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Abstract

In this paper we study finite partially {0, 2}-semiaffine linear spaces of
order n. For the case of different point degrees a complete classification will
be given. If the point degree is a constant then we present a classification for
those admitting the property that v ≥ n2.

1 Introduction

Let us first recall some definitions and results. For more details see [1]. Let (P ,L)
be a pair, where P is a (finite) set of points and L is a family of proper subsets of
P . The elements of L are called lines and we assume that each line admits at least
two points. The pair (P ,L) is called a (finite) linear space if any two distinct
points are on a unique line.
We denote by v the number of points and by b the number of lines.
For any point p of P , the degree of p is the number [p] of lines through p and for
any line ` of L, the length of ` is its cardinality. If n+ 1 = max

p∈P
[p], the integer n is

called the order of (P , L).
Two lines ` and m are called parallel if ` = m or ` ∩m = ∅.
For any point-line pair (p, `) with p /∈ `, π(p, `) denotes the number of lines through
p, which are parallel to `.

The near pencil on v points is the finite linear space on v points with a line of
length v − 1.

An (h, k)-cross, h, k ≥ 3 is a linear space whose points are on two incident lines, one
of length h and the other one of length k.
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A projective plane is a linear space such that any two distinct lines have a point
in common and every line has length at least three.

The Nwpanka-Shrikhande plane is a linear space on 12 points and 19 lines with
constant point degree 5, each point being on one line of length 4 and four lines of
length 3.

Let H be a finite set of non-negative integers. The linear space (P ,L) is H-
semiaffine if π(p, `) ∈ H for any point-line pair (p, `) with p /∈ `. The research
on H-semiaffine linear spaces has been developed by Dembowski [8] for the case
H = {0, 1} and has been carried on by many other authors ( see [4, 3, 11, 13, 16, 15]).

Furthermore (P ,L) is called weakly H-semiaffine if the line set is partitioned
into two sets V and I, the visible and invisible lines respectively, such that

(a) A line ` is visible if and only if π(p, `) ∈ H for any p /∈ ` .

(b) There is a good point of degree n+ 1, that is a point of degree n+ 1 such that
all the lines through it are visible.

(c) Every visible line has at least two good points.

(d) For any point-line pair (p, `) with p /∈ ` we have that π(p, `) ≥ minH.

WeaklyH-semiaffine linear spaces were introduced by A. Beutelspacher and I. Schestag
in [5]. They have been studied later also by other authors (see [6, 10, 17]).

The second and third property of the previous definition make sure that the family
of visible lines is greater than the family of invisible lines.

In this paper we study finite linear spaces such that the first previous property is
verified whereas the other three axioms are replaced by a property assuring that
there are ”only a few” invisible lines with respect to visible ones.

We begin with the following definition.

Definition

Let H be a finite set of non negative integers. A finite linear space (P ,L) is 2-
partially H-semiaffine if the line set is partitioned into two sets V and I, the
visible and invisible lines respectively, such that

(1.1) A line ` is visible if and only if π(p, `) ∈ H for any p /∈ `.

(1.2) Through any point there are at most two invisible lines.

From now on a 2-partially H-semiaffine linear space is called a partiallyH-semiaffine
linear space. A point p of P is called good if every line through it is visible.
Otherwise it is called a non-good point. For every point p of P the number of
invisible lines through p is denoted by µp.
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From property (1.2) it follows that there are two kinds of non-good points: those of
type I if µp = 1 and those of type II if µp = 2.

If V = ∅ then from property (1.2) it follows that for every point p we have [p] = 2,
hence (P ,L) is the near-pencil on three points.
From now on we may assume that V 6= ∅.

We remark that if I = ∅ then (P ,L) is an H-semiaffine linear space.

A partially H-semiaffine linear space is said to be proper if for any h ∈ H there is
a point-line pair (p, `) with p /∈ ` such that π(p, `) = h.

In this paper finite partially {0, 2}-semiaffine linear spaces with I 6= ∅ are studied.
Recall that finite partially {0, 1}-semiaffine linear spaces have been studied in [12].

1.1 Examples of partially {0, 2}-semiaffine linear spaces with I 6= ∅ and
different point degrees

A1) The (3, 3)-cross is a partially {0}-semiaffine linear space with one good point
(the intersection point of the two lines of length three) and the remaining
points are type II non-good points.

A2) Let (P ,L) be a projective plane of order n ≥ 4 and let L and L′ be two of its
lines. We set q0 = L∩L′, ∆ = L∪L′−{q0}. The linear space (P ′,L′) obtained
from (P ,L) by deleting the points of ∆ and an extra point q different from
q0 is a proper partially {0, 2}-semiaffine linear space. Its points are non-good
points of type I.

A3) Let (P ,L) be a projective plane of order n ≥ 4 and let L and L′ be two of its
lines. Set q0 = L ∩ L′ and ∆ = L ∪ L′ − {q0}. Let (P ′,L′) be the linear space
obtained from (P ,L) by deleting the points of ∆ and two other points q and q′

different from q0, such that q, q′ and q0 are collinear. Then we have a proper
partially {0, 2}-semiaffine linear space with n− 1 good points. The remaining
points are type II non-good points.

A4) Let (P ,L) be a projective plane of order n ≥ 5 and let L and L′ be two of
its lines. Set q0 = L ∩ L′ and ∆ = L ∪ L′ − {q0}. Consider the linear space
(P ′,L′) obtained from (P ,L) by deleting the points of ∆ and two other points
q and q′ different from q0 such that q, q′ and q0 are not collinear. Then we have
a proper partially {0, 2}-semiaffine linear space which contains n − 3 type I
non-good points and the remaining points are type II non-good points.

In this note we prove the following theorem.

Theorem I Let (P ,L) be a partially {0, 2}-semiaffine linear space of order n, with
non-constant point degree. Then (P ,L) is either one of the linear spaces described
in A1, A2, A4 or the pseudo-complement of the union of the set of points of two
lines in a projective plane of order n (n ≥ 4), except for the point of intersection q0,
and of two points collinear with q0.
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1.2 Examples of partially {0}-semiaffine linear spaces with I 6= ∅

B1) A punctured projective plane of order n is a partially {0}-semiaffine linear
space. All its points are type I non-good points.

B2) A doubly punctured projective plane of order n is a partially {0}-semiaffine
linear space. If n ≥ 3 then its points are non-good of both types.

If [12] the following theorem has been proved.

Theorem II Let (P ,L) be a partially {0}-semiaffine linear space of order n, with
I 6= ∅. Then (P ,L) is one of the linear spaces described in B1 or B2.

1.3 Examples of partially {2}-semiaffine linear spaces with I 6= ∅

C1) Let (P ,L) be a projective plane of order n ≥ 4 and let L and L′ be two of
its lines and p a point not on L ∪ L′. Put ∆ = L ∪ L′ ∪ {p}. The linear
space (P ′,L′) obtained from (P ,L) by deleting the points of ∆ is a partially
{2}-semiaffine linear space with constant point degree n + 1. In this linear
space there are no lines of length n+ 1 and every non-good point is of type II.

C2) The linear space obtained from a projective plane of square order n by deleting
the points of two disjoined Baer subplanes is a partially {2}-semiaffine linear
space whose points are all type II non-good points.

C3) The linear space obtained from a projective plane of square order n, by deleting
the points of a Baer subplane and one of its tangent line is a partially {2}-
semiaffine linear space whose points are non-good. There exist both type I
and type II non-good points.

C4) The complement of two lines in a projective plane of order n (n ≥ 3) is a
partially {2}-semiaffine linear space such that all of its points are type I non-
good points.

C5) The punctured Nwpanka-Shrikhande plane is a partially {2}-semiaffine linear
space of order 4, with constant point degree 5. It has no lines of length 5.
Furthermore, there are three good points and the remaining points are type
II non-good ones.

C6) The linear space on six points with two parallel lines of length three is a
partially {2}-semiaffine linear space. All its points are type I non-good points.

C7) The linear space obtained from the projective plane of order 4 by deleting
the points of its three concurrent lines and the two pseudo-complements of
a triangle in the projective plane of order 4 (see [4]) are three examples of
partially {2}-semiaffine linear spaces. In these examples all points are type II
non-good points.
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C8) (a) Let α4 be the affine plane of order 4, and let p be one of its points.
The linear space obtained from α4 by deleting p and by breaking up every
line through p, in three lines of length two is a partially {2}-semiaffine linear
space. Its points are all type II non-good points.

(b) Let π5 be the projective plane of order 5 and let L1, L2 and L3 be three
lines passing through a fixed point p of π5. Consider a line L not passing
through p and let (P ,L) be the linear space obtained from π5 by deleting
the lines L1, L2 , L3 together with their points except the points pi = Li ∩ L,
i = 1, 2, 3 and by deleting also the points of L different from pi, i = 1, 2, 3. The
linear space (P ′,L′) obtained from (P ,L) by breaking up the line {p1, p2, p3}
in three lines of length 2, is a partially {2}-semiaffine linear space.

Notice that the linear spaces described in (a) and (b) have the same parameters
but they are not isomorphic.

C9) The complement of a hyperoval in the projective plane of order 4 is a partially
{2}-semiaffine linear space with constant point degree 5. All its points are
type II non-good points.

In this note we prove the following theorem.

Theorem III Let (P ,L) be a partially {2}-semiaffine linear space with constant
point degree n+ 1, then we have the following properties.

(a) If there exists a good point then (P,L) is the linear space described in C1 or
C5.

(b) If there are no good points and if there exists a line of length n, then (P,L)
is the linear space described in C4 or C6 or there exists an integer s (s ≥ 5)
such that:

(1) (P ,L) is the pseudo-complement of a Baer subplane together with a tan-
gent line in a projective plane of order n = (s− 2)2.

(2) b = n2 + n + 1, n =
s2 − 3s+ 2

2
.

(3) b = n2 + n + 1 + z, with 0 < z <
s2 − 5s + 2

2
and n ≤ s2 − 2s

3
.

(c) If there are no good points and all the invisible lines have length n + 1 − s,
(s ≥ 3) then (P ,L) is the linear space described in C7 or C9 or one of the
following cases is true

(4) (P ,L) is a hypothetic linear space with s = 4, n = 7 and b = n2 +n−1 =
55.

(5) b = n2 + n, n = 2s2 − 9s + 9, and (P,L) is a hypothetic linear space if
s ≥ 5. If s = 4, then n = 5, b = 30, v = 15 and two non-isomorphic
examples are described in C8.
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(6) b = n2 + n+ 1 and (P ,L) is the pseudo-complement of two disjoint Baer
subplanes in a projective plane of order n = (s− 2)2. Moreover if s ≥ 9,
then (P ,L) is embeddable in a projective plane of order n.

(7) b = n2 + n+ 1 + z, with 0 < z < s2− 5s+ 3, n ≤ 2(s2 − 5s+ 3)

5
+ s− 1,

and s ≥ 5.

1.4 Some examples of proper partially {0, 2}-semiaffine linear spaces with

I 6= ∅ and constant point degree

D1) Let (P ,L) be the linear space obtained from a projective plane of order n by
deleting two points. (P ,L) is a proper partially {0, 2}-semiaffine linear space
with n− 1 good points whereas every other point is a type II non-good point.

D2) Let (P ,L) be a projective plane of order n ≥ 3 and n odd, and let Γ be an
(n + 1)-arc. The linear space (P ′,L′) obtained from (P ,L) by deleting the
points of Γ is a proper partially {0, 2}-semiaffine linear space with constant
point degree n+1. The internal points with respect to Γ are good points. The
remaining points are type II non-good points.

In this note we prove the following statement.

Theorem IV Let (P ,L) be a {0, 2}-partially semiaffine linear space of order n with
constant point degree. If v ≥ n2 then (P ,L) is the complement of an (n+ 1)-arc in
a projective plane of order n or it is a doubly punctured projective plane of order n,
with n ≥ 3.

2 First properties of a finite partially {0, 2}-semiaffine linear space

From now on (P ,L) is a partially {0, 2}-semiaffine linear space of order n, with
I 6= ∅.

Proposition 2.1. If there exist two lines ` and m such that P = `∪m then (P ,L)
is one of the linear spaces described in A1 and C6.

Proof. We distinguish two cases: (i) ` ∩m = ∅ and (ii) ` ∩m 6= ∅.

Case (i). Since ` and m have both exactly one parallel line, they are invisible
lines. From V 6= ∅ it follows that there exists a visible line t of length 2, so
|`| = |m| = 3 and (P ,L) is the linear space on six points with two lines of
length 3.

Case (ii). In this case ` and m are visible lines and their common point is a
good point. If ` (or m) has length 2 then (P ,L) is the near pencil on |m|+ 1
(|`| + 1) points and this is not possible since I 6= ∅. Hence both ` and m
have at least three points. If |`| = |m| = 3 then (P ,L) is the (3, 3)-cross.
Hence we may suppose that ` (or m) has at least four points. We prove that
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|`| = 4. Assume on the contrary that |`| ≥ 5 and put m = {O, a1, a2, ....} and
` = {O, b1, b2, b3, b4, ...}. The line t = a1b1 is invisible, because π(a2, t) ≥ 3. If
L is a line passing through a2 and parallel to t, then L is invisible, because
π(a1, L) ≥ 3. Hence at least three invisible lines pass through a2 and this is
a contradiction! In a similar way, we may prove that |m| = 4. Thus (P ,L) is
the (4, 4)-cross, and this is false, since I 6= ∅. �

Hence from now on we may suppose that (P ,L) is not the union of two lines and so
that every point has degree at least three.

Proposition 2.2. Let (P ,L) be a proper partially {0, 2}-semiaffine linear space of
order n, then for each point p, [p] ∈ {n − 1, n + 1} and for each visible line `,
|`| ∈ {n− 3, n− 1, n+ 1}.

Proof. First we prove that for every point p there exists a visible line not passing
through p. Assume on the contrary that there exists a point p such that all the
visible lines pass through it. Then every point different from p is a type II non-good
point of degree 3 and p is a good point. Hence the lines have length 2 or 3. Thus
if L is a visible line and x is a point not on L, then at most one parallel line to
L passes through x, contradicting the assumption that (P ,L) is a proper partially
{0, 2}-semiaffine linear space.
Let p0 be a point of degree n+ 1 and let ` be a visible line not passing through p0.
Then |`| ∈ {n− 1, n+ 1}. Hence each point not on ` has degree n− 1 or n+ 1 and
each visible line not passing through p0 has length n − 1 or n + 1. If L is a visible
line passing through p0 then |L| ∈ {n − 3, n − 1, n+ 1}, because every point not in
` ∪ L has degree n − 1 or n + 1. Therefore the points of (P ,L) have degree n − 3,
n− 1 or n+ 1 and the visible lines have length n − 3, n− 1 or n+ 1.
Thus we have to show that there are no points of degree n − 3. Assume on the
contrary that there exists a point x of degree n − 3. Then every visible line not
passing through x has length n− 3 and passes through p0. Since [x] = n− 3 ≥ 3, it
follows that n ≥ 6, hence at least two visible lines of length n− 3 pass through p0.
Then the points different from p0 not lying on ` have degree n − 1, so |`| = n − 1.
Now consider a line t parallel to ` and passing through p0 and let y ∈ t\{p0}. Then
[y] = n + 1, a contradiction. Hence each point has degree n − 1 or n + 1, so the
assertion follows. �

Proposition 2.3. If ` is a visible line, then |`| ∈ {n− 1, n + 1}.

Proof. From proposition 2.2 it follows that if ` is visible line then |`| ∈ {n− 3, n−
1, n + 1}. We prove that there are no visible lines of length n − 3. Assume on the
contrary that there exists a visible line ` of length n − 3. Then every x /∈ ` has
degree n − 1 and if p is a point of degree n + 1, then p ∈ `. Let p0 be a point of
degree n+ 1 and let p be a point of ` different from p0. We prove that ` is the only
visible line passing through p.
Indeed if L is a visible line through p different from `, then |L| = n − 1, because
p0 ∈ `. Let L′ be a parallel line to L and let y be a point of L′ \ {p0} then [p] ≥ n,
a contradiction. Therefore [p] = n− 1 = 3, contradicting |`| = n− 3 ≥ 2. �
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From propositions 2.2 and 2.3 follows

Proposition 2.4. A line ` is visible if and only if |`| ∈ {n− 1, n+ 1}.

Proposition 2.5. There exists at most one point of degree n − 1.

Proof Assume on the contrary that there are two different points q and q′ of degree
n−1. Let L be the line qq′. We prove that each point of L has degree n−1. In fact
if there exists a point x ∈ L of degree n+ 1, then counting v from x and q resp., we
have

|L|+ 2 + (n− 2)2 ≤ v ≤ |L|+ (n− 2)2, (1)

which is not possible. Let p0 be a point of degree n + 1, then p0 /∈ L. Counting v
from p0 and q respectively, we have

v ≥ 3 + (n− 1)(n− 2), (2)

v ≤ |L|+ (n− 2)2. (3)

From equations (2) and (3) it follows that |L| = n + 1 and v = n + 1 + (n − 2)2 =
n2 − 3n + 5.
Then all the points of L are good points. Thus each point of (P ,L) is a good point.
Hence there are no invisible lines, contradicting the assumption that I 6= ∅. �

3 Partially {0, 2}-semiaffine linear spaces of order n with a good

point of degree n− 1

In the previous section we have seen that there exists at most one point q0 of degree
n− 1. In this section we assume that q0 is a good point.

Theorem 3.1. Let (P ,L) be a partially {0, 2}-semiaffine linear space of order n
with a good point of degree n − 1. Then (P ,L) is the pseudo-complement of the
union of two lines L and L′, except their common point q0, and of two different
points collinear with q0 in a projective plane of order n.

Proof. Let q0 be the good point of degree n−1. We prove that there exists at least
a line ` of length n − 1 passing through q0. Assume on the contrary that each line
through q0 is a line of length n+1, then v = n2−n+1. Thus every line not through
q0 has length n− 1, then all the lines are visible lines which is a contradiction.
Let L be a line of length n − 1 through q0. Denote by λ the number of lines of
length n− 1 through q0, then λ ≥ 1. Counting v from q0 we have

v = 1 + λ(n − 2) + (n− 1− λ)n = n2 − n+ 1− 2λ. (4)

Computing v from a point of degree n + 1 we have

v ≥ 2 + 1 + (n− 1)(n − 2) = n2 − 3n + 5. (5)

From equations (4) and (5) it follows that λ ≤ n−2. Therefore there exists a line of
length n+1 passing through q0. Each point of L\{q0} is a non-good point, otherwise
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v = n2 − n+ 1 and from equation (4) it follows that λ = 0, a contradiction.
Now let t be an invisible line through x and t′ the possible other invisible line through
x. Counting v from x we have

v = n+ 1 + t + t′ − 2 + (n− 2)2 = n2 − 3n+ 3 + t+ t′. (6)

Since the n− 1− λ lines of length n+ 1 through q0 meet t and t′ we have |t|, |t′| ≥
n− 1− λ, hence from equation (6) it follows that v ≥ n2 − 3n+ 3 + 2(n − 1)− 2λ.
Then from equation (4) it follows that |t| = |t′| = n− 1− λ.
Thus if L is a line through q0 meeting t and t′ then L has length n + 1. It follows
that if `′ is a line of length n− 1 through q0 and y ∈ `′ \ {q0} then y is a good point.
Computing v from y we have v = n2−n− 1. Thus from equation (4) it follows that
λ = 1.
Hence through q0 there passes a unique line ` of length n − 1 and the remaining
lines are all of length n + 1. All the points of ` are good points and the invisible
lines (which are parallel to `) have length n− 2, because they meet the n− 2 lines
of lenght n+ 1 passing through q0.
Therefore the lines have length n − 2, n − 1 and n + 1 and all the points not on
` are points of type II. If L is a line of length n + 1 it meets all the lines, then
b = n2 + n− 1. From v = n2 − n − 1 the assertion follows. �

4 Partially {0, 2}-semiaffine linear spaces of order n with a non-

good point of degree n − 1

In this section we study the case when the point q0 of degree n − 1 is a non-good
point. Denote by λ the number of lines of length n− 1 passing through q0.

We distinguish two cases

Case I q0 is a point of type I.

Lemma 4.1. There are no good points.

Proof. Assume on the contrary that there exists a good point x. Then computing
v from x and q0, respectively, we obtain

|xq0|+ n2 − 2n = v ≤ |xq0|+ |t| − 1 + (n− 3)n, (7)

where t is the invisible line passing through q0.
It follows that |t| ≥ n+ 1, contradicting |t| ≤ n as t is an invisible line. �

Theorem 4.1. Let (P ,L) be a partially {0, 2}-semiaffine linear space of order n,
with a non-good point of degree n − 1 of type I. Then (P ,L) is the linear space
obtained from a projective plane of order n by deleting two lines L and L′ except
their common point together with a point not on L ∪ L′.

Proof. Let t be the invisible line through q0. Counting v from q0, we have

v = |t|+ λ(n − 2) + (n− 2− λ)n = n2 − 2n + |t| − 2λ. (8)
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First we prove that all the points of t \ {q0} are of type I. Indeed if x is a point of
t \ {q0} of type II, then counting v from x

v = |t|+ |t′| − 1 + (n− 1)(n− 2) = n2 − 3n+ 1 + |t|+ |t′|. (9)

From equation (8) it follows that |t′| = n− 1− 2λ.
Since the n− 2− λ lines of length n+ 1 passing through q0 meet t′, then

n − 1− λ ≤ |t′| = n− 1− 2λ, (10)

from which it follows that λ = 0. Thus t′ is a visible line, which is a contradiction.
Now let x be a point of t \ {q0}, since x is of type I it follows that v = |t|+n(n− 2).
Comparing with equation (8) we have λ = 0, so through q0 there pass n− 2 lines of
length n+ 1 and the line t.
Let L be a line of length n+ 1 and let y ∈ L \ {q0}. Counting v from q0 and y resp.,
we have

|t|+ n2 − 2n = v = |s|+ |s′| − 1 + n + (n− 2)2 = n2 − 3n+ 3 + |s|+ |s′|. (11)

Since s and s′ have at least n−2 points (since they meet all the lines of length n+ 1
passing through q0) it follows that

|t| = −n+ 3 + |s|+ |s′| ≥ 2n − 4− n+ 3 = n − 1, (12)

hence |t| = n, because t is an invisible line.
Therefore equation (12) becomes 2n − 3 = |s|+ |s′|, from which it follows that one
of these lines has length n− 1 and the other one has length n− 2.
Then all the points are of type I, the lines have length n − 2, n − 1, n and n + 1,
v = n2 − n and b = n2 + n − 1. Hence (P ,L) is the pseudo-complement of two
lines L and L′ except their common point together with a point not on L ∪ L′ in
a projective plane of order n. Since |t| = n and q0 ∈ t the number of lines parallel
to t is n + 1 and they form a partition Π of P . Adding a ”new” point to the lines
of Π we get a linear space (P0,L0) whose lines have length n − 1 and n + 1 and
the points different from q0 have degree n + 1. From results in [16] it follows that
(P0,L0) is the complement of two lines L and L′ except their common point, hence
the assertion follows. �

Case II The point q0 is of type II.

Lemma 4.2. There are no good points.

Proof. Assume on the contrary that there exists a good point x. Then counting v
from x and q0 resp., we have

v = |xq0|+ n2 − 2n ≤ v ≤ |xq0|+ |t|+ |t′| − 2, (13)

where t and t′ are the two invisible lines through q0. Then |t|+ |t′| ≥ 2(n+1), which
is a contradiction because t and t′ are invisible lines, and so they have at most n
points. �
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Theorem 4.2. Let (P ,L) be a partially {0, 2}-semiaffine linear space of order n,
with a type II non-good point of degree n − 1. Then (P ,L) is the linear space
obtained from a projective plane of order n by deleting two lines L and L′, except
their common point q0, together with two points that are collinear with q0.

Proof. Let q0 be the point of degree n−1, t and t′ the two invisible lines through q0.
As usual let λ be the number of lines of length n− 1 passing through q0. Counting
v from q0 we have:

v = |t|+ |t′| − 1 + λ(n − 2) + (n− 3− λ)n = n2 − 3n − 2λ + |t|+ |t′| − 1. (14)

Let p be a point of t. If p is of type I then v = |t|+ n(n − 2) and comparing with
equation (14) we have |t| ≥ n+ 1, which is a contradiction because t is an invisible
line.
Thus p is of type II. Let t′′ be the second invisible line through p, counting v from
p we have

v = |t|+ |t′′| − 1 + (n− 1)(n − 2) = n2 − 3n + 1 + |t|+ |t′′|. (15)

Comparing with equation (14) we have

|t′| − 2− 2λ = |t′′|. (16)

Since the n−3−λ lines of length n+1 pass through q0, it follows that |t′′| ≥ n−2−λ.
Hence from equation (16) it follows that |t′|−2−2λ ≥ n−2−λ that is |t′| ≥ n+λ.
Thus |t′| = n and λ = 0. Interchanging t and t′ we have also |t| = n. It follows that
v = n2 − n− 1 and b = n2 + n − 1.
Let x /∈ t∪t′, if x is a non-good point of type I, denote by s the invisible line through
x. Then v = |s|+n+ (n−1)(n−2). Comparing this expression with v = n2−n−1
we have |s| = n− 3 and so s is parallel to t and t′. If x is a non-good point of type
II then let s and s′ be the two invisible lines through x. Counting v from x we have

v = |s|+ |s′| − 1 + n+ (n− 2)2. (17)

Comparing with v = n2−n−1 it follows that |s|+ |s′| = 2(n−2). Thus |s| = |s′| =
n− 2.
Since |t| = |t′| = n and b = n2 + n − 1, there exists a unique line m parallel to t
and t′. Since q0 /∈ m it follows that |m| ≤ n − 3. Thus |m| = n − 3 and the points
of (P ,L) are all of type I. Moreover m is the unique line of length n − 3, because
every line different from m meets t and t′.
Let Π = {` : ` = t or `‖t}, then Π is a partition of P and |Π| = n+1. If ` ∈ Π\{t,m},
then |`| = n− 2, because the lines of Π \ {t,m} partition the set of points of Π not
on t∪m. Similarly the set Π′ = {` : ` = t′ or `‖t′} is a set of n+ 1 lines partitioning
P and every line of Π′ \{t′, m} has length n−2. Since there exists a line L of length
n + 1 and each line intersects L, it follows that |I| = 2n + 1, hence I = Π ∪ Π′.
Consider the pair (P0,L0), where

P0 = P ∪ {ω, ω′}, L0 = {` ∈ L : ` /∈ Π ∪Π′} ∪ {` ∪ ω : ` ∈ Π} ∪ {` ∪ ω′ : ` ∈ Π′}.
This is a linear space with constant point degree n+ 1 and whose lines have length
either n − 1 or n + 1. Then from the results in [16] it follows that (P0,L0) is the
complement of two lines except their common point, in a projective plane. Thus,
the assertion follows. �
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5 Partially {2}-semiaffine linear spaces

In this section we study partially {2}-semiaffine linear spaces of order n and we
prove III of section 1.
Hence suppose that (P ,L) is a partially {2}-semiaffine linear space of order n. If P
is the union of two lines, then arguing as in proposition 2.1 one obtains that (P ,L)
is the linear space C6 or C4 with n = 3. Thus from now on we may suppose that
each point x has degree at least 3.

Proposition 5.1. If (P ,L) is a partially {2}-semiaffine linear space of order n,
then every point has degree n + 1 and a line is visible if and only if it has length
n− 1.

Proof. Let p0 be a point of degree n + 1. We prove that there exists a visible line
not passing through p0. Assume on the contrary that all visible lines pass through
p0. Since at most one visible line passes through a point different from p0, it follows
that every point different from p0 has degree 3. Thus if L is a visible line and x is
a point not on L then |L| ≤ 1, a contradiction.
Let L be a visible line not passing through p0, then |L| = n− 1 so n ≥ 3 and every
point not lying on L has degree n+ 1. Let M be a visible line passing through p0, if
L is parallel to M then each point has degree n+ 1 and each visible line has length
n − 1. If L intersects M in a point y, then each point different from y has degree
n+ 1 and each visible line has degree n− 1. Moreover, since there are at least two
visible lines through p0 it follows that there exists a visible line not passing through
y, hence [y] = n+ 1. �

Proposition 5.2. Let (P ,L) be a partially {2}-semiaffine linear space of order n
with a good point, then n ≥ 4 and (P ,L) is either the linear space obtained from a
projective plane of order n, by deleting the points of two lines L and L′ and an extra
point outside L and L′, or the punctured Nwpanka - Shrikhande plane.

Proof. Counting v from a good point, we have v = n2 − n − 1. We prove that
there are no lines of length n + 1. Assume on the contrary that an invisible line L
of length n exists. Let L′ be an invisible line different from L and put p = L ∩ L′.
Counting v from p we have

v = |L′|+ n2 − 2n + 2. (18)

Comparing with the previous value of v we obtain |L′| = n − 3. Hence every line
different from L has length at most n − 1. Moreover if x is a point of L then x is
a type II non-good point and the invisible lines through it have length n + 1 and
n− 3 respectively. Consider an invisible line t of length n− 3, let y be a point on t
different from L ∩ t, then counting v from y we have

v ≤ n− 3 + n − 1 + (n− 1)(n− 2) = n2 − n− 2, (19)

a contradiction.
Hence every invisible line has at most n points. Now we prove that there are no
type I points. Let p be a non-good point, then counting v from p we have

v = |t|+ |t′| − 1 + (n− 1)(n− 2), (20)
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where at least one of the lines t and t′ is an invisible line. Comparing with the
previous value of v, it follows that |t|+ |t′| = 2n− 2. Since p is a non-good point, t
and t′ are both invisible lines. Thus if p is a non-good point, then p is of type II.
Let p be a non-good point and let t and t′ be the two invisible lines through p. Then
|t|+ |t′| = 2n − 2, so through p there pass a line of length n− 2, a line of length n
and n− 1 lines of length n− 1. Hence if ` is a line, then |`| ∈ {n− 2, n− 1, n}. By
the above argument it follows that the lines of length n are mutually parallel and
similarly those of length n − 2. Since a line of length n − 2 exists, it follows that
n ≥ 4.
Consider a line L of length n, for each point x on L denote by `x the other invisible
line through x. The lines `x, when x ∈ L, are mutually parallel and cover a set X
of n(n − 2) points of (P ,L). Let y be a point of L and let `y be the line of length
n − 2 passing through y. For each point z of `y denote by Lz the line of length n
through z. The lines L and Lz, with z ∈ `y are mutually parallel. Moreover the line
Lz meets all the lines `y, because it is a line of length n parallel to L.
Therefore L and the lines Lz cover the same set X of points. Let p /∈ ∪x∈L`x and
let ` be the parallel line to L. The line ` is parallel to all the lines Lz, so it passes
through n − 1 points outside the set X. Hence ` is parallel to the lines `x. Then `
and the lines `x partition P . Let Π be this set of parallel lines, then |Π| = n+ 1. It
follows that the lines `x are all the lines of length n− 2 in (P ,L). Let (P∗,L∗) the
linear space defined as follows:

P∗ = P ∪ {∞},L∗ = {` ∈ L : ` /∈ � ∪ �′} ∪ {` ∪∞ : ` ∈ �}.

It is a linear space with constant point degree n+ 1 and two line length: n− 1 and
n. Hence (P∗,L∗) is a {1, 2}-semiaffine linear space and from the results in [15], the
assertion follows. �

From now on we may suppose that there are no good points.

Proposition 5.3. If (P ,L) is a partially {2}-semiaffine linear space with constant
point degree n+ 1 and with all points of type I, then (P ,L) is either the complement
of two lines in a projective plane of order n or the Nwpanka-Shrikhande plane.

Proof. Since every point is of type I, it follows that the invisible lines have constant
length and are mutually parallel. Let n + 1− s be the length of the invisible lines.
Counting v from a point p we have v = n2−n+1−s. Counting the pairs (p, L) with
p ∈ L and |L| = n−1 we have nv = (n−1)bn−1. Hence n−1|vn = n2(n−1)+1−s.
It follows that n − 1|s − 1. Since n + 1 − s ≥ 2 and since the invisible lines have
length different from n − 1, it follows that s = 1. Thus (P ,L) is a {1, 2}-semiaffine
linear space on v = n2 − n points and from the results in [15] the assertion follows.

�

By proposition 5.3 it follows that from now on we may suppose that at least a type
II point exists.
Let p be a non-good point of type II, and let t and t′ be the two invisible lines
passing through p. Counting v from p we obtain

v = |t|+ |t′| − 1 + (n− 1)(n − 2) = n2 − 3n + 1 + |t|+ |t′|. (21)
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It follows that
n2 − 3n+ 5 ≤ v ≤ n2 − n+ 3. (22)

If v = n2 − n + 3 then through every point p pass two lines of length n + 1. Since
a line of length n + 1 meets all the other lines, the number of the invisible lines
is the number of the lines of length n + 1 meeting a line of length n − 1. Hence
|I| = 2(n − 1). On the other hand the number of invisible lines is the number of
lines of length n+1, that is |I| = n+2. Thus n = 4 and (P ,L) is a {0, 2}-semiaffine
linear space with all the points of degree 5. From the results in [13, 16] it follows
that (P ,L) is the complement of a hyperoval in the projective plane of order 4.

If v = n2 − n + 2 then through every point p pass a line of length n and a line of
length n+ 1. Hence every point is a type II point. Let L be a line of length n+ 1
and let p be a point not on L. The line L′ of length n+ 1 passing through p meets
L in a point q through which two lines of length n+ 1 pass, a contradiction.

If v = n2 − n + 1 then |t| = |t′| = n, every point is a point of type II and all
the invisible lines have length n. Hence (P ,L) is a {1, 2}-semiaffine linear space,
a contradiction because there are no {1, 2}-semiaffine linear spaces of order n on
v = n2 − n + 1 points.

If v = n2− n then |t|+ |t′| = 2n− 1, contradicting the assumption that t and t′ are
invisible lines.
Hence if (P ,L) is a {2}-semiaffine linear space with constant point degree n+ 1 and
with a type II point, that is not the complement of a hyperoval in the projective
plane of order 4, then

n2 − 3n + 5 ≤ v ≤ n2 − n − 1. (23)

Proposition 5.4. Let (P ,L) be a partially {2}-semiaffine linear space with constant
point degree n+ 1, without good points. If there exists a line of length n, then there
exists an integer s ≥ 5 such that one of the following assertions is true:

(i) (P ,L) is the pseudo-complement of a Baer subplane and a tangent line, in a
projective plane of order n = (s− 2)2.

(ii) b = n2 + n+ 1, n =
s2 − 3s + 2

2
and (P ,L) is a hypothetic linear space.

(iii) b = n2 + n+ 1 + z, with 0 < z ≤ s2 − 5s + 2

2
and n ≤ s2 − 2s

3
.

Proof. Let t1 be a line of length n, from equation (23) it follows that every point
on t1 is a point of type II. Denote by ri, i = 1, .., n the invisible lines meeting t1,
then these lines have the same length and are mutually parallel. Let n + 1− s be
the length of a line ri. For every point of r1 there is a line of length n parallel to t1;
let t2, . . . , tn+1−s be these lines. The lines ti are mutually parallel and every line ri
meets all the lines tj. Counting v from a point on t1 we obtain

v = (n − 1)(n − 2) + n− s+ n = n2 − n+ 2− s. (24)

If P = ∪iti then v = n(n + 1 − s)n. Comparing with (24) it follows that s = 2 or
n = 1, a contradiction. It follows that there exists at least a point p outside the
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lines ti. If p is a type II point, then the two invisible lines passing through it are
parallel to t1, that is a contradiction because t1 is a line of length n. Hence p and
every other point outside the lines ti are type I points. Let t′ be the invisible line
passing through p, then |t′| = n+ 2− s and t′ is parallel to every line ti. It follows
that the points not on the lines ti lie on the invisible lines of length n + 2− s that
are mutually parallel. Then

v = (n+ 1− s)n+ bn+2−s(n+ 2− s), (25)

comparing with (24) we have

bn + 2− s = s− 2 +
s2 − 5s+ 2

n + 2− s . (26)

If
s2 − 5s + 2

n+ 2− s = 1, then n = (s− 2)2, bn+2−s = s− 1 =
√
n + 1.

Moreover |L| ∈ {n − 1 −
√
n, n −

√
n, n − 1, n} for every line L, b = n2 + n + 1 −

s+ bn+2−s = n2 + n and v = n2−n−
√
n. Hence (P , L ) is the pseudo-complement

described in (i).

If
s2 − 5s+ 2

n+ 2− s = 2, then n =
s2 − 3s+ 2

2
, b = n2 + n+ 1 and (P ,L) is a hypothetic

{1, 2, s− 1, s}-semiaffine linear space.

If
s2 − 5s + 2

n+ 2− s ≥ 3, then n ≤ s2 − 2s

3
and b = n2 + n + 1 + z, with z > 0. Since

bn+2−s ≤ s2 − 3s + 2

2
, from b = n2+n+1 + bn+2−s it follows that z ≤ s2 − 5s + 2

2
.
�

Finally when all the invisible lines have constant length, we have the following result.

Proposition 5.5. Let (P ,L) be a partially {2}-semiaffine linear space of order n,
without good points and with all the invisible lines of length n + 1− s, then one of
the following assertions is true:

(1) (P ,L) is the complement of a hyperoval in the projective plane of order 4.

(2) (P ,L) is one of the pseudo-complements of a triangle in the projective plane
of order 4 (s = 3).

(3) (P ,L) is a hypothetical linear space with s = 4, n = 7, and b = n2 +n−1 = 55.

(4) b = n2 + n, n = 2s2 − 9s + 9 and (P ,L) is a hypothetic linear space if s ≥ 5.
If s = 4, then n = 5, b = 30, v = 15 and in C8 two non-isomorphic examples
are described.

(5) b = n2 + n + 1 and (P ,L) is the pseudo-complement of two disjoint Baer
subplanes in a projective plane of order n = (s − 2)2, (s ≥ 5). Moreover, if
s ≥ 9, then (P ,L) is embeddable in a projective plane of order n1.

1Notice that de Resmini [7] has shown that if a linear space as that described in (5) is embeddable
in a projective plane of order n, then it is possibly not a complement. Moreover, if s > 14, Batten
and Sane [2] get a condition such that a pseudo-complement of two disjoint Baer subplanes is a
complement.
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Proof. By the propositions 5.4 and 5.3 we may suppose that s 6= 1 and that there
exists at least a point p of type II. Counting v from p we obtain

v = (n− 1)(n − 2) + n− s+ n+ 1− s = n2 − n+ 3− 2s. (27)

It follows that every point is a type II point. If s = 0 then v = n2 − n+ 3 hence we
have that (P ,L) is the complement of a hyperoval in the projective plane of order 4
(see the argumentation after equation (22)). Assume s ≥ 3 then (P ,L) is a proper
{2, s}-semiaffine linear space with constant point degree n + 1 and through every
point p pass exactly two lines of length n + 1 − s. From [4, 9, 11] the assertion
follows. �

6 Partially {0, 2}-semiaffine proper linear spaces of order n with

constant point degree

In this section (P ,L) is a proper partially {0, 2}-semiaffine proper linear space, that
is there exist visible lines of both length n − 1 and n + 1 and all the points have
degree n+ 1. If L is a line of length n+ 1, then b = n2 + n+ 1 and |I| ≤ 2(n + 1),
because every line meets L.
Counting v from a point p, we obtain

n2 − 3n+ 7 ≤ v ≤ n2 + n− 1. (28)

In this section we prove Theorem IV. Hence we study the case v ≥ n2.
Denote by λp the number of lines of length n− 1 passing through a point p.

Proposition 6.1. If v = n2 then (P ,L) is the complement of a (n + 1)- arc in a
projective plane of order n, with n odd.

Proof. Since v = n2, from [14] it follows that (P ,L) is embeddable in a projective
plane of order n. If L is a line of length n − 1, then it is in two parallel classes,
and each class has n + 1 lines. It follows that if Π is a parallel class of L then it
contains a line of length n. Hence there exist two intersecting lines of length n and
parallel to L. Let t1 and t2 be two such lines of length n, and let p be their common

point then λp =
n− 1

2
, so n is odd. Each line L of length n − 1 passing through

p determines a pair of two meeting lines of length n parallel to L. In such a way
we obtain n− 1 lines of length n pairwise incident, because different lines of length
n− 1 give distinct pairs of parallel lines of length n. Moreover these lines of length
n meet t1 and t2, thus there exist n + 1 lines of length n pairwise incident. Using
the same argumentation used as in proposition 5.3 in [10] the assertion follows. �

Hence we may suppose v ≥ n2 + 1.

Proposition 6.2. If v ≥ n2 + 1 then (P ,L) is the complement of two points in a
projective plane of order n, with n ≥ 3.
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Proof. Put v = n2 +h, (h ≥ 1) let L be a line of length n− 1, in each parallel class
of L there are at least h+ 1 lines of length n. Let t1 and t2 be two intersecting lines

of length n parallel to L, and let p be their common point. Since λp =
n− h− 1

2
,

using the same argumentation as in the previous proposition one obtains that there
are (n−h−1)(h+ 1) lines of length n parallel to all the lines of length n−1 passing
through p. At least h+ 1 lines of length n are parallel to t1 and at least h+ 1 lines
of length n are parallel to t2. Since these lines are different and invisible and since
|I| ≤ 2n + 2, it follows that (n − h − 1)(h + 1) + 2(h + 1) ≤ 2n + 2, from which
follows that n(h− 1) ≤ h2 + 1.
If h ≥ 2 then n ≤ h+ 1, i.e h ≥ n− 1, then v ≥ n2 + n− 1, and (P ,L) is a doubly
punctured projective plane of order n.
Hence consider h = 1. Then there exist at least 2(n− 2) + 4 = 2n lines of length n.
Since h = 1 it follows that if L is a line of length n − 1, then in each parallel class
of L there are exactly two line of length n. Let s1 and s2 be two lines of length n in
a parallel class of L. Then the remaining 2n− 2 lines of length n meet both s1 and
s2. Since through every point there pass at most two invisible lines, it follows that
2n− 2 ≤ n, a contradiction because n− 1 ≥ 2. �
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