On the Structure of the Group of Multiplicative Arithmetical Functions

Paul-Olivier Dehaye

Abstract

We analyze the structure of the group \mathbf{F}_0 , \star of non-zero multiplicative arithmetical functions, where \star is the usual Dirichlet product. In particular, we prove that \mathbf{F}_0 , \star is isomorphic to a complete direct product of certain subgroups of the multiplicative group of infinite upper-triangular matrices. We also show that the group \mathbf{F}_0 , \star is divisible.

1 Introduction

An arithmetical function, i.e. a function $f : \mathbb{N}_0 \to \mathbb{R}$, is called **multiplicative** if f(mn) = f(m)f(n) whenever (m, n) = 1. The Euler function ϕ and the Moebius function μ are classical examples of multiplicative functions. The arithmetical functions **0** and **I** defined for every $n \in \mathbb{N}_0$ by $\mathbf{0}(n) = 0$, $\mathbf{I}(n) = 0$ or 1 according as $n \neq 1$ or n = 1, are trivially multiplicative.

Let $\mathbf{F}_{\mathbf{0}}$ denote the set of all multiplicative functions different from **0**. Clearly, f(1) = 1 for every $f \in \mathbf{F}_{\mathbf{0}}$. The **Dirichlet product** (or **convolution**) of two arithmetical functions f and g is defined as follows: for every $n \in \mathbb{N}_0$,

$$(f \star g)(n) := \sum_{d|n} f(d)g(\frac{n}{d}).$$

For any given prime p, we will consider the following subset of \mathbf{F}_0 :

 $\mathbf{F}^p = \{ f \in \mathbf{F}_0 : f(n) = 0 \text{ for every } n > 1 \text{ not divisible by } p \}$

Bull. Belg. Math. Soc. 9 (2002), 15-21

Received by the editors November 2000.

Communicated by J. Doyen.

The purpose of this paper is to analyze the structure of \mathbf{F}_0, \star . We will prove the following result:

Theorem:

- (a) The group \mathbf{F}_0, \star is torsion-free (i.e. has no element of finite order).
- (b) \mathbf{F}^{p}, \star is a subgroup of \mathbf{F}_{0}, \star for every prime *p*. All the subgroups \mathbf{F}^{p}, \star are isomorphic to the same multiplicative group of infinite upper-triangular matrices.
- (c) \mathbf{F}_0, \star is isomorphic to the complete direct product of the subgroups \mathbf{F}^p, \star .
- (d) \mathbf{F}_0, \star is divisible and has a natural structure of vector space over \mathbb{Q} .

Acknowledgements. The author wishes to thank F. Buekenhout and J. Doyen for their help during the preparation of this paper.

2 Multiplicative functions

Theorem 2.1: The group \mathbf{F}_0 , \star is torsion-free (i.e. has no element of finite order).

Proof. Assume that the torsion subgroup of \mathbf{F}_0, \star is non-trivial, and let q be the smallest prime power for which there is a function f in the torsion subgroup of \mathbf{F}_0, \star such that $f(q) \neq 0$. If we denote by f^n the Dirichlet product of n copies of f, it is easily proved by induction that, for every $n \in \mathbb{N}_0$, $(f^n)(q) = nf(q) \neq 0$, contradicting the fact that we should have $f^n = \mathbf{0}$ for some n.

Theorem 2.2: For any given prime p, \mathbf{F}^p is a subgroup of \mathbf{F}_0, \star .

Proof. Clearly, $\mathbf{I} \in \mathbf{F}^p$ for every prime p. If $f, g \in \mathbf{F}^p$, then $(f \star g)(n) = \sum_{d|n} f(d)g(\frac{n}{d}) = 0$ for every n > 1 such that $p \nmid n$, because f(d) or $g(\frac{n}{d})$ is equal to 0 for every $d \mid n$. Given an integer n > 1 such that $p \nmid n$, assume that $f^{-1}(m) = 0$ for every $m \in \mathbb{N}$ such that $p \nmid m$ and 1 < m < n. Then $f \star f^{-1} = \mathbf{I}$ implies that $f^{-1}(n) = f^{-1}(n)f(1) = -\sum_{\substack{d|n \\ d>1}} f(d)f^{-1}(\frac{n}{d}) = -f(n)$. But f(n) = 0 since $f \in \mathbf{F}^p$ and so $f^{-1}(n) = 0$. It follows that $f^{-1} \in \mathbf{F}^p$.

3 Infinite upper-triangular matrices

An **infinite matrix** is a map from $\mathbb{N}_0 \times \mathbb{N}_0$ into \mathbb{R} . Intuitively, it is an array of real numbers with rows and columns indexed by the elements of \mathbb{N}_0 . We denote by **M** the set of infinite matrices, and by \mathbf{M}^+ the set of **upper-triangular non-zero** infinite matrices, i.e.

$$\mathbf{M}^+ = \{ m \in \mathbf{M} : m(a, a) \neq 0 \quad \forall a \in \mathbb{N}_0 \text{ and } m(a, b) = 0 \quad \forall a, b \in \mathbb{N}_0 \text{ s.t. } a > b \}.$$

Given two matrices $m, n \in \mathbf{M}^+$, their product $m \cdot n$ defined by

$$(m \cdot n)(a, b) := \sum_{c \in \mathbb{N}_0} m(a, c)n(c, b)$$

is well-defined since n(c, b) = 0 whenever c > b.

Theorem 3.1: \mathbf{M}^+ , \cdot is a group whose identity element is the infinite identity matrix I.

Proof. The only non trivial fact to prove is that every $m \in \mathbf{M}^+$ has an inverse m^{-1} for the product defined above. In order to find $m^{-1}(a, b)$, we first restrict m to a square matrix of size max(a, b). This restricted matrix has an inverse, which is a restricted m^{-1} . We find $m^{-1}(a, b)$ by taking the corresponding entry in the restricted m^{-1} . The matrix constructed in this way is indeed an element of \mathbf{M}^+ : the upper-triangular square matrices of given size form a group, and so the restricted inverse is also upper-triangular. Moreover, the product of the diagonal entries of any restriction of m^{-1} has to be non-zero, because these restrictions are invertible. Hence, all diagonal elements are non-zero.

Note that the group \mathbf{M}^+ has an obvious subgroup, namely the group \mathbf{M}^1 of upper-triangular infinite matrices all of whose diagonal entries are equal to 1.

4 Complete direct products

Many equivalent definitions can be found in the literature: Suzuki [6] gives a definition in terms of functions, Fuchs [2] and Kaplansky [3] use vectors and Kurosh [4] presents a more general concept.

Definition: A word over an infinite family of sets S_i $(i \in \mathbb{N}_0)$ is a set of elements of $\cup S_i$ having exactly one element in each S_i .

Definition: The complete (or Cartesian) direct product of the groups H_i, \star_i $(i \in \mathbb{N}_0)$ is the set of words over the H_i 's, endowed with the component-wise product defined as follows: the component-wise product of two words w_1 and w_2 is the word w_3 such that $w_3 \cap H_i = (w_1 \cap H_i) \star_i (w_2 \cap H_i)$ for every $i \in \mathbb{N}_0$.

This construction is well-defined and indeed gives a group, denoted from now on by $\overline{\prod}_{i \in \mathbb{N}_0} H_i, \star$, where the product \star depends on the products \star_i in the subgroups H_i . If all the subgroups H_i, \star_i are equal to H, \star , we simply denote their complete direct product by $\overline{\prod} H, \star_i$. **Theorem 4.1:** If $K_i, \star_i \cong L_i, \diamond_i$ for every $i \in \mathbb{N}_0$, then

$$K, \star := \overline{\prod}_{i \in \mathbb{N}_0} K_i, \star \cong \overline{\prod}_{i \in \mathbb{N}_0} L_i, \diamond =: L, \diamond$$

Proof. Suppose that an isomorphism from K_i onto L_i is given by $\phi_i : K_i \to L_i$, where $\phi_i(a \star_i b) = \phi_i(a) \diamond_i \phi_i(b)$ for every $a, b \in K_i$. We define a bijection ϕ from the set of words over the K_i 's onto the set of words over the L_i 's by writing $\phi(w) \cap L_i = \phi_i(w \cap K_i)$ for every $i \in \mathbb{N}_0$. This is of course well-defined for every $w \in K$. If two words w_1 and w_2 have the same image under ϕ , then their intersection with L_i is the same for every i, and so $\phi_i(w_1 \cap K_i) = \phi_i(w_2 \cap K_i)$ for every $i \in \mathbb{N}_0$; since ϕ_i is a bijection, it follows that $w_1 \cap K_i = w_2 \cap K_i$ for every $i \in \mathbb{N}_0$. Therefore $w_1 = w_2$ and ϕ is injective.

We now define a function ψ from the set of words over the L_i 's onto the set of words over the K_i 's by $\psi(w') \cap K_i = \psi_i(w' \cap L_i)$. Since ψ is also injective and since $\psi \circ \phi = \phi \circ \psi = Id$, ϕ is a bijection and $\phi^{-1} = \psi$.

We just have to make sure that ϕ is an isomorphism, i.e. that $\phi(a \star b) = \phi(a) \diamond \phi(b)$ for every $a, b \in K$. It suffices to check that $\phi(a \star b) \cap L_i = (\phi(a) \diamond \phi(b)) \cap L_i$ for every $i \in \mathbb{N}_0$. But

$$\begin{aligned}
\phi(a \star b) \cap L_i &= \phi_i((a \star b) \cap K_i) & \text{(by def. of } \phi) \\
&= \phi_i((a \cap K_i) \star (b \cap K_i)) & \text{(by def. of the product on words)} \\
&= \phi_i(a \cap K_i) \diamond \phi_i(b \cap K_i) & \text{(because } \phi_i \text{ is an isomorphism}) \\
&= (\phi(a) \cap L_i) \diamond (\phi(b) \cap L_i) & \text{(by def. of } \phi) \\
&= (\phi(a) \diamond \phi(b)) \cap L_i & \text{(by def. of the product of words)}
\end{aligned}$$

We will now prove that the group \mathbf{F}_0 , \star is isomorphic to a complete direct product of certain groups of upper-triangular matrices.

Theorem 5.1: $\mathbf{F}_0, \star \cong \overline{\prod}_{i \in \mathbb{N}_0} \mathbf{F}^{p_i}, \diamond$, where p_i is the *i*-th prime and \diamond denotes the product on the set of words.

Proof. We already know that every \mathbf{F}^{p_i} is a subgroup of \mathbf{F}_0, \star . We will construct a bijection ϕ from the set W of words over the \mathbf{F}^{p_i} 's onto \mathbf{F}_0 . Given a word $w \in W$, we define $\phi(w)$ as follows: for every $i, e \in \mathbb{N}_0$,

$$(\phi(w))(p_i^e) = (w \cap \mathbf{F}^{p_i})((p_i)^e)$$

Since a multiplicative function is determined by its values on prime powers, $\phi(w)$ is a multiplicative function. Trivially, ϕ is injective. It is also surjective: for a given multiplicative function f, take the word w_f such that $w_f \cap \mathbf{F}^{p_i}$ is equal to f on the powers of p_i and takes the value 0 on the powers of all the other primes. Its image under ϕ is obviously f. It remains to show that ϕ is an isomorphism, i.e. that $\phi(w_1 \diamond w_2) = \phi(w_1) \star \phi(w_2)$ for every $w_1, w_2 \in W$. For every $e, i \in \mathbb{N}_0$,

$$\begin{aligned} (\phi(w_1 \diamond w_2))(p_i^{e}) &= ((w_1 \diamond w_2) \cap \mathbf{F}^{p_i})(p_i^{e}) \\ &= ((w_1 \cap \mathbf{F}^{p_i}) \star (w_2 \cap \mathbf{F}^{p_i}))(p_i^{e}) \\ &= \sum_{0 \le t \le e} ((w_1 \cap \mathbf{F}^{p_i})(p_i^{t})) ((w_2 \cap \mathbf{F}^{p_i})(p_i^{e-t})) \\ &= \sum_{0 \le t \le e} (\phi(w_1)(p_i^{t})) (\phi(w_2)(p_i^{e-t})) \\ &= (\phi(w_1) \star \phi(w_2))(p_i^{e}) \end{aligned}$$

and so these two multiplicative functions are equal since they take the same values on prime powers.

In order to find an isomorphism between \mathbf{F}_{0} , \star and a group of infinite matrices, it is now sufficient to find such an isomorphism for each $\mathbf{F}^{p_{i}}$, \star and then use Theorem 4.1.

Theorem 5.2: Every group \mathbf{F}^{p_i} , \star is isomorphic to the same subgroup of \mathbf{M}^1 , \star .

Proof. For any $i \in \mathbb{N}_0$, we define a bijection ϕ from \mathbf{F}^{p_i} onto $\phi(\mathbf{F}^{p_i})$ by

$$\phi(f) = \begin{pmatrix} 1 & f(p_i) & f(p_i^2) & f(p_i^3) & \cdots \\ 0 & 1 & f(p_i) & f(p_i^2) & \ddots \\ 0 & 0 & 1 & f(p_i) & \ddots \\ \vdots & \vdots & \ddots & \ddots & \ddots \end{pmatrix}$$

 ϕ is an isomorphism because, if $f, g \in \mathbf{F}^{p_i}$, then

$$\begin{split} \phi(f) \cdot \phi(g) &= \begin{pmatrix} 1 & f(p_i) + g(p_i) & f(p_i^2) + f(p_i)g(p_i) + g(p_i^2) & \cdots \\ 0 & 1 & f(p_i) + g(p_i) & \ddots \\ 0 & 0 & 1 & \ddots \\ \vdots & \vdots & \ddots & \ddots & \ddots \end{pmatrix} \\ &= \begin{pmatrix} 1 & (f \star g)(p_i) & (f \star g)(p_i^2) & \cdots \\ 0 & 1 & (f \star g)(p_i) & \ddots \\ 0 & 0 & 1 & \ddots \\ \vdots & \vdots & \ddots & \ddots \end{pmatrix} \\ &= \phi(f \star g). \end{split}$$

The image of \mathbf{F}^{p_i} , i.e. the subset of \mathbf{M}^1 consisting of all matrices in which all the entries on a descending diagonal are equal, will be denoted by \mathbf{D}^1 .

The function ϕ immediately tells us that \mathbf{D}^1 , \cdot is a group isomorphic to \mathbf{F}^{p_i} , \star for every *i*, hence also that all the groups \mathbf{F}^{p_i} , \star are pairwise isomorphic.

The following result is now a consequence of Theorem 4.1:

Theorem 5.3: $F_0, \star \cong \overline{\prod} D^1$.

6 Divisibility

Definition: A group G is said to be **divisible** if for every $x \in G$ and every integer $n \in \mathbb{N}_0$, there exists an element $y \in G$ such that $y^n = x$.

Lemma 6.1: If H, \star is divisible, then $\overline{\Pi}H, \diamond$ is also divisible.

Proof. We denote the *i*-th copy of H by $H_{(i)}$. For a given w in $\overline{\prod} H$, define $\sqrt[n]{w}$ by

$$(\sqrt[n]{w}) \cap H_{(i)} = \sqrt[n]{w} \cap H_{(i)}.$$

Lemma 6.2: If a multiplicative group G, \star is divisible and torsion-free, then $x, y \in G$ and $x^n = y^n$ imply x = y.

Proof.

$$x^{n} = y^{n} \Leftrightarrow (x \star y^{-1})^{n} = 1 \Leftrightarrow x \star y^{-1} = 1 \Leftrightarrow x = y$$

Lemma 6.3: Every group \mathbf{F}^{p_i} , \star is divisible.

Proof: For every $n \in \mathbb{N}_0$ and every $e \in \mathbb{N}$,

$$(f^n)(p_i^{e}) = \sum_{\substack{e_i \in \mathbb{N} \\ e_1 + \dots + e_n = e}} \prod_{t=1}^n f(p_i^{e_t}).$$

This yields the following recursive definition of $\sqrt[n]{f}$:

$$(\sqrt[n]{f})(p_i^{e}) = \frac{1}{n} \cdot \{f(p_i^{e}) - \sum_{\substack{e_i \in \mathbb{N} \setminus \{e\}\\e_1 + \dots + e_n = e}} \prod_{t=1}^n \left[(\sqrt[n]{f})(p_i^{e_t})\right]\}$$

We are now able to conclude:

Theorem 7.1: The group \mathbf{F}_0, \star is divisible.

Remark: For any $f \in \mathbf{F}_0$, we may define $\frac{f}{n}$ and nf in a unique way as $\sqrt[n]{f}$ and f^n . It follows that \mathbf{F}_0 has the structure of a vector space over \mathbb{Q} , the scalar product being defined by the convolution of multiplicative functions. It is an easy exercise to check all the required axioms (this is also explained in Kaplansky [3]).

References

- T.M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976
- [2] L. Fuchs, Abelian Groups, Pergamon Press, Oxford, 1960.
- [3] I. Kaplansky, *Infinite Abelian Groups*, University of Michigan Press, Ann Arbor, 1954.
- [4] A.G. Kurosh, *Theory of Groups*, Chelsea Publishing Company, New York, 1955.
- [5] I. Niven and H.S. Zuckerman, An Introduction to the Theory of Numbers, Wiley, New York, 1972
- [6] M. Suzuki, Group Theory I, Springer-Verlag, Berlin, 1982.

Département de Mathématiques Campus Plaine C.P. 216 Université Libre de Bruxelles B-1050 Bruxelles Belgium

Current address : Department of Mathematics Stanford University CA 94305 U.S.A. email : pdehaye@math.stanford.edu