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Abstract

As the last one of the finite, alternative, division algebra, the Cayley-
Graves algebra or the octonion algebra O, is a non-commutative, non-asso-
ciative division algebra, in which the analysis problems that would be a direct
generalization of the complex analysis and the quaternion analysis, have been
studied systematically. Taking the associator as a measure, the Cauchy inte-
gral formulas, the Cauchy theorems and the inverse theorems of the Cauchy
integral formulas are obtained on the octonions. Some applications are also
given.

1 Introduction

It is well-known that [J], the only finite dimensional alternative division algebras
over R are

a) Real algebra R;
b) Complex algebra C;
c) Quaternion algebra H;
d) Octonion algebra O;
with the embedding relations: R ⊂ C ⊂ H ⊂ O.
R and C are commutative and associative, H is associative but not commutative,

while O is neither commutative nor associative.
Quaternions were invented by the Irish mathematician W. R. Hamilton in 1843

after a lengthy struggle to extend the theory of complex numbers to three dimen-
sions. Rejecting the commutative law he got the quaternions. Quaternions have
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been widely used in many fields, especially in physics. One of the known results
is that the Maxwell’s equations can be expressed quite simply using a quaternion
form.

Much earlier the great Swiss mathematician R. Fueter (a student of Hilbert) and
his followers developed quaternion analysis up to fifties [F1-F3], which was a great
achievement in the development of higher-dimensional analogue of complex analysis.

As a common generalization of Grassmann’s exterior algebra and Hamilton’s
quaternions, Clifford algebra An was constructed by W. K. Clifford in 1878 [C]. It
has been intensively studied since then. An important fact is that

A0 = R,A1 = C,A2 = H

but A3 6= O. The Clifford algebra An is associative and is not a division algebra
(n ≥ 3), while the octonions form a division algebra but not an associative one.

The octonion algebra O was discovered independently by J. J. Graves in 1843
and A. Cayley in 1845. It is important in both Mathematics and Physics. Recently,
octonions are used in antisymmetric tensor gauge fields ([DGT]). It is known that
complex analysis, quaternion analysis and Clifford analysis (see [BDS], [GM], [DSS]
and [D]) are nearly completed and they play a very important role in many fields.
A natural question is: What about the octonion analysis?

In 1976, Habetha ([Hab]) showed that if one wishes to generalize classical func-
tion theory by considering algebra-valued functions in such a way that a “simple”
Cauchy formula still holds, then one has to restrict to algebra of complex numbers,
algebra of quaternion or a Clifford algebra [see [BDS] p.139]. This gives an impres-
sion that it seems to be impossible to get the Cauchy formula on O. But when one
looks carefully in Habetha’s paper, one sees that the algebra he considered was an
associative one.

Fortunately, we have obtained the Cauchy integral formulas on the octonions.
Our results are closely related with the associative methods, and the associator
becomes an indicator of non-associativity. Also, our formulas are still “simple”, just
a little more complicated than the usual ones.

Let M be an 8-dimensional, compact, oriented C∞–manifold with boundary ∂M
contained in some open connected subset Ω of R8. For j : 0 ≤ j ≤ 7, let

dx̂j = dx0 ∧ dx1 ∧ · · ·dxj−1 ∧ dxj+1 ∧ · · · ∧ dx7,

dσ(x) =
7∑

0

(−1)jejdx̂j.

Thus to each f =
∑7

j=0 fj(x)ej in C∞(Ω,O) there correspond the O–valued 7–forms

ω = dσ(x)f(x) =
7∑

0

(−1)jejdx̂jf(x)

ν = f(x)dσ(x) = f(x)
7∑

0

(−1)jejdx̂j
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having exterior derivative

dω =
7∑

0

(−1)jej
∂f

∂xj

dxj ∧ dx̂j = Df(x)dV (x)

dν =
7∑

0

(−1)j ∂f

∂xj
ejdxj ∧ dx̂j = f(x)DdV (x)

on Ω, where dV (x) = dx0 ∧ · · · ∧ dx7 is the volume element on Ω, and e0, e1, · · · , e7
form a basis of O, D =

∑7
0 ek

∂
∂xk

. The operator D is called the Cauchy-Riemann
operator on O. We define the left analytic function on O by Df = 0. And the right
analytic function on O by fD = 0.

For each x ∈ ∂M , let n(x) =
∑7

0 njej be the outer unit normal to ∂M at x.
Then (−1)jdx̂j = nj(x)dS(x), where dS(x) is the scalar element of surface area on
∂M . Consequently on ∂M

dσ = ndS,

ω = n(x)f(x)dS(x),

ν = f(x)n(x)dS(x).

Let

Φ(x− z) =
x− z

ω8|x− z|8
=:

7∑

0

Φses,

where ω8 is the surface area of the unit sphere in R8, it is the Cauchy kernel on O.
If Df = 0, then for each z ∈M 0, i.e. z is the interior point of M ,

f(z) =
∫

∂M
Φ(x− z)(dσ(x)f(x)) +

∫

M

7∑

0

[es, DΦs, f ]dV

=
∫

∂M
(Φ(x− z)dσ(x))f(x)−

∫

M

7∑

t=0

[Φ, Dft, et]dV,

where x = x0e0 − x1e0 − · · · − x7e7 if x = x0e0 + x1e1 + · · ·+ x7e7, and [x, y, z] =:
(xy)z − x(yz) is called associator of x, y, z.

Remark The appearance of the big “tails” consisting of the associators is a
special phenomenon in octonions. It would be very difficult to calculate

7∑

0

[es, Dφs, f ] =
7∑

0

[es,
7∑

0

ek
∂φs

∂xk
, f ]

=
7∑

s=0

7∑

k=0

[es, ek
∂φs

∂xk

, f ]

and

7∑

0

[φ,Dft, et] =
7∑

0

[φ,
7∑

0

ek
∂ft

∂xk
, et]

=
7∑

t=0

7∑

k=0

[φ, ek
∂ft

∂xk
, et]
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for general φ =:
∑7

0 φses and f .
A terrific fact is that for the very φ = Φ we need, one kind of the “tails”

disappeared just as what we have expected after a skillful calculation by using a
new method. And the same method is also used to prove the inverse theorem of the
Cauchy integral formula.

Our main results are as follows:
Theorem 1 (Cauchy integral formula) M,Ω are as above, Df = 0, x ∈ Ω.

Then
∫

∂M
Φ(x− z)(dσ(x)f(x)) =




f(z), if z ∈M0,

0, if z ∈ Ω\M.

Theorem 2 M,Ω are as above, Df = 0, x ∈ Ω. Then

∫

∂M
(Φ(x− z)dσ(x))f(x) =




f(z) +

∫
M

∑
t[Φ, Dft, et]dV, if z ∈M0,

∫
M

∑
t[Φ, Dft, et]dV, if z ∈ Ω\M.

Theorem 3 (Inverse theorem of the Cauchy integral formula) Let M be an 8-
dimensional, compact, oriented C∞–manifold with boundary ∂M contained in some
open connected subset Ω of R8,and the function f : ∂M → O is continuous. If for
each x ∈M0

f(x) =
∫

∂M
Φ(y − x)(dσ(y)f(y))

=
∫

∂M
Φ(y − x)(n(y)f(y))dS(y).

Then f is left O–analytic in M .
And similar results hold for the right O–analytic functions.
In §2 we give some preliminaries on the octonions. In §3 we define the O-analytic

functions, and discuss their properties. In §4 we prove our main results and give
some further results. Finally in §5 we give some applications of our main results.

2 Preliminaries on the octonions

Recall that [J] a non-associative algebra A over a field F is a vector space equipped
with a binary product (x, y) 7−→ x · y which is bilinear in the sense that

(x1 + x2)y = x1y + x2y

x(y1 + y2) = xy1 + xy2

a(xy) = (ax)y = x(ay)

where x, xi, y, yi ∈ A, a ∈ F .
An algebra is called alternative if [x, x, y] = 0 = [y, x, x], ∀x, y ∈ A.
The octonion algebra O is an alternative, non-associative division algebra with

the basic octonionic units:

e0, e1, · · · , e6, e7
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where e0 is the unit element in O, satisfying that

e20 = e0,

eαe0 = e0eα, (α = 0, 1, 2, · · · , 7)

eαeβ = −δαβ + ψαβγeγ, (α, β, γ = 1, 2, · · · , 7)

where

δαβ =

{
1 if α = β
0 if α 6= β

and the constants ψαβγ are totally antisymmetric in (α, β, γ), non-zero and equal to
unit for the seven combinations

(1, 2, 3), (1, 4, 5), (2, 4, 6), (3, 4, 7), (2, 5, 7), (6, 1, 7), (5, 3, 6)

Clearly, the commutator [eα, eβ] = 2ψαβγeγ, (α, β, γ = 1, 2, · · · , 7). For the multi-
plication table, see [J], [PY] and [MD].

The basic elements of O can be written as

1 = e0, e1, e2, e1e2, e4; e1e4, e2e4, (e1e2)e4.

And any real octonion x ∈ O, which labels say a point in R8, the eight-
dimensional Euclidean space-time, is of the form

x =
7∑

0

xkek =(x0e0 + x1e1 + x2e2 + x3e3)

+(x4e0 + x5e1 + x6e2 + x7e3)e4,

xj ∈ R, (j = 0, 1, · · · , 7). Its conjugate x =
∑7

0 xkek where e0 = e0, ej =
−ej, (j = 1, 2, · · ·7). Then

eiej = ej ei, ∀i, j = 1, 2, · · · , 7.

xx = xx =
∑7

0 x
2
i =: |x|2. So if O 3 x 6= 0, x−1 = x

|x|2
, i.e. O is a division algebra.

Let a = e0a0 + e1a1 + e2a2 + e3a3 + e4a4 + e5a5 + e6a6 + e7a7, b = e0b0 + e1b1 +
e2b2 + e3b3 + e4b4 + e5b5 + e6b6 + e7b7. We consider the product ab (see [PY]): Denote
an associated matrix to a by A8(a)

A8(a) =




a0 −a1 −a2 −a3 −a4 −a5 −a6 −a7

a1 a0 −a3 a2 −a5 a4 a7 −a6

a2 a3 a0 −a1 −a6 −a7 a4 a5

a3 −a2 a1 a0 −a7 a6 −a5 a4

a4 a5 a6 a7 a0 −a1 −a2 −a3

a5 −a4 a7 −a6 a1 a0 a3 −a2

a6 −a7 −a4 a5 a2 −a3 a0 a1

a7 a6 −a5 −a4 a3 a2 −a1 a0




,

then the product can be written in the form of matrix:

ab = (e0, e1, e2, e3, e4, e5, e6, e7)A8(a)b
′
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where b′ is the transfer matrix of b = (b0, b1, b2, b3, b4, b5, b6, b7).

The matrix A8(a) gives a matrix “representation” of O. But it is not really a
representation, we have

A8(a)A8(b) 6= A8(ab).

The multiplication of matrix is associative, the multiplication of octonion O is non-
associative, so there is no matrix representation for O.

Denote

C7(aI) =




0 −a3 a2 −a5 a4 a7 −a6

a3 0 −a1 −a6 −a7 a4 a5

−a2 a1 0 −a7 a6 −a5 a4

a5 a6 a7 a0 −a1 −a2 −a3

−a4 a7 −a6 a1 a0 a3 −a2

−a7 −a4 a5 a2 −a3 a0 a1

a6 −a5 −a4 a3 a2 −a1 a0




.

It turns out that the matrix C7(aI) gives the matrix form of the cross product in
R7:

aI × bI = C7(aI)b
′
I ,

where aI = (a1, a2, a3, a4, a5, a6, a7), bI = (b1, b2, b3, b4, b5, b6, b7). Now the expression
A8(a)b becomes

A8(a)b =

(
0 −aI · bI
b0a

′
I aI × bI

)
+ a0b

′. (1-22)

So the matrix A8(a) gives the concepts of the scalar product (αa′I), the inner
product (aI · bI) and the cross product (aI × bI) in R7. Denote a, b by

a = a0 + ~A, b = b0 + ~B,

Then

ab = a0b0 + a0
~B + b0 ~A− ~A · ~B + ~A× ~B,

And we can show that [cf. PY]

( ~A× ~B) · ~A = 0,

( ~A× ~B) · ~B = 0,

~A ‖ ~B ⇐⇒ ~A× ~B = 0,

~A× ~B = − ~B × ~A.

Although the octonions do not satisfy the associative law, we still have

[x, x, y] = 0 = [y, x, x],

[x, x, y] = 0 = [y, x, x],
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and

[x, y, z] = [y, z, x] = [z, x, y],

[x, z, y] = −[z, x, y],

[y, x, z] = −[y, z, x],

[y, x, z] = −[z, x, y],

for all x, y, z ∈ O.
Also, the octonions obey some weakened associative laws, such as the so-called

R. Moufang identities: [J] and [Sc].

(uvu)x = u(v(ux))

x(uvu) = ((xu)v)u

u(xy)u = (ux)(yu).

3 O–analytic functions

Let Ω be an open connected set in R8, and f be the function

f : Ω −→ O,

f(x) =
7∑

0

ekfk(x).

The Dirac D-operator and its adjoint D are the first-order systems of differential
operators on C∞(Ω,O) defined by

D =
7∑

0

ek
∂

∂xk

, D =
7∑

0

ek
∂

∂xk

.

Definition 1 A function f ∈ C∞(Ω,O) is said to be left (right) O–analytic on
Ω when

Df =
7∑

0

ek
∂f

∂xk
= 0 (fD =

7∑

0

∂f

∂xk
ek = 0).

Since

DD = DD = 48 =
7∑

0

∂2

∂x2
k

the real-valued components of any left (right) O–analytic function are always har-
monic. And there are big differences between the Clifford analytic functions and the
O–analytic functions [L].

Examples

1) Each complex–valued analytic function is both left and right O–analytic func-
tion;

2) Each left (right) H–analytic function is left (right) O–analytic function;
3) If φ is any real-valued harmonic function on Ω, then f = Dφ is both left and

right O–analytic function. Especially, for
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Γ8(x) =
−1

6ω8|x|6
,

Φ(x) = DΓ8(x) =
x

ω8|x|8

is both left and right O–analytic function everywhere away from the origin.
4) qn

k (x) = (xke0 − x0ek)
n, n ∈ N, (k = 1, 2, · · · , 7) are left and right O–

analytic functions.
Proposition 1 Suppose F (x) =

∑7
0 fkek ∈ L1(R8), ∂F

∂xk

∈ L1(R8), (k =

1, 2, · · · , 7), then

DF = 0 ⇐⇒ F = 0.

The equalities hold for almost all x ∈ R8.
Proof

F (x) ∈ L1(R8) ⇐⇒ fk(x) ∈ L
1(R8), (k = 0, 1, · · · , 7)

The matrix representation of DF (x) = 0 is

A8(∂)F = 0

where ∂ = ( ∂
∂x0
, · · · , ∂

∂x7
) is the gradient operator. Taking the Fourier transform, we

have

A8(ξ)




f̂0

f̂1
...

f̂7




= 0.

From [PY]

detA8(ξ) = (2π)4(ξ2
0 + ξ2

1 + · · ·+ ξ2
7)

4.

So, detA8(ξ) 6= 0 for ξ 6= 0. Hence, f̂k = 0, i.e. fk(x) = 0 (k = 0, 1, · · · , 7). This
means that F = 0, a. e. R8.

The opposite is obvious. And the proof is completed.
Given a real-valued rational function u(x, y), we can construct a O–analytic

function whose real part is just u(x, y) [LP1].
In order to develop the classical Hardy space theory in higher-dimensional space,

E. M. Stein and G. Weiss introduced the following important concept:
Definition A ([SW1][SW2]) A vector-valued function F = (u1, u2, · · · , un) on

a domain Ω of Rn is called a S–W conjugate harmonic system if there exists a
real-valued harmonic function U such that F = gradU on Ω.

Equivalently, F = (u1, u2, · · · , un) is called a S–W conjugate harmonic function,
if it satisfies the so-called generalized Cauchy-Riemann equations

n∑

1

∂uj

∂xj
= 0

∂ui

∂xj
=
∂uj

∂xi
(i, j = 1, 2, · · · , n)
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Theorem A ([S] [SW1]) If F = (u1, u2, · · · , un) is a S–W conjugate harmonic
system, then |F |p is subharmonic if p ≥ n−2

n−1
, and n−2

n−1
is the best constant. Where

|F | = (
∑n

1 |uj|
2)1/2 denotes the norm of F .

The index n−2
n−1

is very important in the Hardy space theory (see [SW1] and
[SW2]). For the H–analytic function, we have obtained the following results:

Proposition 2 [LP2] Let

D =
∂

∂x0
+ e1

∂

∂x1
+ e2

∂

∂x2
+ e3

∂

∂x3
,

f = f0 + e1f1 + e2f2 + e3f3.

Then fD = Df = 0 ⇐⇒ f = (f0,−f1,−f2,−f3) is S-W conjugate harmonic
system.

Corollary Let Ω be any open set in R4. Then whenever p ≥ 2/3 and f is a left
and right H–analytic function on Ω, |f |p is subharmonic on Ω, and 2/3 is the best
constant.

For the O–analytic functions we only have the partial result.
Proposition 3 [LP2] If (f0, f1, · · · , f7) is a S-W conjugate harmonic system,

then f = (f0,−f1,−f2, · · · ,−f7) is both left and right O–analytic function.
Open problem: According [SW1], if Df = 0, there must be a p0: 0 < p0 < 1,

such that |f |p is a subharmonic whenever p > p0. Our question is p0 =? in the
octonion algebra O.

4 Proofs of the main results

Lemma 1 [GM] Let φ, f be smooth scalar-valued functions on Ω. Then ∀j : 0 ≤
j ≤ 7 ∫

M
(φ
∂f

∂xj
+
∂φ

∂xj
f)dV =

∫

∂M
φfnjdS.

Lemma 2 Let φ, f be smooth O– valued functions: φ =
∑7

0 φses, f =
∑7

0 fses.
Then
1)
∫
M(φ(Df)−

∑7
0[es, Dφs, f ] + (φD)f)dV =

∫
∂M φ(nf)dS,

2)
∫
M

(
φ(Df) +

∑
t[φ,Dft, et] + (φD)f

)
dV =

∫
∂M(φn)fdS,

3)
∫
M(fD)φ+

∑
s[f,Dφs, es] + f(Dφ)]dV =

∫
∂M(fdσ)φ,

4)
∫
M((fD)φ−

∑
t[et, Dft, φ]− f(Dφ))dV =

∫
∂M f(dσφ).

Proof For any s, t and j, applying Lemma 1, we have
∫

M
(φs

∂ft

∂xj
+
∂φs

∂xj
ft)dV =

∫

∂M
φsftnjdS.

Multiplying ej on both side and taking summation for j, we have
∫

M
[(φs(

∑

j

ej
∂ft

∂xj
) + (

∑

j

ej
∂φs

∂xj
)ft]dV =

∫

∂M
φsftndS.

Multiplying et from the right and taking summation for t, we have
∫

M
[(φs(

∑

j

ej
∂f

∂xj
) + (

∑

j

ej
∂φs

∂xj
)f ]dV =

∫

∂M
φsnfdS,
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i.e. ∫

M
[φs(Df) + (φsD)f ]dV =

∫

∂M
φsnfdS.

Multiplying es from the left and taking summation for s, finally we have

∫

M
[φ(Df) +

∑

s

es((φsD)f)]dV =
∫

∂M
φ(nf)dS.

Note that

es((φsD)f) = (es(φsD))f − [es, φsD, f ].

Then we obtain

∫

M
(φ(Df) + (φD)f −

7∑

0

[es, Dφs, f ])dV =
∫

∂M
φ(nf)dS.

This finishes the proof of 1). By changing the order of et, es, and, the order of
“left” and “right”, we obtain 2), 3) and 4).

Proof of Theorem 1 Suppose z ∈M 0, i.e. z is an interior point of M , and for all
sufficiently small ε > 0, let Mε = M\Bε(z) where Bε(z) is the open ball of radius ε
centered at z. Denote that

Φ(x) = DΓ(x) =
x

ω8|x|8
,

then

Φ(x− z) =
x− z

ω8|x− z|8

is both left and right O–analytic function in Mε. Applying 1) of lemma 2, we thus
obtain

∫

Mε

{Φ(x− z)(Df)−
7∑

0

[es, DΦs, f ]}dV =
∫

Mε

Φ(x− z)(nf)dS

= (
∫

∂M

−
∫

Σε(z)

)Φ(x− z)(nf)dS

where Σε(z) is the sphere of radius ε centered at z. Noticing that on Σε(z), Φ(x −

z)(nf) = (x−z)
ω8|x−z|8

( x−z
|x−z|

f(x)) = 1
ω8

( x−z
|x−z|8

x−z
|x−z|

)f(x) = 1
ω8|x−z|7

f(x), we have

∫

Σε(z)

Φ(x− z)(nf)dS =
1

ω8ε7

∫

Σε(z)
f(x)dS −→ f(z)

as ε −→ 0. i.e.

f(z) =
∫

∂M
Φ(x− z)(dσ(x)f(x)) +

∫

M

7∑

0

[es, DΦs, f ]dV.
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We shall prove that
∑7

0[es, DΦs, f ] =
∑7

0[es,
∑7

0 ek
∂Φs

∂xk

, f ] =
∑7

s=0

∑7
k=0[es, ek

∂Φs

∂xk

, f ] =
0. In fact, let x = x0 + e1x1 + · · ·+ e7x7, z = z0 + e1z1 + · · ·+ e7z7, then

Φ0 =
x0 − z0
ω8|x− z|8

,

∂Φ0

∂x0

, =
|x− z|2 − 8(x0 − z0)

2

ω8|x− z|10
,

Φs =
−xs + zs

ω8|x− z|8
,

∂Φs

∂xs

=
−|x− z|2 + 8(xs − zs)

2

ω8|x− z|10
,

∂Φs

∂xj
=

8(xs − zs)(xj − zj)

ω8|x− z|10
, j 6= s

(j, s = 1, 2, · · · , 7)

While

[es,ΦsD, f ] = [es,
∂Φs

∂xo
eo + · · ·+

∂Φs

∂xs
es + · · ·+

∂Φs

∂x7
e7, f ].

Since [es,
∂Φs

∂x0
e0, f ] = 0, [es,

∂Φs

∂xs
es, f ] = 0, (s = 1, 2, · · · , 7), the terms ∂Φs

∂xo
eo and

∂Φs

∂xs
es can be omitted.
Thus we have

[es,ΦsD, f ] = [es,
∂Φs

∂x1
e1 + · · ·+

∂Φs

∂xs−1
es−1 + 0 +

∂Φs

∂xs+1
es+1 + · · ·+

∂Φs

∂xs
e7, f ].

Replacing the term “0” by

8(xs − zs)(xs − zs)

ω8|x− z|10
es,

we obtain

[es,ΦsD, f ] =
8(xs − zs)

ω8|x− z|10
[es,

7∑

1

(xj − zj)ej, f ]

=
8

ω8|x− z|10
[(xs − zs)es,

7∑

1

(xj − zj)ej, f ].

By the alternative property of O and [e0,Φ0D, f ] = 0, we have

7∑

0

[es, DΦs, f ] =
8

ω8|x− z|10
[

7∑

1

(xj − zj)ej,
7∑

1

(xj − zj)ej, f ] = 0,

i.e.
f(z) =

∫

∂M
Φ(x− z)(dσ(x)f(x)).

For exterior points it is sufficient to repeat the previous proof without bothering
to exclude Bε(z).

This completes the proof of Theorem 1.
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Using 2) of lemma 2) and with the upper part of the above proof repeated, we
obtain the proof of Theorem 2.

In order to prove theorem 3, we need the following lemma:
Lemma 3 (Cauchy integral formula outside a ball) Let f be left O–analytic in

R8 \B(0, R) with limx→∞ f(x) = λ, Then for each x ∈ R8 \B(0, R),

f(x) = λ−
∫

∂B(0,R′)
Φ(y − x)(dσf(x))

where R′ is suitably chosen such that R < R′ < |x|.
The proof is similar with [BDS], so it is omitted.
Proof of Theorem 3 Since

∂f(x)

∂xi
=
∫

∂M

∂Φ(y − x)

∂xi
(dσ(y)f(y))

ei
∂f(x)

∂xi

=
∫

∂M
ei(
∂Φ(y − x)

∂xi

(dσ(y)f(y)))

=
∫

∂M
(ei
∂Φ(y − x)

∂xi
)(dσ(y)f(y))− [ei,

∂Φ(y − x)

∂xi
, dσf ]

DΦ(y − x) = 0,

so

Df =
∫

∂M
(DΦ(y − x))(dσf)−

∫

∂M

7∑

0

[ei,
∂Φ(y − x)

∂xi

, dσf ]

= −
∫

∂M

7∑

0

[ei,
∂Φ(y − x)

∂xi
, dσf ].

Let Φ(y − x) =
∑7

0 esΦs,then

7∑

0

[ei,
∂Φ(y − x)

∂xi
, dσf ] =

7∑

0

7∑

0

[ei,
7∑

0

es
∂Φs

∂xi
, dσf ].

where

Φ0 =
y0 − x0

ω8|x− y|8
,

Φs =
xs − ys

ω8|x− y|8
, (s = 1, 2, · · · , 7)

∂Φs

∂xi
=

8(ys − xs)(yi − xi)

ω8|x− y|10
, s 6= i

∂Φs

∂xs

=
−|x− y|2 + 8(xs − ys)

2

ω8|x− y|10
,

[e0,
∂Φ(y − x)

∂xi
, dσf ] = 0,

[ei,
∂Φi

∂xi
ei, dσf ] = 0,

(i = 0, 1, 2, · · · , 7)
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Taking 8(yi−xi)(yi−xi)
ω8|x−y|10

in place of ∂gi

∂xi

then we have

[ei,
∂Φ(y − x)

∂xi
, dσf ] = [ei,

7∑

s=0

8es(ys − xs)(yi − xi)

ω8|x− y|10
, dσf ]

= [(yi − xi)ei,
7∑

s=1

8es(ys − xs)

ω8|x− y|10
, dσf ],

hence

7∑

0

[ei,
∂Φ(y − x)

∂xi
, dσf ]

=
8

ω8|x− y|10
[

7∑

1

(yi − xi)ei,
7∑

1

(ys − xs)es, dσf ]

= 0,

so, Df = 0, ∀x ∈M 0, i.e. f is left O–analytic in M 0.
This completes the proof of Theorem 3.
Similarly, we also obtain the corresponding Cauchy integral formulas, Cauchy

theorems and the inverse theorems of the Cauchy integral formulas for right O–
analytic functions:

Theorem 4 M,Ω are as above, if fD = 0, x ∈ Ω, then

1

ω8

∫

∂M
(fdσ)

x− z

|x− z|8
=




f(z), if z ∈M0,

0, if z ∈ Ω\M.

Theorem 5 M,Ω are as above, if fD = 0, x ∈ Ω, then

1

ω8

∫

∂M
f(x)(dσ

x− z

|x− z|8
) =




f(z)−

∫
M

∑
t[et, Dft, φ]dV, if z ∈M0,

−
∫
M

∑
t[et, Dft, φ]dV, if z ∈ Ω\M.

Furthermore, by taking φ = 1 in the lemma 2, we thus get the Cauchy theorems:
Theorem 6 Let M be a compact, 8-dimensional, oriented C∞ manifold in Ω.

Then ∫

∂M
ω =

∫

∂M
n(x)f(x)dS(x) = 0

for any function f which is left O–analytic in Ω.
Theorem 7 Let M be a compact, 8-dimensional, oriented C∞ manifold in Ω.

Then ∫

∂M
ν =

∫

∂M
f(x)n(x)dS(x) = 0

for any function f which is right O–analytic in Ω.
Theorem 8 For continuous function f : ∂M → O, if for each x ∈M 0

f(x) =
∫

∂M
(f(y)dσ(y))Φ(y− x)

=
∫

∂M
(n(y)f(y))Φ(y − x)dS(y).
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Then f is right O–analytic in M .
At the end of this section, we would like to talk about an interesting fact. If f

is the S-W conjugate harmonic system, the calculation of the associators would be
simple. For then

∂fi

∂xj

=
∂fj

∂xi

(i, j = 1, 2, · · · , 7)

We have

7∑

t=0

[φ,Dft, et] =
7∑

t=0

7∑

j=0

[φ, ej, et]
∂ft

∂xj

=
7∑

t=1

7∑

j=1

[φ, ej, et]
∂ft

∂xj

=
7∑

t6=j,t,j=1

[φ, ej, et]
∂ft

∂xj

=
∑

1≤t<j≤7

([φ, ej, et]
∂ft

∂xj

+ [φ, et, ej]
∂fj

∂xt

)

=
∑

1≤t<j≤7

([φ, ej, et] + [φ, et, ej])
∂fj

∂xt

= 0.

So, we get our general results: M,Ω and Φ are as above, let z be a interior point of
M . Then, if Df = 0,

f(z) =
∫

∂M
Φ(dσf) =

∫

∂M
(Φdσ)f −

∫

M

7∑

t=0

[Φ, Dft, et]dV,

if fD = 0,

f(z) =
∫

∂M
(fdσ)Φ =

∫

∂M
f(dσΦ) +

∫

M

7∑

t=0

[et, Dft,Φ]dV,

and if f is a conjugate harmonic system,

f(z) =
∫

∂M
Φdσf =

∫

∂M
fdσΦ.

5 Some applications

Theorem 9 (Mean value theorem) Suppose that Ω is an open connected set in R8,
Br(z0) is the open ball of radius r centered at z0, Br(z0) ⊂ Ω. If Df = 0, then

f(z0) =
1

|Br(z0)|

∫

Br(z0)
f(x)dV (x)

where |Br(z0)| is the volume of Br(z0).
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Proof By the Cauchy integral formula, we have

f(z0) =
∫

∂Br(z0)
Φ(x− z)(n(x)f(x))dS(x)

=
1

ω8r8

∫

∂Br(z0)
(x− z0)(

x− z0

|x− z|
f(x))dS(x).

Then, applying Lemma 2 of the last section, we have

f(z) =
1

ω8r8

∫

Br(z0)
((x− z0)D)f −

7∑

0

[es, DΦs, f ])dV

where

φs = −xs − as, (s = 1, 2, · · · , 7)

φ0 = x0 − a0,

z0 =
7∑

0

ases.

Note that

(x− z0)D =
7∑

0

∂(x− z0)

∂xj
ej = 8

DΦs =
7∑

0

∂Φs

∂xj
ej = −es,

so,
∑7

0[es, DΦs, f ] = 0. Thus we have

f(z0) =
1

ω8r8

∫

Br(z0)
8f(x)dV (x)

=
1

|Br(z0)|

∫

Br(z0)
f(x)dV (x).

Remark Same result still holds if fD = 0.
Theorem 10 (Maximum modules theorem) Let f be a left O–analytic function

in the open and connected set Ω. If there exists a point ω0 ∈ Ω, such that |f(w)| ≤
|f(w0)|, ∀ω ∈ Ω, ω0 ∈ Ω, then f must be a constant function in Ω.

Corollary Under the assumption of Theorem 10, and f ∈ C(Ω). Then

sup
x∈Ω

|f(ω)| = sup
x∈∂Ω

|f(x)|.

Theorem 11 (Weierstrass type theorem) Let {fj}j∈N be a sequence of left O–
analytic functions in Ω. If for each compact set K ⊂ Ω and ∀ε > 0, there exists a
natural number N(ε,K), such that

sup
x∈k

|fi(x)− fj(x)| < ε

whenever i, j > N(ε,K). Then there exists a function f in Ω such that
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(i) Df = 0;
(ii) the sequence {∂βfj}j∈N converges uniformly on the compact subsets of Ω to

∂βf , for any multi-index β ∈ N 8.
The proofs of the above theorems are similar to [BDF], so they are omitted.
There are lots of other applications of the Cauchy integral formulas on the octo-

nions O. In the coming papers, we will discuss the Taylor series [LP3], the three-line
theorems which are closely related with the interpolation theory [JP], the Laurent
series, the Mittag-Leffler theorem and the Liouville theorem etc.

Remark After we finished this work, Professor J. Ryan and Professor M. Shapiro
informed us in a Beijing conference about the works of Paolo Dentoni and Michele
Sce [PM], T. Dray and C. A. Manogue [DM1-DM2] [MD], and K. Nono [N]. We
checked and found that some results of this paper have obtained in [PM], [N]. But
the methods we use are quite different. Our methods are more elementary and can
be used furthermore to develop octonion analysis.

Acknowledgement: The authors are grateful to Professors W. Sproessig, J.
Ryan, M. Shapiro, J. Kajiwara, K. Nono, T. Dray for their helpful suggestions,
discussions and valuable papers.
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