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Abstract

We consider the problem utt+∆2u+δut−ϕ(
∫

Ω
|∇u|2dx)∆u = f(u), posed in Ω×(0, T ),

with dynamical boundary conditions. Here Ω ⊂ R
N is a an open smooth bounded domain.

We prove, in certain conditions on f and ϕ that there is absence of global solutions. The
method of proof relies on an argument of concavity.

1 Introduction and main result

The aim of the present note is to discuss some nonexistence result of global solutions
to the problem



















utt + ∆2u + δut − ϕ

(∫

Ω

|∇u|2dx

)

∆u = f(u), on Ω× (0, T ),

u = 0, ∆u + p(σ)∂ut

∂ν
= 0, in ∂Ω × (0, T ),

(1.1)

subject to the initial condition

u(x, 0) = u0(x), ut(x, 0) = u1(x), (1.2)

for any x ∈ Ω, where Ω ⊂ R
N is an open smooth bounded domain, δ > 0, ∂

∂ν
is the

normal derivative on ∂Ω, p ≥ 0 is a smooth function defined on ∂Ω, f, ϕ, u0 and u1

are given functions.
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When Equation (1.1)1 does not includes the term ∆2u and δ = 0, the problem
describes, in one dimension, the non-linear vibrations of elastic string. The naturel
generalization is given by

utt − ϕ

(∫

R

|∇u|2dx

)

∆u = 0. (1.3)

This model was studied by Pohozaev [9] in the case where ϕ is a real C1 function de-
fined for nonnegative real satisfying ϕ ≥ a0 > 0. The author obtained existence and
global solutions for analytic initial data. Later Lions [7] formulated the Pohozaev’s
result in abstract context.

Returning to our problem, Vasconcellos and Teixera [10] proved the existence
and uniqueness of global solutions to



















utt + ∆2u− ϕ

(∫

Ω

|∇u|2dx

)

∆u + g(ut) = 0, on Ω× (0, T ),

u = ∂u
∂ν

= 0, in ∂Ω× (0, T ),

(1.4)

where N ≤ 3, ϕ ≥ 0 is a continuous differentiable real and g is a continuous nonde-
creasing real function.

Our intention here is to prove the non global character of solutions to Problem
(1.1) with dynamical boundary condition. Among recent result in this direction
we mention the paper by Kirane and Tatar [4]. The authors studied the blow–up
phenomena for the problem

utt + ∆2u = f(u) (1.5)

with dynamic boundary conditions. They proved, under certain condition on f, that
the Problem has no global solutions. The work of Ono [8] deals with

utt + ϕ(‖A1/2u‖2)Au + δu = |u|αu,

where A = −∆, ϕ(s) = a + bsγ , a ≥ 0, b ≥ 0, a + b > 0, δ ≥ 0 and γ > 0. He proved
that for α > 2γ the local solution is not global.

In our present work we impose on ϕ ∈ C0(0, +∞) the condition

c

∫ t

0

ϕ(s)ds ≥ tϕ(t), c ≥ 1, (1.6)

like
ϕ(s) = a + bsβ, ∀ s > 0,

where −1 < β ≤ c − 1. Using the concavity method, we prove that the blow –up
occurs for certain initial data. The technique used is to prove that the function Φ,

defined by,

Φ(t) =
1

2

∫

Ω

u2(x, t)dx +
1

2

∫ t

0

∫

∂Ω

p(σ)

(

∂u

∂ν

)2

dσ +
1

2
Λ(t + τ)2 + M

satisfies the concavity argument [6]. The function p is positive and continuous.
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Concerning the function f we assume

f ∈ C0(R, R+), rf(r) ≥ 10(1 + γ)F (r), γ > 0, (1.7)

for all r ∈ R, where

F (r) :=
∫ r

0

f(s)ds,

Without loss of generality we may assume that δ = 1. Let λ1 be the first eigenvalue
of the operator ∆2 in H2(Ω) ∩H1

0 (Ω); that is

∫

Ω

(∆v)2dx ≥ λ1

∫

Ω

v2dx,

for all v ∈ H2(Ω) ∩H1
0 (Ω). Put

F(u0, u1) =
1

2

∫

Ω

u2
1dx +

1

2

∫

Ω

|∆u0|
2dx +

1

2
ϕ̃(
∫

Ω

|∇u0|
2dx)−

∫

Ω

F (u0)dx, (1.8)

where
ϕ̃(s) :=

∫ s

0

ϕ(r)dr.

The main result is the following.

Theorem 1.1. Assume that u1 6≡ 0 and

F(u0, u1) ≤ 0. (1.9)

Let f and ϕ satisfy conditions (1.6),(1.7) where

γ ≥ max
{

1

20λ1

−
4

5
,
c

5
− 1

}

. (1.10)

Then Problem (1.1) has no global solution in C2((0, +∞), H2(Ω) ∩H1
0 (Ω)).

Remark 1.1. It is noticing that condition (1.9) may be not satisfied by a small
initial data. For example consider ϕ(t) = tβ,−1 < β < c − 1, f(u) = |u|qu, q > 0.
We have, for any σ ∈ R+,

F(σu0, σu1) = σ2(A + σ2βB − σqC) := σ2L(σ),

where

A =
1

2

(∫

Ω

u2
1dx +

∫

Ω

(∆u0)
2dx

)

, B =
1

a + 1

(∫

Ω

|∇u0|
2

)β+1

,

and

C =
1

q + 2

∫

Ω

|u0|
q+2dx.

Therefore limσ→0 L(σ) = +∞. Hence condition (1.9) is violated if σ is small enough.
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2 Proof

We assume that the problem has a global solution u ∈ C2(R+, H1
0 (Ω)∩H2(Ω)). The

proof will be done by applying the concavity argument [6] as follows.

Lemma 2.1. Let Φ ∈ C2 be a nonnegative function for which there exists a constant
γ > 0 such that

Φ′′Φ ≥ (1 + γ)(Φ′)2. (2.1)

Assume
Φ(0) > 0, Φ′(0) > 0, (2.2)

then there exists t0 ≤
Φ(0)

γΦ′(0)
, such that

lim
t→t−

0

Φ(t) = +∞. (2.3)

The proof of this Lemma is very simple. We deduce from (2.1) that (Φ−γ)′′ ≤ 0
as long as Φ > 0. Hence

Φ−γ(t) ≤ Φ−γ(0) + (Φ−γ)′(0)t.

This implies that Φ−γ must cross the t axis, thus we see that Φ blows-up in finite
time. First we prove the following.

Lemma 2.2. Assume hypothesis (1.6)–(1.7) are satisfied and u1 6≡ 0. Then

u(., t) 6≡ 0, (2.4)

for any t ≥ 0.

Proof. First we have u0 6≡ 0. Otherwise we deduce from (1.9) that u1 ≡ 0. This is
impossible. Assume, on the contrary that there exists t0 > 0 such that

u(x, t0) = 0, for any x ∈ Ω.

We multiply Equation (1.1)1 by ut and integrate over Ω× (0, t0), one sees

F(u0, u1) =
1

2

∫

Ω

u2
t (x, t0)dx +

∫ t0

0

∫

Ω

u2
t (s)dxds +

1

2

∫

Ω

|∆u|2(x, t0)dx

+
∫ t0

0

∫

∂Ω

p(σ)

(

∂ut

∂ν

)2

dσ +
1

2
ϕ̃

(∫

Ω

|∇u|2(x, t0)dx

)

−
∫

Ω

F (u)(x, t0)dx, (2.5)

where F is given by (1.8). Therefore

F(u0, u1) =
1

2

∫

Ω

u2
t (x, t0)dx +

∫ t0

0

∫

Ω

u2
t (s)dxds +

∫ t0

0

∫

∂Ω

p(σ)

(

∂ut

∂ν

)2

dσ ≥ 0,

and then F(u0, u1) = 0 thanks to (1.9). The latter implies that

ut(., t) ≡ 0,

for any t ≤ t0. Hence u1 ≡ 0. A contradiction. This ends the proof. �
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Now we are in force to prove the theorem. We apply Lemma 2.1 by choosing the
following function

Φ(t) =
1

2

∫

Ω

u2(x, t)dx +
1

2

∫ t

0

∫

∂Ω

p(σ)

(

∂u

∂ν

)2

dσ +
1

2
Λ(t + τ)2 + M,

where τ, Λ and M are nonnegative parameters. Set, for T large

N(T ) = inf
0≤t≤T

∫

Ω

u2(x, t)dx > 0.

We shall seek

E(t) = Φ”Φ− (1 + γ)(Φ
′

)2 ≥ 0, (2.6)

for γ > 0 given by (1.7). Differentiating Φ once and twice, we infer

Φ
′

(t) =
∫

Ω

uutdx +
1

2

∫

∂Ω

p(σ)

(

∂u

∂ν

)2

dσ + Λ(t + τ) (2.7)

and

Φ′′(t) =
∫

Ω

u2
t dx +

∫

Ω

uttudx +
∫

∂Ω

p(σ)
∂ut

∂ν

∂u

∂ν
dσ + Λ. (2.8)

Set

H(t) =
∫

Ω

uuttdx− b

∫

Ω

u2
t dx +

∫

∂Ω

p(σ)
∂ut

∂ν

∂u

∂ν
dσ,

it follows from (2.7), (2.8),

E(t) = Φ(t)H(t) + Φ(t)Λ +
a

2

∫

Ω

u2
t dx

∫

Ω

u2dx

+
a

2

∫

Ω

u2
tdx

∫ t

0

∫

∂Ω

p(σ)

(

∂u

∂ν

)2

dσ +
a

2
Λ(t + τ)2

∫

Ω

u2
t dx

−(1 + γ)
(∫

Ω

uutdx

)2

− 2(1 + γ)Λ(t + τ)
∫

Ω

uutdx

−(1 + γ)Λ2(t + τ)2 −
(1 + γ)

4

[

∫

∂Ω

p(σ)(
∂u

∂ν
)2dσ

]2

−(1 + γ)
∫

Ω

uutdx

∫

∂Ω

p(σ)(
∂u

∂ν
)2dσ − (1 + γ)Λ(t + τ)

∫

∂Ω

p(σ)(
∂u

∂ν
)2dσ,

where b = a− 1, a = 5(1 + γ).
Using Cauchy–Schwarz inequality we get

∫

Ω

u2
t dx

∫

Ω

u2dx−
(∫

Ω

uutdx

)2

≥ 0,

which implies the following estimate

E(t) ≥ Φ(t)H(t) + Φ(t)Λ−
a

2
Λ2(t + τ)2 −

a

2

[

∫

∂Ω

p(σ)(
∂u

∂ν
)2dσ

]2

. (2.9)
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To show E(t) ≥ 0, we have to demonstrate

Φ(t)H(t) + Φ(t)Λ−
a

2
Λ2(t + τ)2 −

a

2

[

∫

∂Ω

p(σ)(
∂u

∂ν
)2dσ

]2

≥ 0 (2.10)

for a suitable number τ > 0.
Note that

Φ′(0) =
∫

Ω

u0u1dx +
1

2

∫

∂Ω

p(σ)

(

∂u0

∂ν

)2

dσ + Λτ.

In the sequel we demande, for fixed Λ > 0, that τ verify

∫

Ω

u0u1dx +
1

2

∫

∂Ω

p(σ)

(

∂u0

∂ν

)2

dσ + Λτ > 0, (2.11)

and
Φ(0)

γΦ′(0)
< T. (2.12)

Let us now verify inequality (2.10). Multiplying Equation (1.1)1 by u and integrating
over Ω, we have

∫

Ω

uuttdx = −
∫

Ω

uutdx−
∫

Ω

(∆u)2dx−
∫

∂Ω

p(σ)
∂ut

∂ν

∂u

∂ν
dσ

−ϕ

(∫

Ω

|∇u|2dx

) ∫

Ω

|∇u|2dx +
∫

Ω

uf(u)dx.

Then we estimate the first term on the right–hand by the following inequality

−
∫

Ω

uutdx ≥ −
1

4

∫

Ω

u2dx−
∫

Ω

u2
t dx,

so one has

H(t) ≥ −
1

4

∫

Ω

u2dx− a

∫

Ω

u2
tdx−

∫

Ω

(∆u)2dx

−ϕ

(∫

Ω

|∇u|2dx

)(∫

Ω

|∇u|2dx

)

+
∫

Ω

uf(u)dx.

(2.13)

Using equality (2.5), and hypothesis (1.7), (1.6) we arrive at

H(t) ≥
[

−
1

4
+ λ1(a− 1)

] ∫

Ω

u2dx + aϕ̃

(∫

Ω

|∇u|2dx

)

−ϕ

(∫

Ω

|∇u|2dx

)(∫

Ω

|∇u|2dx

)

.

Back to E, it follows

E(t) ≥
k

2
Λ(t + τ)2N(T )−

5(1 + γ)

2





∫

∂Ω

p(σ)

(

∂u

∂ν

)2

dx





2

+MΛ− 5

2
(1 + γ)Λ2(t + τ)2,

(2.14)
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where

k = −
1

4
+ λ1(a− 1),

which is nonnegative thanks to (1.10). Consequently, we arrive at a new sufficient
condition for the blow–up, namely

k

2
Λ(t + τ)2N(T )−

5(1 + γ)

2





∫

∂Ω

p(σ)

(

∂u

∂ν

)2

dx





2

+ MΛ−
5

2
(1 + γ)Λ2(t + τ)2 ≥ 0.

Now, choosing Λ and M such that

0 < Λ ≤
kN(T )

5(1 + γ)

and

M ≥
5(1 + γ)

2Λ
sup

0≤t≤T





∫

∂Ω

p(σ)

(

∂u

∂ν

)2

dσ





2

,

we arrive, for τ large, at the following

Φ(0) > 0, Φ′(0) > 0,

and
Φ′′Φ− (1 + γ)(Φ

′

)2 ≥ 0,

Hence the blow–up takes place in the interval (0, T ) thanks to (2.12). A contradic-
tion. The proof of the theorem is finished. �

Corollary 2.1. Assume that conditions (1.7)–(1.9) hold. Let u ∈ C2 be a global
solution to (1.1). Then ut(., 0) ≡ 0.
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