A note on nonexistence of global solutions to a nonlinear integral equation

M. Guedda
M. Kirane

Abstract

In this paper we study the Cauchy problem for the integral equation $u_{t}=$ $-(-\Delta)^{\frac{\beta}{2}} u+h(t) u^{1+\alpha}$ in $\mathbb{R}^{N} \times(0, T)$, where $0<\beta \leq 2$. We obtain some extension of results of Fujita who considered the case $\beta=2$ and $h \equiv 1$.

1 Introduction

This article deals with the blow-up of positive solutions to the Cauchy problem for the integrodifferential equation

$$
\begin{gather*}
u_{t}=-(-\Delta)^{\frac{\beta}{2}} u+h(t) u^{1+\alpha} \quad \text { in } \mathbb{R}^{N} \times(0, T), \tag{1.1}\\
u(x, 0)=u_{0}(x) \geq 0 \quad \text { for } x \in \mathbb{R}^{N}, \tag{1.2}
\end{gather*}
$$

where $(-\Delta)^{\frac{\beta}{2}}$, for $0<\beta \leq 2$, denote the fractional power of the operator $-\Delta$. It is assumed that u_{0} is a continuous function defined on \mathbb{R}^{N} and α is a positive constant. The function h satisfies
$\left.\mathrm{h}_{1}\right) \quad h \in C[0, \infty), h \geq 0$,
$\left.\mathrm{h}_{2}\right) \quad c_{0} t^{\sigma} \leq h(t) \leq c_{1} t^{\sigma} \quad$ for sufficiently large t, where $c_{0}, c_{1}>0$ and $\sigma>-1$ are constants.

[^0]When $h \equiv 1$ and $\beta=2$ the study of (1.1) - (1.2) goes back to the fundamental work of Fujita [2]. It is well known that not all solutions of (1.1) are global. Fujita proved that no positive global solutions exist whenever $N \alpha<2$. He also showed that equation (1.1) has global solution (i.e. $T=\infty$) for sufficiently small u_{0} and $N \alpha>2$.
The first case is called the blowup case and the second one is called the global existence case. In the critical case $\alpha^{*}=\frac{2}{N}$, all positive solutions blow up in finite time [5, 6]. When $N \alpha \leq \beta$, with $\beta \in(0,2]$ and $h \equiv 1$, Sugitani [5] proved that the solutions blow up at a finite time under some condition on u_{0}.

In this paper we shall mainly treat this kind of blowing-up problem for $1+\sigma \geq \frac{\alpha N}{\beta}$ and h satisfies $\left(h_{1}\right)$ and $\left(h_{2}\right)$.

If we look for solution independent of $x, u(x, t)=u(t)$, and $u(0)=a>0$, we find that

$$
\begin{equation*}
u^{\alpha}(t)=\frac{a^{\alpha}}{1-\alpha a^{\alpha} H(t)} \tag{1.3}
\end{equation*}
$$

where $H(t)=\int_{0}^{t} h(s) d s$, with h satisfying $\left(h_{1}\right)$.
It is clear that if $\lim _{t \rightarrow+\infty} H(t)=+\infty$, then for all $a>0$ there exists $T(a)$ such that

$$
\lim _{t \rightarrow T(a)} u(t)=+\infty
$$

The way to prove the nonexistence of bounded solutions is to tranform (1.1) into an O.D.E. via the fundamental solution to (1.1).

2 Statement of results

Problem (1.1) - (1.2) is studied via the corresponding Duhamel integral equation

$$
\begin{equation*}
u(x, t)=\int_{\mathbb{R}^{N}} p(x-y, t) u_{0}(y) d y+\int_{0}^{t} d s \int_{\mathbb{R}^{N}} p(x-y, t-s) h(s) u^{1+\alpha}(y, s) d y \tag{2.1}
\end{equation*}
$$

where $p(x, t)$ is the fundamental solution to (1.1). It is well known that $p(x, t)$ is given by

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} e^{i z . x} p(x, t) d x=e^{-t|z|^{\beta}}, \quad 0<\beta \leq 2 . \tag{2.2}
\end{equation*}
$$

From [7, pp. 259-263] we have

$$
p(x, t)=\int_{0}^{+\infty} f_{t, \frac{\beta}{2}}(s) T(x, s) d s \text { for } 0<\beta \leq 2 \text {, }
$$

and

$$
p(x, t)=T(x, t) \text { if } \beta=2
$$

where

$$
f_{t, \frac{\beta}{2}}(s)=\frac{1}{2 i \pi} \int_{\tau-i \infty}^{\tau+i \infty} e^{z s-t z^{\frac{\beta}{2}}} d z \geq 0, \quad T(x, s)=\left(\frac{1}{4 \pi s}\right)^{\frac{N}{2}} \exp \left(-\frac{|x|^{2}}{4 s}\right), \tau>0, s>0 .
$$

For future reference we collect some well known facts about $p(x, t)$.

Proposition 2.1. Let $p(x, t)$ be the fundamental solution to (1.1), then
a) $p(x, t s)=t^{-\frac{N}{\beta}} p\left(t^{-\frac{1}{\beta}} x, s\right)$,
b) $p(x, t) \geq\left(\frac{s}{t}\right)^{-\frac{N}{\beta}} p(x, s)$ for all $t \geq s$,
c) if $p(0, t) \leq 1$ and $\tau \geq 2$, then $p\left(\frac{1}{\tau}(x-y), t\right) \geq p(x, t) p(y, t)$,
d) $\|p(., t)\|_{1}=1$ for all $t>0$.

Note that $p(0, t)$ is a decreasing function of t and $p(x, t)$ is a decreasing function of $|x|$.

Proof. Statements (a) and (d) are obtained from (2.2). Statement (c) follows from (b), in fact since

$$
\frac{1}{\tau}|x-y| \leq \frac{2}{\tau} \operatorname{Sup}\{|x|,|y|\} \leq \operatorname{Sup}\{|x|,|y|\}, \quad \text { if } \tau \geq 2
$$

we have

$$
p\left(\frac{1}{\tau}(x-y), t\right) \geq p(\operatorname{Sup}\{|x|,|y|\}, t) \geq \operatorname{Sup}\{p(|x|, t) ; p(|y|, t)\} .
$$

So if $p(0, t) \leq 1$, the statement (c) holds.

Our maint result gives a condition which guaranties the blowing-up in finite time of solutions to (1.1).

Theorem 2.1. Let $0<\beta \leq 2,0<\frac{\alpha N}{\beta} \leq 1+\sigma$. Suppose that u_{0} is a nontrivial nonnegative and continuous function on \mathbb{R}^{N}. Then the nonnegative solution $u(x, t)$ of the integral equation (2.1) blows up for some $T_{0}>0 ; u(x, t)=+\infty$ for every $t \geq T_{0}$ and $x \in \mathbb{R}^{N}$.

3 Proof

The idea of the proof is to show that the function

$$
\bar{u}(t)=\int_{\mathbb{R}^{N}} p(x, t) u(x, t) d x
$$

blows up in a finite time. We need first to prove the following lemma.
Lemma 3.1. Suppose that h satisfies $\left(h_{1}\right)$. Let $u(x, t)$ be a nonnegative solution to (2.1).

Then the following two conditions are equivalent :
(i) $u(x, t)$ blows up,
(ii) $\bar{u}(t)$ blows up, there exists some $T_{1}>0$ such that $\bar{u}(t)=+\infty$ for all $t \geq T_{1}$.

As noticed by J.M. Ball [1], the blow up time of $u(x, t)$ is less than the one of $\bar{u}(t)$.

Proof. It is enough to show that (ii) implies (i).
We may assume $p\left(0, T_{1}\right) \leq 1$. Then, from (a) of Proposition 2.1 we have $p(0, t) \leq 1$
if $t \geq T_{1}$.
Let $T_{1} \leq t \leq s \leq \frac{6}{2^{\beta}+1} t$ and $\tau=\left(\frac{6 t-s}{s}\right)^{\frac{1}{\beta}}$. We have

$$
p(x-y, 6 t-s)=\left(\frac{s}{6 t-s}\right)^{\frac{N}{\beta}} p\left(\frac{1}{\tau}(x-y), s\right)
$$

Since $\tau \geq 2$, it follows from Proposition 2.1 (c) that

$$
p(x-y, 6 t-s) \geq\left(\frac{s}{6 t-s}\right)^{\frac{N}{\beta}} p(x, s) p(y, s) .
$$

Therefore

$$
\int_{\mathbb{R}^{N}} p(x-y, 6 t-s) u(y, s) d y \geq\left(\frac{s}{6 t-s}\right)^{\frac{N}{\beta}} p(x, s) \bar{u}(s)=+\infty
$$

by (ii).
On the other hand we have from (2.1)

$$
u(x, 6 t) \geq \int_{0}^{6 t} h(s)\left(\int_{\mathbb{R}^{N}} p(x-y, 6 t-s) u^{1+\alpha}(y, s) d y\right) d s
$$

Finally, applying Jensen's inequality to the above integral, we get
so that $u(x, t)=+\infty$ for any $t \geq 6 T_{1}$ and $x \in \mathbb{R}^{N}$.

Lemma 3.2. Let $u(x, t)$ be a nonnegative solution to (2.1), then there exist some $t_{0}>0, c>0$ and $\delta>0$ such that

$$
\begin{equation*}
u\left(x, t_{0}\right) \geq c p(x, \delta) \quad \text { for all } x \in \mathbb{R}^{N} \tag{3.3}
\end{equation*}
$$

Proof. Let $t_{0}>0$ such that $p\left(0, t_{0}\right) \leq 1$. We have $p\left(x-y, t_{0}\right)=p\left(\frac{1}{2}(2 x-2 y), t_{0}\right)$, and from Proposition 2.1

$$
p\left(x-y, t_{0}\right) \geq 2^{-N} p\left(x, \frac{t_{0}}{2^{\beta}}\right) p\left(2 y, t_{0}\right) .
$$

Therefore

$$
u\left(x, t_{0}\right) \geq \int_{\mathbb{R}^{N}} 2^{-N} p\left(x, \frac{t_{0}}{2^{\beta}}\right) p\left(2 y, t_{0}\right) u_{0}(y) d y,
$$

hence

$$
u\left(x, t_{0}\right) \geq c p(x, \delta)
$$

where $\delta=\frac{t_{0}}{2^{\beta}}>0$ and $c=\int_{\mathbb{R}^{N}} 2^{-N} p\left(2 y, t_{0}\right) u_{0}(y) d y$.

Now we present the proof of Theorem 2.1.
As it was mentioned we study the behaviour of $\bar{u}(t)$ for large t. Let t_{0} be such that (3.1) holds true, we have from (2.1)

$$
\begin{aligned}
& u\left(x, t+t_{0}\right)=\int_{\mathbb{R}^{N}} p(x-y, t) u\left(y, t_{0}\right) d y+ \\
& \quad \int_{0}^{t} d s \int_{\mathbb{R}^{N}} p(x-y, t-s) h\left(s+t_{0}\right) u^{1+\alpha}\left(y, s+t_{0}\right) d y
\end{aligned}
$$

for $t>0, x \in \mathbb{R}^{N}$.
It follows from Lemma 3.2 that

$$
\begin{aligned}
& u\left(x, t+t_{0}\right) \geq c \int_{\mathbb{R}^{N}} p(x-y, t) p(y, \delta) d y+ \\
& \quad \int_{0}^{t} h\left(s+t_{0}\right) \int_{\mathbb{R}^{N}} p(x-y, t-s) u^{1+\alpha}\left(y, s+t_{0}\right) d y d s,
\end{aligned}
$$

so that

$$
u\left(x, t+t_{0}\right) \geq c p(x, t+\delta)+\int_{0}^{t} h\left(s+t_{0}\right) \int_{\mathbb{R}^{N}} p(x-y, t-s) u^{1+\alpha}\left(y, s+t_{0}\right) d y d s
$$

By comparison it is enough to show that the solution $v(x, t)$ of the following equation

$$
\begin{equation*}
v(x, t)=c p(x, t+\delta)+\int_{0}^{t} h(s) \int_{\mathbb{R}^{N}} p(x-y, t-s) v^{1+\alpha}(y, s) d y d s \tag{3.4}
\end{equation*}
$$

blows up or by Lemma 3.1, that $\bar{v}(t)=\int_{\mathbb{R}^{N}} p(x, t) v(x, t) d x$ blows up in a finite time.
Using (3.2) we can write

$$
\begin{aligned}
\int_{\mathbb{R}^{N}} p(x, t) v(x, t) d x= & c \int_{\mathbb{R}^{N}} p(x, t) p(x, t+\delta) d x \\
& +\int_{\mathbb{R}^{N}} \int_{0}^{t} h(s) \int_{\mathbb{R}^{N}} p(x-y, t-s) p(x, t) v^{1+\alpha}(y, s) d y d s d x
\end{aligned}
$$

Whence

$$
\bar{v}(t)=c p(0,2 t+\delta)+\int_{0}^{t} h(s) \int_{\mathbb{R}^{N}} p(y, 2 t-s) v^{1+\alpha}(y, s) d y d s
$$

So

$$
\bar{v}(t) \geq c p(0,1)(2 t+\delta)^{-\frac{N}{\beta}}+\int_{0}^{t}\left(\frac{s}{2 t-s}\right)^{\frac{N}{\beta}} h(s) \int_{\mathbb{R}^{N}} p(y, s) v^{1+\alpha}(y, s) d y d s
$$

By application of the Jensen inequality, we get

$$
\begin{equation*}
\bar{v}(t) \geq c p(0,1)(2 t+\delta)^{-\frac{N}{\beta}}+\int_{0}^{t}\left(\frac{s}{2 t}\right)^{\frac{N}{\beta}} h(s) \bar{v}^{1+\alpha}(s) d s \tag{3.5}
\end{equation*}
$$

Let $\theta>0$ be a fixed positive constant.
If we set

$$
f_{1}(t)=t^{\frac{N}{\beta}} \bar{v}(t)
$$

for $t \geq \theta$, then we get

$$
f_{1}(t) \geq c p(0,1)\left(\frac{\theta}{2 \theta+\delta}\right)^{\frac{N}{\beta}}+\left(\frac{1}{2}\right)^{\frac{N}{\beta}} \int_{\theta}^{t} s^{-\frac{\alpha N}{\beta}} h(s) f_{1}^{1+\alpha}(s) d s
$$

thanks to (3.3).
Let f_{2} be the solution to

$$
f_{2}(t)=c p(0,1)\left(\frac{\theta}{2 \theta+\delta}\right)^{\frac{N}{\beta}}+\left(\frac{1}{2}\right)^{\frac{N}{\beta}} \int_{\theta}^{t} s^{-\frac{\alpha N}{\beta}} h(s) f_{2}^{1+\alpha}(s) d s
$$

which is equivalent to

$$
\left\{\begin{array}{l}
f_{2}^{\prime}(t)=\left(\frac{1}{2}\right)^{\frac{N}{\beta}} t^{-\frac{\alpha N}{\beta}} h(t) f_{2}^{1+\alpha}(t) \text { for } t>\theta \\
f_{2}(\theta)=c p(0,1)\left(\frac{\theta}{2 \theta+\delta}\right)^{\frac{N}{\beta}}
\end{array}\right.
$$

We clearly have

$$
f_{2}^{\alpha}(t)=\frac{f_{2}^{\alpha}(\theta)}{1-\alpha f_{2}^{\alpha}(\theta)\left(\frac{1}{2}\right)^{\frac{N}{\beta}} H(t)}
$$

where

$$
H(t)=\int_{\theta}^{t} s^{-\frac{\alpha N}{\beta}} h(s) d s
$$

Since $\lim _{t \rightarrow+\infty} H(t)=+\infty$, by $\left(h_{2}\right)$, there exists T_{0} such that

$$
f_{2}(t)=+\infty \quad \text { for } t=T_{0} .
$$

By comparison, we have

$$
t^{\frac{N}{\beta}} \bar{v}(t)=f_{1}(t) \geq f_{2}(t)=+\infty, \quad \text { for } t=T_{0}
$$

and then $u(x, t)$ blows up in a finite time.
Corollary 3.1. Assume h has the property (h_{1}). If

$$
\limsup _{t \rightarrow+\infty} \int_{1}^{t} s^{-\frac{\alpha N}{\beta}} h(s) d s=+\infty
$$

then every nontrivial solution to (1.1) blows up in a finite time.
Remark 3.1. It is interesting to note that if instead of (1.1) we consider

$$
\begin{equation*}
u_{t}=-(-\Delta)^{\frac{\beta}{2}} u-h(t) u^{1+\alpha}, \tag{3.6}
\end{equation*}
$$

then a result on global existence with some decay at infinity can be given. We suppose that h satisfies $\left(h_{1}\right),\left(h_{2}\right), 1+\sigma>0$ and $\alpha>0$.
If $u_{0}(x) \leq a_{0} p(x, 0)$, then the corresponding solution to (3.4) - (1.2) satisfies

$$
\limsup _{t \rightarrow+\infty} t^{\frac{1+\sigma}{\alpha}} \int_{\mathbb{R}^{N}} p(x, t) u(x, t) d x<\infty .
$$

In particular

$$
\lim _{t \rightarrow+\infty} t^{\frac{1+\sigma}{\alpha}} \int_{\mathbb{R}^{N}} p(x, t) u(x, t) d x=0 \quad \text { if } 1+\sigma \leq \alpha \frac{N}{\beta} .
$$

The proof is similar as above.

Acknowledgments

This work was partially supported by SRI (UPJV) Amiens, France. The first author was also supported by C.C.I. Kenitra, Maroc.

References

[1] J.M. Ball, Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford, (2), 28, (1977), pp. 473-486.
[2] H. Fujita, On the blowing up of solutions to the Cauchy problem for $u_{t}=$ $\Delta u+u^{1+\alpha}$, J. Fac. Sc. Univ. Tokyo, 13, n° 1, Sect. IA, (1966), pp. 109-124.
[3] K. Hayaka, On nonexistence of global solutions of some semilinear parabolic equations, Proc, Japan Acad., 49, (1973), pp. 503-505.
[4] P. Meier, On the critical exponent for reaction-diffusion equations, Arch. Rat. Mech. Anal. 109, n° 1, (1990), pp.63-71.
[5] S. Sugitani, On nonexistence of global solutions for some nonlinear integral equations, Osaka J. Math., 12, (1975), pp. 45-51.
[6] F.B. Weissler, Existence and nonexistence of global solution for a semilinear heat equation, Israel J. Math., 38, (1981), pp. 29-40.
[7] H. Yosida, Functional Analysis, Springer, 1966.

Faculté de Mathématiques et d'Informatique,
Université de Picardie Jules Verne,
33, rue Saint-Leu 80039 Amiens, France

[^0]: Received by the editors February 1998.
 Communicated by J. Mawhin.
 1991 Mathematics Subject Classification : 35K20, 35K55.

