
Test-words for Sturmian morphisms

Gwénaël Richomme

Abstract

J. Berstel and P. Séébold have proved that an acyclic morphism f is Stur-
mian iff the word f(baabaababaabab) is balanced. More precisely, they have
given a set Ω of test-words for Sturmian morphisms. Here, we characterize all
such test-words. In particular, we show the optimality of the previous result:
there is no test-word of length less or equal to 13, and any test-word has a
subword in Ω.

To do this, we describe an efficient algorithm to determine if a finite word
is balanced, and we give a short proof of the fact that any finite balanced word
is a prefix of an infinite Sturmian word. Finally, we show that the test-words
for Sturmian morphisms are exactly the test-words for morphisms preserving
finite balanced words.

1 Preliminaries

In all this paper, A = {a, b} is a fixed alphabet. The free monoid A∗ is the set of
finite words over A. We denote by ε the empty word, by |u| the length of a word u
and by |u|x the number of occurrences of the letter x in u. The mirror image ũ of
a word u is the word defined by ε̃ = ε, and ũx = xũ with x a letter. A word u is a
subword of v, if there exist some words x, y such that v = xuy. If x = ε, then u is a
prefix of v. If y = ε, then u is a suffix of v.

A word w (finite or infinite) over A is balanced, if for all subwords u, v of w,
|u| = |v| implies ||u|a − |v|a| ≤ 1. Observe that any subword of a balanced word is
balanced. Moreover:
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Property 1. Let k ≥ 2. For any word u, u2 is balanced iff uk is balanced.

Proof : If u2 is not balanced, then uk is not balanced. If uk is not balanced, let
t and t′ be two subwords of uk of same minimal length such that ||t|a − |t′|a| ≥ 2.
If |t| ≥ |u|, then t = xy, t′ = x′y′ with |x| = |x′| = |u|. The words x and x′

are conjugates of u and thus |x|a = |x′|a = |u|a. It follows ||y|a − |y′|a| ≥ 2: a
contradiction with the minimality of |t|. Consequently, |t| < |u|, and so t and t′ are
subwords of u2. �

The following proposition will also be useful:

Proposition 2. [4] A word w over A is not balanced if and only if there exists a
word t such that ata and btb are subwords of w.

A Sturmian word is a non ultimately periodic infinite balanced word (an in-
finite word x is ultimately periodic if there exist two words u and v such that
x = limn→∞ uv

n).

We will consider morphisms on A i.e. mappings h from A∗ to itself such that
for any words u, v, h(uv) = h(u)h(v). The mirror morphism f̃ of a morphism f

is defined by f̃(a) = f̃(a), f̃ (b) = f̃(b). Observe that for a word w, f̃ (w) = f̃(w̃).
Consequently:

Property 3. If f and g are 2 morphisms on A, f̃og = f̃og̃.

Proof : For all u ∈ {a, b}∗, f̃og(u) = f̃og(ũ) = f̃ (g̃(ũ)) = f̃ (g̃(u)) = f̃og̃(u). �

A morphism h is Sturmian iff h(w) is Sturmian, whenever w is Sturmian.
For surveys on Sturmian words and morphisms, see [3, 5, 9].
Any Sturmian morphism is acyclic i.e. f(ab) 6= f(ba): otherwise, if f is not

acyclic, there exist a word u and integers m,n such that f(a) = um, f(b) = un and
for any infinite word w, f(w) is periodic.

Let E be the exchange morphism (E(a) = b, E(b) = a) and ϕ the Fibonacci
morphism (ϕ(a) = ab, ϕ(b) = a). We have the following characterization:

Theorem 4. [8] A morphism f is Sturmian iff f ∈ {E,ϕ, ϕ̃}∗.

Observe that E = Ẽ. The following property is an immediate consequence of
Theorem 4 and Property 3:

Property 5. A morphism is Sturmian iff its mirror morphism is Sturmian.

In [1, 2], J. Berstel and P. Séébold define for all integers m, r ≥ 1 the words:

wm,r = (bam+1)r+1bam(bam+1)rbamb,

w′m,r = a(bam)r+1bam+1(bam)rbam+1b.

And they prove in [2]:
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Theorem 6. Let m, r be integers greater than or equal to 1 and let w = wm,r or
w = w′m,r.

An acyclic morphism f is Sturmian iff f(w) is balanced.

The shortest words of all the words wm,r and w′m,r are w1,1 and w′1,1: they have
14 letters. Then arises the question of the existence of a word w of length 13 or less
such that an acyclic morphism f is Sturmian iff f(w) is balanced (in this note, we
prove that such a word cannot exist).

2 Results

In order to answer the previous question, we characterize all the test-words for Stur-
mian morphisms i.e. each word w such that an acyclic morphism f is Sturmian iff
f(w) is balanced. Observe that w is necessary balanced, since the identity morphism
is Sturmian.

Theorem 7. Let w be a balanced word over A, the following two assertions are
equivalent:

1. for any acyclic morphism f , f is Sturmian iff f(w) is balanced.

2. there exist some integers m ≥ 1 and r ≥ 1, such that wm,r, w
′
m,r, E(wm,r),

E(w′m,r), w̃m,r, w̃
′
m,r, E(w̃m,r) or E(w̃′m,r) is a subword of w.

As a consequence, there is no test-word for Sturmian morphisms of length 13 or
less and there are 8 test-words of length 14.

Section 5 is entirely devoted to the proof of Theorem 7.

Before, in order to be self-contained, we recall in the next section a recursive
structural property of finite balanced words (see [6]). This property first leads to an
efficient algorithm to determine whether a finite word is balanced. This algorithm
will be useful to understand details in the proof of Theorem 7. Moreover, it leads to
a short proof (see Section 4) of the following result first stated in [6] (see also [7]),
used in the proof of Theorem 7:

Proposition 8. Any finite balanced word over A is a prefix of a Sturmian word.

Let us call balanced morphisms those morphisms which keep balanced all the
finite balanced words. Observe also that there exist some balanced morphisms
which are non Sturmian (they are not acyclic): for instance, the morphism defined
by f(a) = f(b) = a.

Corollary 9. A morphism is Sturmian iff it is balanced and acyclic.

Proof : We have already mention that a Sturmian morphism is acyclic. As a
consequence of Proposition 8, a Sturmian morphism is also balanced. Conversely,
let f be a balanced and acyclic morphism. In particular, f(w1,1) is balanced. Thus
from Theorem 6, f is Sturmian. �
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Note that this corollary is an analogous for the Sturmian morphisms of the
equivalence 2⇔ 5 of Theorem 2.8 in [5].

We end this paper with a corollary of Theorem 7 (Corollary 13): the test-words
for balanced morphisms are exactly the same as those for Sturmian morphisms

3 An algorithm for balanced words

For any balanced word over A, there exists an integer n such that between 2 succes-
sive occurrences of b, there are exactly n or n+ 1 letters a. Moreover, such balanced
word w starts and ends with at most n + 1 letters a, and thus, if |w|b ≥ 1, w can
be decomposed in w = SA1A2 . . .AkP , with k ≥ 0, S ∈ ⋃n+1

l=0 a
l, Ai ∈ {ban, ban+1}

(1 ≤ i ≤ k), P ∈ ⋃n+1
l=0 ba

l. If a word w (balanced or not) has such a decomposition,
we will say that it is n-reducible or, omitting n, is reducible: observe that a word
is not reducible, if for all integer n, w is not n-reducible. We can construct from a
n-reducible word w a word reducedn(w) = sa1a2 . . . akp such that:

s = ε if S 6= an+1, else s = b,
ai = a if Ai = ban,
ai = b if Ai = ban+1 (1 ≤ i ≤ k),
p = ε if P 6= ban+1, else p = b.

Observe that the same kind of reduction is given in [6]: the difference introduced
here is essentially in order to have an efficient algorithm to determine if a word is
balanced. If n ≥ 1, the reduction is important: indeed |reducedn(w)| ≤ |w|

2
(since

|s| ≤ |S|
2

, |p| ≤ |P |
2

, and |ai| ≤ |Ai|
2

).

The proposed algorithm is a consequence of:

Lemma 10. Let w be a word over A containing at least one b. The following are
equivalent:

1. w is balanced

2. w is n-reducible (for an integer n ≥ 0) and reducedn(w) is balanced.

Let hn be the Sturmian morphism (ϕ̃ ◦ E)n ◦ E ◦ ϕ ◦ E i.e. hn(a) = ban and
hn(b) = ban+1.

Proof of Lemma 10 : Since any balanced word is reducible, we have just to prove
that a n-reducible word w is not balanced iff reducedn(w) is not balanced.

First assume w is not balanced. From Proposition 2, there exists a word t with
ata and btb subwords of w. If |t|b = 0, from btb subword of w comes t = an or an+1.
In this case, an+2 is a subword of ata and then w is not n-reducible: a contradiction.
Thus there exists an integer l ≥ 0 with alb prefix of t. From btb subword of w comes
l = n or l = n + 1. Since an+2 is not a subword of w and aal is a subword of at,
we have l = n. On the same way, ban is a suffix of t. So t = anhn(u)ban with
u ∈ {a, b}∗. Since banhn(u)banb is a subword of w, aua is a subword of reducedn(w).
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Since an+1hn(u)ban+1 is a subword of w, bub is a subword of reducedn(w). Then,
reducedn(w) is not balanced.

Now assume reducedn(w) is not balanced. From Proposition 2, there exists
a word t with ata and btb subwords of reducedn(w). Since btb is a subword of
reducedn(w), an+1hn(t)ban+1 is a subword of w. Now observe that if ata is a suffix
of reducedn(w), then there exists an integer l, 0 ≤ l ≤ n with hn(ata)bal suffix of
w. Thus banhn(t)banb is a subword of w, and, w is not balanced.

�

Let w be a balanced word: E(w) is also balanced. If |w|b ≥ 2 (i.e. w 6∈ a∗ba∗∪a∗),
then we can compute the greater integer n such that w is n-reducible (if w ∈ a∗ba∗,
for any integer k ≥ |w|a, w is k-reducible): observe that banb is a subword of w. On
the same way, if |w|a ≥ 2, we can compute the greater integer m such that E(w) is
m-reducible. Moreover, n ≥ 1 or m ≥ 1: indeed, if n = 0 and m = 0, then aa and
bb are subwords of the balanced word w: contradiction.

Finally, we give the recursive scheme of the algorithm to test if a finite word w
is balanced:

If |w|a ≤ 1 or |w|b ≤ 1, Then w is balanced
Else

If w or E(w) is not reducible,
Then w is not balanced
Else

Let n be the greater integer such that w is n-reducible
Let m be the greater integer such that E(w) is m-reducible
If n ≥ 1 Then let w′ = reducedn(w)

Else let w′ = reducedm(E(w))
w is balanced iff w′ is balanced.

The previous algorithm has a time complexity in O(|w|). Indeed in O(|w|), we
can simultaneously determine if |w|a ≤ 1, |w|b ≤ 1, determine if w is reducible,
and compute the integers n and m. So one recursive step can be achieved in time
bounded by λ|w| where λ is a strictly positive constant. Moreover, we have seen

that |w′| ≤ |w|
2

. Thus, if 2k−1 < |w| ≤ 2k, then the time complexity of the algorithm

is bounded by
∑k
i=0 λ2i = λ(2k+1 − 1) < 4λ|w|, and then is in O(|w|).

Observe that using the definition of balanced words (and counting the number
of a in subwords of same length of w), or using Proposition 2, we obtain algorithms
whose time complexity is in O(|w|2).

4 Extension of a finite balanced word

In this section, we prove that any finite balanced word can be extended on a longer
balanced word. As a consequence, any finite balanced word is a prefix of some infinite
balanced words. Moreover, at least one of these infinite words is not ultimately
periodic (Proposition 8) which means that it is Sturmian.
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Lemma 11. For any balanced word w over A, there exist (at least) two letters x
and y in A such that wx and yw are balanced.

Proof : Assume that wa and wb are not balanced but w is balanced. There exist
some words t and t′ such that ata is a suffix of wa, bt′b is a suffix of wb, and btb and
at′a are subwords of w. We cannot have |t| = |t′|. If |t| < |t′|, then t′ = uat for a
word u. Thus ata and btb are subwords of w: contradiction. On the same way, if
|t| > |t′|, bt′b and at′a are subwords of w.

Now, if w is balanced, so is w̃, thus there exists y ∈ {a, b} with w̃y balanced: yw
is balanced. �

Proof of Proposition 8 : Let w be a finite balanced word. Since any suffix of a
Sturmian word is Sturmian, it is sufficient to prove that there exists a Sturmian
morphism f such that w is a subword of f(a).

We prove this by induction on |w|.
First observe that for all integers n and p, anbap = (ϕoE)no(ϕ̃oE)poE(a). More-

over, the property is true for w iff it is true for E(w).
If |w| ≤ 4, the property is true since w or E(w) is a subword of a4ba3 or of

abbabab = Eoϕ̃oϕo(Eoϕ̃)2(a).
If |w| ≥ 5, the property is true if |w|a ≤ 1 or |w|b ≤ 1 i.e. if w ∈ a∗ba∗ ∪ b∗ab∗ ∪

a∗ ∪ b∗. In the other cases, since w is balanced, w is reducible: let w′ be the word
computed in the algorithm of the previous section. We have |w′| ≤ |w|

2
and from

Lemma 10, w′ is balanced. From Lemma 11, there exist two letters x and y such that
xw′y is balanced. The word w is a subword of hn(xw′y) or of Eohn(xw′y). Since

|xw′y| ≤ |w|
2

+ 2 < |w| (|w| ≥ 5), by induction hypothesis, there exists a Sturmian
morphism g such that xw′y is a subword of g(a). Finally, w is a subword of f(a)
where f = hnog or f = Eohnog (in the two cases, f is Sturmian). �

5 Proof of Theorem 7

Let w be a balanced word.
First assume that there exist integers m ≥ 1 and r ≥ 1 such that wm,r, w

′
m,r,

E(wm,r), E(w′m,r), w̃m,r, w̃
′
m,r, E(w̃m,r), or E(w̃′m,r) is a subword of w.

From Proposition 8, there exists a Sturmian word x such that w is a prefix of
x. Thus for any Sturmian morphism f , f(w) is balanced. Conversely, if f(w) is

balanced then f(wm,r), f(w̃m,r) = f̃ (wm,r), f(E(wm,r)) = foE(wm,r), f(E(w̃m,r)) =

f̃oE(wm,r), f(w′m,r), f(w̃′m,r) = f̃(w′m,r), f(E(w′m,r)) = foE(w′m,r) or f(E(w̃′m,r)) =

f̃oE(w′m,r) is a balanced word. From Theorem 6, if f is an acyclic morphism, f , f̃ ,

foE or f̃oE is Sturmian. Thus, from f = foEoE, Property 3 and Property 5, f is
Sturmian.

To prove Part 1 ⇒ 2 of Theorem 7, we consider the morphisms fn, gn (n ≥ 0)
defined by: {

fn(a) = a,
fn(b) = abanba,

{
gn(a) = bab,
gn(b) = (abb)na.
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Now, let us suppose that for any acyclic morphism f , f is Sturmian iff f(w) is
balanced. In particular, since for all n ≥ 0, fn, fnoE, gn and gnoE are not Sturmian,
fn(w), fn(E(w)), gn(w) and gn(E(w)) are not balanced.

First observe that w 6∈ a∗ ∪ b∗, since for all k ≥ 1, f0(a
k) = g0(bk) = ak is

balanced. Moreover w 6∈ a∗ba∗ since for all u ∈ a∗ba∗, f|u|(u) is a subword of
a|u|ba|u|ba|u| and so is balanced. For the same reason (consider E(w)), w 6∈ b∗ab∗.

Thus |w|b ≥ 2 and |w|a ≥ 2.

Let m be the minimal number of a between two consecutive b in w. One can
suppose (else consider E(w)) that m ≥ 1. Since w is balanced, all subwords bapb of
w are such that p = m or p = m + 1.

If w does not contain any subword bam+1b then w is a subword of an ele-
ment of the set am+1(bam)+bam+1, and fm+2(w) is a subword of an element of
am+2(bam+2)+bam+2 and then is balanced: a contradiction.

So, bamb and bam+1b are subwords of w.

Now let us denote {n, n′} = {m,m+ 1} (this means n = m and n′ = m + 1, or
n = m+ 1 and n′ = m).

If banb occurs only once as a subword of w, (since w is balanced, am+2 is
not a subword of w) w is a subword of an element of am+1(ban

′
)∗ban(ban

′
)∗bam+1.

But, since am+2 is a subword of an
′+2, fn′+2(w) is a subword of an element of

(ban
′+2)∗ban+2(ban

′+2)∗ and then it is balanced (since {n+2, n′+2} = {m+2, m+3}):
a contradiction.

Thus each of the two words banb and ban
′
b has at least two occurrences as a

subword of w. Moreover, since w is balanced, banbanb and ban
′
ban

′
b are not simulta-

neously subwords of w. However, at least one of these words is a subword of w. In-
deed, otherwise w is a subword of an element of (am+1∪am+1ban

′
)(banban

′
)∗(bam+1∪

banbam+1). Thus, since am+2 is a subword of an
′+2 and of an+2, fn+2(w) is a subword

of an element of (ban+2ban
′+2)∗ and then it is balanced (since {n + 2, n′ + 2} =

{m + 2, m + 3}): a contradiction.

Now let us suppose that banbanb is a subword of w and ban
′
ban

′
b is not.

Since ban
′
b has at least 2 occurrences in w, and since w is balanced, there exists

an integer r ≥ 1 such that ban
′
(ban)rban

′
b is a subword of w: let us choose r minimal

for this property. For each other subword ban
′
(ban)sban

′
b of w, since w is balanced

and because of the minimality of r, s = r or s = r + 1.

If (ban)r+1b is not a subword of w, then w is a subword of an element of

[am+1(ban)r−1 ∪ am+1(ban)r][ban
′
(ban)r]∗ban

′
b[(anb)r−1am+1 ∪ (anb)ram+1].

Since fn+2(w) is a subword of an element of [ban
′+2(ban+2)2r+1]∗ (let us recall that

am+2 is a subword of both an+2 and an
′+2), fn+2(w) is balanced: a contradiction.

Thus (ban)r+1b is a subword of w, and then, one of the two words v or ṽ, where
v = (ban)r+1ban

′
(ban)rban

′
b, is a subword of w.

If n = m+ 1 then n′ = m and thus v = wm,r and ṽ = w̃m,r.

If n = m, then n′ = m+ 1 and v = (bam)r+1bam+1(bam)rbam+1b. One of the two
words w′m,r = av and w̃′m,r is a subword of w. Indeed, otherwise w is a subword of
one word in

(bam)r+1[bam+1(bam)r]+bam+1(bam)r+1b.
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In this case, gm−1(w) (let recall m ≥ 1) is balanced because it is a subword of a
word in the following set of balanced words

[Xm−1Y ]2r+3[XmY (Xm−1Y )2r+1]+XmY (Xm−1Y )2r+2Xm−1a

with X = abb and Y = ab: a contradiction.
Consequently, in all the cases, if w is a test-word for the Sturmian morphisms

then there exist two strictly positive integers m and r such that w contains as a
subword at least one of the eight words: wm,r, w̃m,r, w

′
m,r, w̃

′
m,r, E(wm,r), E(w̃m,r),

E(w′m,r) or E(w̃′m,r) (the last four words appear in the previous study when m = 0
i.e. when we have to consider E(w)).

6 Balanced morphisms

Here, we study the balanced morphisms i.e. the morphisms such that the image of
any finite balanced word is balanced. First observe that for a non acyclic morphism
f (f(ab) = f(ba)), there exist a non empty word u and integers k, l such that
f(a) = uk and f(b) = ul. If k 6= 0 or l 6= 0, we say that f is u-cyclic.

Property 12. Let u ∈ A+ and f a u-cyclic morphism. The morphism f is balanced
iff the word u2 is balanced.

Proof : Since f is u-cyclic, for any word v over A, there exists an integer n such
that f(v) = un. If u2 is balanced, then from Property 1, f is balanced. Conversely,
since u2 is a subword of f(abab), if f is balanced, then u2 is balanced. �

Thus, the balanced morphisms are the Sturmian morphisms, the empty mor-
phism (the image of a and b is ε) and the u-cyclic morphisms with u2 balanced.
Consequently from Theorem 7, the test-words for Sturmian morphisms are exactly
the test-words for balanced morphisms. More precisely:

Corollary 13. Let w be a balanced word over A, the two following assertions are
equivalent:

1. a morphism f is balanced iff f(w) is balanced;

2. there exist some integers m ≥ 1 and r ≥ 1, such that wm,r, w
′
m,r, E(wm,r),

E(w′m,r), w̃m,r, w̃
′
m,r, E(w̃m,r) or E(w̃′m,r) is a subword of w.

Proof : First, if w verifies Part 1, then in particular for any acyclic morphism, f
is balanced iff f(w) is balanced. From Corollary 9 and Theorem 7, Part 2 of the
corollary is true.

From now on, let us suppose that w verifies Part 2.
From Corollary 9 and Theorem 7, Part 1 is verified for acyclic morphisms.
Let f be a non acyclic morphisms. If f(a) = f(b) = ε, then f and f(w) are

balanced. Else, there exists a non empty word u, such that f is u-cyclic. Since
|w|a ≥ 2 and |w|b ≥ 2, f(w) = un, for an integer n ≥ 2. From Property 1, f(w)
is balanced iff u2 is balanced. From Property 12, Part 1 is verified for non acyclic
morphisms. �
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