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Abstract

We analyze the structure of the group F0, ? of non-zero multiplicative

arithmetical functions, where ? is the usual Dirichlet product. In particular,

we prove that F0, ? is isomorphic to a complete direct product of certain

subgroups of the multiplicative group of infinite upper-triangular matrices.

We also show that the group F0, ? is divisible.

1 Introduction

An arithmetical function, i.e. a function f : N0 → R, is called multiplicative

if f(mn) = f(m)f(n) whenever (m,n) = 1. The Euler function φ and the Moebius
function µ are classical examples of multiplicative functions. The arithmetical func-
tions 0 and I defined for every n ∈ N0 by 0(n) = 0, I(n) = 0 or 1 according as n 6= 1
or n = 1, are trivially multiplicative.

Let F0 denote the set of all multiplicative functions different from 0. Clearly,
f(1) = 1 for every f ∈ F0. The Dirichlet product (or convolution) of two
arithmetical functions f and g is defined as follows: for every n ∈ N0,

(f ? g)(n) :=
∑

d|n

f(d)g(
n

d
).

For any given prime p, we will consider the following subset of F0:

Fp = {f ∈ F0 : f(n) = 0 for every n > 1 not divisible by p}
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It is well-known (see for example Apostol [1, chapter 2] or Niven and Zuckerman
[5, section 4.4]) that F0, ? is a commutative group.

The purpose of this paper is to analyze the structure of F0, ?. We will prove the
following result:

Theorem:

(a) The group F0, ? is torsion-free (i.e. has no element of finite order).

(b) Fp, ? is a subgroup of F0, ? for every prime p. All the subgroups Fp, ? are
isomorphic to the same multiplicative group of infinite upper-triangular matrices.

(c) F0, ? is isomorphic to the complete direct product of the subgroups Fp, ?.

(d) F0, ? is divisible and has a natural structure of vector space over Q.

Acknowledgements. The author wishes to thank F. Buekenhout and J. Doyen
for their help during the preparation of this paper.

2 Multiplicative functions

Theorem 2.1: The group F0, ? is torsion-free (i.e. has no element of finite
order).

Proof. Assume that the torsion subgroup of F0, ? is non-trivial, and let q be
the smallest prime power for which there is a function f in the torsion subgroup
of F0, ? such that f(q) 6= 0. If we denote by fn the Dirichlet product of n copies
of f , it is easily proved by induction that, for every n ∈ N0, (fn)(q) = nf(q) 6= 0,
contradicting the fact that we should have fn = 0 for some n. �

Theorem 2.2: For any given prime p, Fp is a subgroup of F0, ?.

Proof. Clearly, I ∈ Fp for every prime p. If f, g ∈ Fp, then (f ? g)(n) =
∑

d|n f(d)g(n
d
) = 0 for every n > 1 such that p - n, because f(d) or g(n

d
) is equal to

0 for every d | n. Given an integer n > 1 such that p - n, assume that f−1(m) = 0
for every m ∈ N such that p - m and 1 < m < n. Then f ? f−1 = I implies that
f−1(n) = f−1(n)f(1) = −∑

d|n
d>1

f(d)f−1(n
d
) = −f(n). But f(n) = 0 since f ∈ Fp

and so f−1(n) = 0. It follows that f−1 ∈ Fp. �
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3 Infinite upper-triangular matrices

An infinite matrix is a map from N0 × N0 into R. Intuitively, it is an array of
real numbers with rows and columns indexed by the elements of N0. We denote by
M the set of infinite matrices, and by M+ the set of upper-triangular non-zero

infinite matrices, i.e.

M+ = {m ∈ M : m(a, a) 6= 0 ∀a ∈ N0 and m(a, b) = 0 ∀a, b ∈ N0 s.t. a > b}.

Given two matrices m,n ∈ M+, their product m · n defined by

(m · n)(a, b) :=
∑

c∈N0

m(a, c)n(c, b)

is well-defined since n(c, b) = 0 whenever c > b.

Theorem 3.1: M+, · is a group whose identity element is the infinite identity
matrix I.

Proof. The only non trivial fact to prove is that every m ∈ M+ has an inverse
m−1 for the product defined above. In order to find m−1(a, b), we first restrict m
to a square matrix of size max(a, b). This restricted matrix has an inverse, which
is a restricted m−1. We find m−1(a, b) by taking the corresponding entry in the
restricted m−1. The matrix constructed in this way is indeed an element of M+:
the upper-triangular square matrices of given size form a group, and so the restricted
inverse is also upper-triangular. Moreover, the product of the diagonal entries of
any restriction of m−1 has to be non-zero, because these restrictions are invertible.
Hence, all diagonal elements are non-zero. �

Note that the group M+ has an obvious subgroup, namely the group M1 of
upper-triangular infinite matrices all of whose diagonal entries are equal to 1.

4 Complete direct products

Many equivalent definitions can be found in the literature: Suzuki [6] gives a defi-
nition in terms of functions, Fuchs [2] and Kaplansky [3] use vectors and Kurosh [4]
presents a more general concept.

Definition: A word over an infinite family of sets Si (i ∈ N0) is a set of elements
of ∪Si having exactly one element in each Si.

Definition: The complete (or Cartesian) direct product of the groupsHi, ?i

(i ∈ N0) is the set of words over the Hi’s, endowed with the component-wise product
defined as follows: the component-wise product of two words w1 and w2 is the word
w3 such that w3 ∩Hi = (w1 ∩Hi) ?i (w2 ∩Hi) for every i ∈ N0.

This construction is well-defined and indeed gives a group, denoted from now on
by

∏

i∈N0
Hi, ?, where the product ? depends on the products ?i in the subgroups Hi.

If all the subgroups Hi, ?i are equal to H, ?, we simply denote their complete direct
product by

∏

H, ?.
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Theorem 4.1: If Ki, ?i
∼= Li, �i for every i ∈ N0, then

K, ? :=
∏

i∈N0

Ki, ? ∼=
∏

i∈N0

Li, � =: L, �

Proof. Suppose that an isomorphism from Ki onto Li is given by φi : Ki → Li,
where φi(a ?i b) = φi(a) �i φi(b) for every a, b ∈ Ki. We define a bijection φ from the
set of words over the Ki’s onto the set of words over the Li’s by writing φ(w)∩Li =
φi(w ∩Ki) for every i ∈ N0. This is of course well-defined for every w ∈ K. If two
words w1 and w2 have the same image under φ, then their intersection with Li is
the same for every i, and so φi(w1 ∩Ki) = φi(w2 ∩Ki) for every i ∈ N0; since φi is
a bijection, it follows that w1 ∩Ki = w2 ∩Ki for every i ∈ N0. Therefore w1 = w2

and φ is injective.
We now define a function ψ from the set of words over the Li’s onto the set of
words over the Ki’s by ψ(w′) ∩Ki = ψi(w

′ ∩ Li). Since ψ is also injective and since
ψ ◦ φ = φ ◦ ψ = Id, φ is a bijection and φ−1 = ψ.
We just have to make sure that φ is an isomorphism, i.e. that φ(a ? b) = φ(a) � φ(b)
for every a, b ∈ K. It suffices to check that φ(a?b)∩Li = (φ(a)�φ(b))∩Li for every
i ∈ N0. But

φ(a ? b) ∩ Li = φi((a ? b) ∩Ki) (by def. of φ)
= φi((a ∩Ki) ? (b ∩Ki)) (by def. of the product on words)
= φi(a ∩Ki) � φi(b ∩Ki) (because φi is an isomorphism)
= (φ(a) ∩ Li) � (φ(b) ∩ Li) (by def. of φ)
= (φ(a) � φ(b)) ∩ Li (by def. of the product of words)

�

5 Isomorphism

We will now prove that the group F0, ? is isomorphic to a complete direct product
of certain groups of upper-triangular matrices.

Theorem 5.1: F0, ? ∼=
∏

i∈N0
Fpi , �, where pi is the i-th prime and � denotes the

product on the set of words.

Proof. We already know that every Fpi is a subgroup of F0, ?. We will construct
a bijection φ from the set W of words over the Fpi’s onto F0. Given a word w ∈ W ,
we define φ(w) as follows: for every i, e ∈ N0,

(φ(w))(pi
e) = (w ∩ Fpi)((pi)

e)

Since a multiplicative function is determined by its values on prime powers, φ(w) is
a multiplicative function. Trivially, φ is injective. It is also surjective: for a given
multiplicative function f , take the word wf such that wf ∩ Fpi is equal to f on the
powers of pi and takes the value 0 on the powers of all the other primes. Its image
under φ is obviously f .
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It remains to show that φ is an isomorphism, i.e. that φ(w1 � w2) = φ(w1) ? φ(w2)
for every w1, w2 ∈ W . For every e, i ∈ N0,

(φ(w1 � w2))(pi
e) = ((w1 � w2) ∩ Fpi)(pi

e)
= ((w1 ∩ Fpi) ? (w2 ∩ Fpi))(pi

e)
=

∑

0≤t≤e ((w1 ∩ Fpi)(pi
t)) ((w2 ∩ Fpi)(pi

e−t))
=

∑

0≤t≤e (φ(w1)(pi
t)) (φ(w2)(pi

e−t))
= (φ(w1) ? φ(w2))(pi

e)

and so these two multiplicative functions are equal since they take the same values
on prime powers. �

In order to find an isomorphism between F0, ? and a group of infinite matrices,
it is now sufficient to find such an isomorphism for each Fpi , ? and then use Theorem
4.1.

Theorem 5.2: Every group Fpi , ? is isomorphic to the same subgroup of M1, ?.

Proof. For any i ∈ N0, we define a bijection φ from Fpi onto φ(Fpi) by

φ(f) =

















1 f(pi) f(pi
2) f(pi

3) · · ·
0 1 f(pi) f(pi

2)
. . .

0 0 1 f(pi)
. . .

...
...

. . .
. . .

. . .

















φ is an isomorphism because, if f, g ∈ Fpi, then

φ(f) · φ(g) =

















1 f(pi) + g(pi) f(pi
2) + f(pi)g(pi) + g(pi

2) · · ·
0 1 f(pi) + g(pi)

. . .

0 0 1
. . .

...
...

. . .
. . .

















=

















1 (f ? g)(pi) (f ? g)(pi
2) · · ·

0 1 (f ? g)(pi)
. . .

0 0 1
. . .

...
...

. . .
. . .

















= φ(f ? g).

The image of Fpi, i.e. the subset of M1 consisting of all matrices in which all
the entries on a descending diagonal are equal, will be denoted by D1.

The function φ immediately tells us that D1, · is a group isomorphic to Fpi, ? for
every i, hence also that all the groups Fpi , ? are pairwise isomorphic. �

The following result is now a consequence of Theorem 4.1:

Theorem 5.3: F0, ? ∼=
∏

D1. �
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6 Divisibility

Definition: A group G is said to be divisible if for every x ∈ G and every
integer n ∈ N0, there exists an element y ∈ G such that yn = x.

Lemma 6.1: If H, ? is divisible, then
∏

H, � is also divisible.

Proof. We denote the i-th copy of H by H(i). For a given w in
∏

H, define n
√
w

by

( n
√
w) ∩H(i) = n

√

w ∩H(i).

�

Lemma 6.2: If a multiplicative group G, ? is divisible and torsion-free, then
x, y ∈ G and xn = yn imply x = y.

Proof.
xn = yn ⇔ (x ? y−1)n = 1 ⇔ x ? y−1 = 1 ⇔ x = y

�

Lemma 6.3: Every group Fpi , ? is divisible.

Proof: For every n ∈ N0 and every e ∈ N,

(fn)(pi
e) =

∑

ei∈N
e1+...+en=e

n
∏

t=1

f(pi
et).

This yields the following recursive definition of n
√
f :

( n

√

f)(pi
e) =

1

n
· {f(pi

e)−
∑

ei∈N\{e}
e1+...+en=e

n
∏

t=1

[( n

√

f)(pi
et)]}.

�

We are now able to conclude:

Theorem 7.1: The group F0, ? is divisible. �

Remark: For any f ∈ F0, we may define f

n
and nf in a unique way as n

√
f and

fn. It follows that F0 has the structure of a vector space over Q, the scalar product
being defined by the convolution of multiplicative functions. It is an easy exercise
to check all the required axioms (this is also explained in Kaplansky [3]).
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