′ ∈ C, i.e. D ⊆ C. Since q + 1 is a
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prime number, we have |D| = |C| = 2(q + 1) by Theorem 1.1 (a), i.e. D = C and
finally B(B,B ′) = B(C,C ′).

Since by Proposition 2.3 there are (q+ 1)2 points in Aq+1 and since by Theorem
1.1 there are q+1 points on every line, the geometry Aq+1 is an affine plane of order
q + 1 by [4, Theorem 3.2.4 (b)].

It remains to show that Aq+1 is desarguesian. To do so, we shall make use of the
so called inversive planes. For definitions, the reader is referred to [4].

For the following, we remind the reader that q + 1 is assumed to be a prime
number.

Step 2. We introduce coordinates for the points of Aq+1. Let g = PQ and
h = PR be two of the triangle lines in P = PG(2, q2). Again, we coordinatize P
such that the three non collinear points P,Q and R get the coordinates P = (1, 0, 0),
Q = (0, 1, 0) and R = (0, 0, 1).

A Baer subplane B ∈ T is uniquely determined by the two point sets B ∩ g
and B ∩ h, which we call Baer subline of g and Baer subline of h, resp. Since we
consider only Baer subplanes that contain the points P,Q and R, the intersections
of the point sets of the Baer subplanes of T with the points of g are elements of the
bundle with carriers P and Q, when we consider g as an inversive plane with point
set PG(1, q2) and blocks the sublines PG(1, q). We denote this bundle by

X = { B ∩ g | B ∈ T } .

Similarly, considering the line h as an inversive plane, the intersections of the point
sets of the Baer subplanes of T with h are elements of the bundle with carriers P
and R. We denote it by

Y = { B ∩ h | B ∈ T } .
So, any pair (X, Y ) with X ∈ X , Y ∈ Y determines uniquely a Baer subplane of T
and vice versa. Hence there is a bijective map from X × Y onto T . By means of
this map, we introduce coordinates for the point set T of the geometry Aq+1.

According to our coordinatization of P = PG(2, q2) in setting P = (1, 0, 0)
and Q = (0, 1, 0), the points of g\ {P,Q} have coordinates X = (1, x, 0) with x ∈
GF (q2)∗. Hence we may denote them by the elements of GF (q2)∗. So, the set X
can be identified with the factor group F = GF (q2)∗/GF (q)∗. Similarly, Y can be
identified with the factor group F denoting the points of h\ {Q,R} by the elements
of GF (q2)∗. Let t be a primitive element of GF (q2). The set

R =
{

(tq−1)i | i = 0, 1, ..., q
}

is a group of representatives of the factor group F in GF (q2)∗, i.e.

F =
{

(tq−1)i GF (q)∗ | i = 0, 1, ..., q
}
.

We denote the element X ∈ X by the number i, if (tq−1)i is the representative of X
in R. So, the unique Baer subplane through X and Y with X ∈ X and Y ∈ Y gets
the coordinates (i, j), if (tq−1)i is a representative of X and (tq−1)j is a representative
of Y .
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Step 3. Let (i, j) and (l, k) be two points of Aq+1. The line 〈(i, j), (l, k)〉 is the
following set of points:

〈(i, j), (k, l)〉 =

{ ((i + n2(i− k)) mod (q + 1), (j + n2(j − l)) mod (q + 1)) | n = 0, 1, ..., q } .

Let B and B ′ be the two Baer subplanes of T that have the coordinates (i, j)
and (k, l) in Aq+1, resp. Furthermore, let τ and τ ′ be the corresponding Baer
involutions. By definition of the coordinates in Aq+1, B is the Baer subplane de-
fined by P,Q,R and (1, (tq−1)i, (tq−1)j). Similarly, B ′ is determined by P,Q,R and
(1, (tq−1)k, (tq−1)l). Hence we have

τ = θϕ ,

where ϕ denotes the Frobenius automorphism (z, x, y)
ϕ7→ (zq, xq, yq) and θ denotes

the projectivity induced by T = diag(1, (tq−1)2i, (tq−1)2j). Similarly, we have τ ′ =
θ′ϕ, where θ′ is the projectivity induced by T ′ = diag(1, (tq−1)2k, (tq−1)2l).

By definition, the line through the two points B = (i, j) and B ′ = (k, l) is the set
of Baer subplanes with involutions in the dihedral group 〈τ, τ ′〉, i.e. the conjugates
of τ under the product δ = ττ ′ of the two Baer involutions (see Section 1.). The
projectivity δ = ττ ′ = θϕθ′ϕ is induced by

D = T (T ′)(q) = diag(1, (tq−1)2(i−k), (tq−1)2(j−l)) .

So, the image of B under δn, n = 0, 1, ..., q, is determined by the points P,Q,R and

δn(1, (tq−1)i, (tq−1)j) = (1, (tq−1)(i+2n(i−k)), (tq−1)(j+2n(j−l))) .

Hence in the coordinates of the affine plane Aq+1, δn(B) gets the coordinates

((i+ 2n(i − k)) mod (q + 1) , (j + 2n(j − l)) mod (q + 1)) .

Step 4. We are now able to conclude the proof of Theorem 1.3. By Step 3, a
line l of Aq+1 can be described as

l = {((x+ nξ) mod (q + 1), (y + nυ) mod (q + 1)) | n = 0, 1, ..., q }

with x, y, ξ, υ ∈ {0, 1, ..., q} and (ξ, υ) 6= (0, 0). Hence Aq+1 is desarguesian. �

4 Generalization for d ≥ 2 dimensions

To prove Theorem 4.2 corresponding to Theorem 1.3 in d dimensions with d ≥ 2,
we coordinatize the geometry Ωq+1 of Definition 4.1 in a similar way to the previous
section. Let us start with the definition of the geometry Ωq+1.

Definition 4.1. Let P = PG(d, q2), d ≥ 2, and let M be a basis of P. Let Q be
the set of Baer subspaces of P that contain M. The geometry Ωq+1 is defined as
follows:
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• The points of Ωq+1 are the Baer subspaces of Q.

• The lines of Ωq+1 are the sets B(B,B ′) with |B(B,B ′)| = q + 1.

• The incidence is inclusion.

Theorem 4.2. Let B,B ′ be two Baer subspaces of P = PG(d, q2), d ≥ 2, with
involutions τ, τ ′, resp., that have a basis M = {P0, P1, ..., Pd} in common. Let
δ := ττ ′, s := ord(δ), D := 〈τ, τ ′〉 and let B(B,B ′) be defined as above.

(a) s is a divisor of q + 1.

(b) D is a dihedral group with |D| = 2s. The reflections of D are the involutions
of the Baer subspaces of B(B,B ′).

(c) There exists a Baer subspace B̃ ∈ Q such that B(B,B ′) ⊆ B(B, B̃) and
|B(B, B̃)| = q + 1.

(d) Let Ωq+1 be defined as in Definition 4.1. If q + 1 is a prime number, Ωq+1 is
a d–dimensional desarguesian affine space of order q + 1.

Sketch of a proof. We coordinatize P such that the points of M get the coor-
dinates

Pi = (p0, p1, ..., pd) , pi = 1, pj = 0 for all j 6= i, i = 0, 1, ..., d .

Since all Baer subspaces of Q contain the points of M, projectivities mapping one
Baer subspace on another of Q may be induced by diagonal matrices. So, the proof
of Theorem 4.2 (a)-(c) is similar to that of Theorem 1.1, the matrices are diagonal
((d+ 1) × (d + 1))–matrices instead of diagonal (3× 3)–matrices.

(d) To show that Ωq+1 is an AG(d, q + 1), when q + 1 is prime, we construct
the corresponding vector space. Similarly to the case d = 2 discussed in Section 3,
a Baer subspace through M is a unique element of the d–dimensional crossproduct
of the factor group F = GF (q2)∗/GF (q)∗. For, consider the d connection lines
of the points of the basis M through one of them, say P0. Any Baer subspace
through M is uniquely determined by the corresponding Baer sublines on these d
lines P0Pi , i = 1, 2, ..., d, hence by a d–tuple of elements of F . So, there is a
bijective map of the d–dimensional crossproduct of F onto the point set of Ωq+1.

In the previous section, we have defined the set

R =
{

(tq−1)i | i = 0, 1, ..., q
}
,

where t is a primitive element of GF (q2). R is a group of representatives of the factor
group F in GF (q2). Denoting an element (tq−1)iGF (q)∗ of F by the exponent i of
its representative (tq−1)i ∈ R and calculating mod(q + 1) as we have done it in the
previous section, we can consider F as Zq+1. Hence the d–dimensional crossproduct
of F is a d–dimensional vector space V .

As mentioned before, there is a bijection of the points of the geometry Ωq+1 onto
the elements of V . We have to show that the lines of Ωq+1 are the cosets of the one
dimensional subspaces of V . Recall that the points of a line l of Ωq+1 are all Baer
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subspaces of Q with involutions in one dihedral group D = 〈τ, τ ′〉 = 〈δ, τ〉 where
τ, τ ′ are two Baer involutions and δ = ττ ′. Since the Baer subspaces of Q contain
the basis M, by our coordinatization, the projectivity δ is induced by a diagonal
((d+ 1)× (d+ 1))–matrix. The calculations for a line through two points B and B ′

of Ωq+1 are similar to that of the proof of Proposition 3. Instead of (3× 3)–matrices
there are ((d+ 1)× (d + 1))–matrices. So, a line l of Ωq+1 has the form

l = {(x+ ny) mod (q + 1) | n = 0, 1, ..., q } , x, y ∈ V with y 6= 0 .

�

5 Concluding Remark

The uniqueness of a line through two points of the affine plane Aq+1 of Theorem
1.3 or in other words, that F is a field, follows from the condition that q + 1 is a
prime number. By Proposition 2.4, to satisfy this condition q has to be of the form
q = 22r , r ∈ IN. As mentioned there, the prime numbers 22r + 1 are the Fermat
primes. So far, only five Fermat primes are known, namely those for r = 0, 1, 2, 3, 4.
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