On the Structure of the Group of Multiplicative Arithmetical Functions

Paul-Olivier Dehaye

Abstract

We analyze the structure of the group $\mathbf{F}_{\mathbf{0}}$, of non-zero multiplicative arithmetical functions, where \star is the usual Dirichlet product. In particular, we prove that $\mathbf{F}_{\mathbf{0}}, \star$ is isomorphic to a complete direct product of certain subgroups of the multiplicative group of infinite upper-triangular matrices. We also show that the group $\mathbf{F}_{\mathbf{0}}, \star$ is divisible.

1 Introduction

An arithmetical function, i.e. a function $f: \mathbb{N}_{0} \rightarrow \mathbb{R}$, is called multiplicative if $f(m n)=f(m) f(n)$ whenever $(m, n)=1$. The Euler function ϕ and the Moebius function μ are classical examples of multiplicative functions. The arithmetical functions $\mathbf{0}$ and \mathbf{I} defined for every $n \in \mathbb{N}_{0}$ by $\mathbf{0}(n)=0, \mathbf{I}(n)=0$ or 1 according as $n \neq 1$ or $n=1$, are trivially multiplicative.

Let $\mathbf{F}_{\mathbf{0}}$ denote the set of all multiplicative functions different from $\mathbf{0}$. Clearly, $f(1)=1$ for every $f \in \mathbf{F}_{\mathbf{0}}$. The Dirichlet product (or convolution) of two arithmetical functions f and g is defined as follows: for every $n \in \mathbb{N}_{0}$,

$$
(f \star g)(n):=\sum_{d \mid n} f(d) g\left(\frac{n}{d}\right) .
$$

For any given prime p, we will consider the following subset of $\mathbf{F}_{\mathbf{0}}$:

$$
\mathbf{F}^{p}=\left\{f \in \mathbf{F}_{0}: f(n)=0 \text { for every } n>1 \text { not divisible by } p\right\}
$$

[^0]It is well-known (see for example Apostol [1, chapter 2] or Niven and Zuckerman [5, section 4.4]) that $\mathbf{F}_{\mathbf{0}}, \star$ is a commutative group.

The purpose of this paper is to analyze the structure of $\mathbf{F}_{\mathbf{0}}, \star$. We will prove the following result:

Theorem:

(a) The group $\mathbf{F}_{\mathbf{0}}, \star$ is torsion-free (i.e. has no element of finite order).
(b) \mathbf{F}^{p}, \star is a subgroup of $\mathbf{F}_{\mathbf{0}}, \star$ for every prime p. All the subgroups \mathbf{F}^{p}, \star are isomorphic to the same multiplicative group of infinite upper-triangular matrices.
(c) $\mathbf{F}_{\mathbf{0}}, \star$ is isomorphic to the complete direct product of the subgroups \mathbf{F}^{p}, \star.
(d) $\mathbf{F}_{\mathbf{0}}, \star$ is divisible and has a natural structure of vector space over \mathbb{Q}.

Acknowledgements. The author wishes to thank F. Buekenhout and J. Doyen for their help during the preparation of this paper.

2 Multiplicative functions

Theorem 2.1: The group $\mathbf{F}_{\mathbf{0}}, \star$ is torsion-free (i.e. has no element of finite order).

Proof. Assume that the torsion subgroup of $\mathbf{F}_{\mathbf{0}}, \star$ is non-trivial, and let q be the smallest prime power for which there is a function f in the torsion subgroup of $\mathbf{F}_{\mathbf{0}}, \star$ such that $f(q) \neq 0$. If we denote by f^{n} the Dirichlet product of n copies of f, it is easily proved by induction that, for every $n \in \mathbb{N}_{0},\left(f^{n}\right)(q)=n f(q) \neq 0$, contradicting the fact that we should have $f^{n}=\mathbf{0}$ for some n.

Theorem 2.2: For any given prime p, \mathbf{F}^{p} is a subgroup of $\mathbf{F}_{\mathbf{0}}, \star$.
Proof. Clearly, $\mathbf{I} \in \mathbf{F}^{p}$ for every prime p. If $f, g \in \mathbf{F}^{p}$, then $(f \star g)(n)=$ $\sum_{d \mid n} f(d) g\left(\frac{n}{d}\right)=0$ for every $n>1$ such that $p \nmid n$, because $f(d)$ or $g\left(\frac{n}{d}\right)$ is equal to 0 for every $d \mid n$. Given an integer $n>1$ such that $p \nmid n$, assume that $f^{-1}(m)=0$ for every $m \in \mathbb{N}$ such that $p \nmid m$ and $1<m<n$. Then $f \star f^{-1}=\mathbf{I}$ implies that $f^{-1}(n)=f^{-1}(n) f(1)=-\sum_{\substack{d \mid n \\ d>1}} f(d) f^{-1}\left(\frac{n}{d}\right)=-f(n)$. But $f(n)=0$ since $f \in \mathbf{F}^{p}$ and so $f^{-1}(n)=0$. It follows that $f^{-1} \in \mathbf{F}^{p}$.

3 Infinite upper-triangular matrices

An infinite matrix is a map from $\mathbb{N}_{0} \times \mathbb{N}_{0}$ into \mathbb{R}. Intuitively, it is an array of real numbers with rows and columns indexed by the elements of \mathbb{N}_{0}. We denote by \mathbf{M} the set of infinite matrices, and by \mathbf{M}^{+}the set of upper-triangular non-zero infinite matrices, i.e.

$$
\mathbf{M}^{+}=\left\{m \in \mathbf{M}: m(a, a) \neq 0 \quad \forall a \in \mathbb{N}_{0} \text { and } m(a, b)=0 \quad \forall a, b \in \mathbb{N}_{0} \text { s.t. } a>b\right\} .
$$

Given two matrices $m, n \in \mathbf{M}^{+}$, their product $m \cdot n$ defined by

$$
(m \cdot n)(a, b):=\sum_{c \in \mathbb{N}_{0}} m(a, c) n(c, b)
$$

is well-defined since $n(c, b)=0$ whenever $c>b$.
Theorem 3.1: \mathbf{M}^{+}, is a group whose identity element is the infinite identity matrix I.

Proof. The only non trivial fact to prove is that every $m \in \mathbf{M}^{+}$has an inverse m^{-1} for the product defined above. In order to find $m^{-1}(a, b)$, we first restrict m to a square matrix of size $\max (a, b)$. This restricted matrix has an inverse, which is a restricted m^{-1}. We find $m^{-1}(a, b)$ by taking the corresponding entry in the restricted m^{-1}. The matrix constructed in this way is indeed an element of \mathbf{M}^{+}: the upper-triangular square matrices of given size form a group, and so the restricted inverse is also upper-triangular. Moreover, the product of the diagonal entries of any restriction of m^{-1} has to be non-zero, because these restrictions are invertible. Hence, all diagonal elements are non-zero.

Note that the group \mathbf{M}^{+}has an obvious subgroup, namely the group \mathbf{M}^{1} of upper-triangular infinite matrices all of whose diagonal entries are equal to 1 .

4 Complete direct products

Many equivalent definitions can be found in the literature: Suzuki [6] gives a definition in terms of functions, Fuchs [2] and Kaplansky [3] use vectors and Kurosh [4] presents a more general concept.

Definition: A word over an infinite family of sets $S_{i}\left(i \in \mathbb{N}_{0}\right)$ is a set of elements of $\cup S_{i}$ having exactly one element in each S_{i}.

Definition: The complete (or Cartesian) direct product of the groups H_{i}, \star_{i} ($i \in \mathbb{N}_{0}$) is the set of words over the H_{i} 's, endowed with the component-wise product defined as follows: the component-wise product of two words w_{1} and w_{2} is the word w_{3} such that $w_{3} \cap H_{i}=\left(w_{1} \cap H_{i}\right) \star_{i}\left(w_{2} \cap H_{i}\right)$ for every $i \in \mathbb{N}_{0}$.

This construction is well-defined and indeed gives a group, denoted from now on by $\bar{\Pi}_{i \in \mathbb{N}_{0}} H_{i}$, , where the product \star depends on the products \star_{i} in the subgroups H_{i}. If all the subgroups H_{i}, \star_{i} are equal to H, \star, we simply denote their complete direct product by $\bar{\Pi} H, \star$.

Theorem 4.1: If $K_{i}, \star_{i} \cong L_{i}, \diamond_{i}$ for every $i \in \mathbb{N}_{0}$, then

$$
K, \star:=\bar{\prod}_{i \in \mathbb{N}_{0}} K_{i}, \star \cong \bar{\prod}_{i \in \mathbb{N}_{0}} L_{i}, \diamond=: L, \diamond
$$

Proof. Suppose that an isomorphism from K_{i} onto L_{i} is given by $\phi_{i}: K_{i} \rightarrow L_{i}$, where $\phi_{i}\left(a \star_{i} b\right)=\phi_{i}(a) \diamond_{i} \phi_{i}(b)$ for every $a, b \in K_{i}$. We define a bijection ϕ from the set of words over the K_{i} 's onto the set of words over the L_{i} 's by writing $\phi(w) \cap L_{i}=$ $\phi_{i}\left(w \cap K_{i}\right)$ for every $i \in \mathbb{N}_{0}$. This is of course well-defined for every $w \in K$. If two words w_{1} and w_{2} have the same image under ϕ, then their intersection with L_{i} is the same for every i, and so $\phi_{i}\left(w_{1} \cap K_{i}\right)=\phi_{i}\left(w_{2} \cap K_{i}\right)$ for every $i \in \mathbb{N}_{0}$; since ϕ_{i} is a bijection, it follows that $w_{1} \cap K_{i}=w_{2} \cap K_{i}$ for every $i \in \mathbb{N}_{0}$. Therefore $w_{1}=w_{2}$ and ϕ is injective.
We now define a function ψ from the set of words over the L_{i} 's onto the set of words over the K_{i} 's by $\psi\left(w^{\prime}\right) \cap K_{i}=\psi_{i}\left(w^{\prime} \cap L_{i}\right)$. Since ψ is also injective and since $\psi \circ \phi=\phi \circ \psi=I d, \phi$ is a bijection and $\phi^{-1}=\psi$.
We just have to make sure that ϕ is an isomorphism, i.e. that $\phi(a \star b)=\phi(a) \diamond \phi(b)$ for every $a, b \in K$. It suffices to check that $\phi(a \star b) \cap L_{i}=(\phi(a) \diamond \phi(b)) \cap L_{i}$ for every $i \in \mathbb{N}_{0}$. But

$$
\begin{aligned}
\phi(a \star b) \cap L_{i} & =\phi_{i}\left((a \star b) \cap K_{i}\right) & & \text { (by def. of } \phi \text {) } \\
& =\phi_{i}\left(\left(a \cap K_{i}\right) \star\left(b \cap K_{i}\right)\right) & & \text { (by def. of the product on words) } \\
& =\phi_{i}\left(a \cap K_{i}\right) \diamond \phi_{i}\left(b \cap K_{i}\right) & & \text { (because } \phi_{i} \text { is an isomorphism) } \\
& =\left(\phi(a) \cap L_{i}\right) \diamond\left(\phi(b) \cap L_{i}\right) & & \text { (by def. of } \phi) \\
& =(\phi(a) \diamond \phi(b)) \cap L_{i} & & \text { (by def. of the product of words) }
\end{aligned}
$$

5 Isomorphism

We will now prove that the group $\mathbf{F}_{\mathbf{0}}, \star$ is isomorphic to a complete direct product of certain groups of upper-triangular matrices.

Theorem 5.1: $\mathbf{F}_{\mathbf{0}}, \star \cong \bar{\prod}_{i \in \mathbb{N}_{0}} \mathbf{F}^{p_{i}}, \diamond$, where p_{i} is the i-th prime and \diamond denotes the product on the set of words.

Proof. We already know that every $\mathbf{F}^{p_{i}}$ is a subgroup of $\mathbf{F}_{\mathbf{0}}, \star$. We will construct a bijection ϕ from the set W of words over the $\mathbf{F}^{p_{i}}$'s onto $\mathbf{F}_{\mathbf{0}}$. Given a word $w \in W$, we define $\phi(w)$ as follows: for every $i, e \in \mathbb{N}_{0}$,

$$
(\phi(w))\left(p_{i}^{e}\right)=\left(w \cap \mathbf{F}^{p_{i}}\right)\left(\left(p_{i}\right)^{e}\right)
$$

Since a multiplicative function is determined by its values on prime powers, $\phi(w)$ is a multiplicative function. Trivially, ϕ is injective. It is also surjective: for a given multiplicative function f, take the word w_{f} such that $w_{f} \cap \mathbf{F}^{p_{i}}$ is equal to f on the powers of p_{i} and takes the value 0 on the powers of all the other primes. Its image under ϕ is obviously f.

It remains to show that ϕ is an isomorphism, i.e. that $\phi\left(w_{1} \diamond w_{2}\right)=\phi\left(w_{1}\right) \star \phi\left(w_{2}\right)$ for every $w_{1}, w_{2} \in W$. For every $e, i \in \mathbb{N}_{0}$,

$$
\begin{aligned}
\left(\phi\left(w_{1} \diamond w_{2}\right)\right)\left(p_{i}^{e}\right) & =\left(\left(w_{1} \diamond w_{2}\right) \cap \mathbf{F}^{p_{i}}\right)\left(p_{i}^{e}\right) \\
& =\left(\left(w_{1} \cap \mathbf{F}^{p_{i}}\right) \star\left(w_{2} \cap \mathbf{F}^{p_{i}}\right)\right)\left(p_{i}^{e}\right) \\
& =\sum_{0 \leq t \leq e}\left(\left(w_{1} \cap \mathbf{F}^{p_{i}}\right)\left(p_{i} t\right)\right)\left(\left(w_{2} \cap \mathbf{F}^{p_{i}}\right)\left(p_{i}^{e-t}\right)\right) \\
& =\sum_{0 \leq t \leq e}\left(\phi\left(w_{1}\right)\left(p_{i}^{t}\right)\right)\left(\phi\left(w_{2}\right)\left(p_{i}^{e-t}\right)\right) \\
& =\left(\phi\left(w_{1}\right) \star \phi\left(w_{2}\right)\right)\left(p_{i}^{e}\right)
\end{aligned}
$$

and so these two multiplicative functions are equal since they take the same values on prime powers.

In order to find an isomorphism between $\mathbf{F}_{\mathbf{0}}, \star$ and a group of infinite matrices, it is now sufficient to find such an isomorphism for each $\mathbf{F}^{p_{i}}, \star$ and then use Theorem 4.1.

Theorem 5.2: Every group $\mathbf{F}^{p_{i}}, \star$ is isomorphic to the same subgroup of \mathbf{M}^{1}, \star.

Proof. For any $i \in \mathbb{N}_{0}$, we define a bijection ϕ from $\mathbf{F}^{p_{i}}$ onto $\phi\left(\mathbf{F}^{p_{i}}\right)$ by

$$
\phi(f)=\left(\begin{array}{ccccc}
1 & f\left(p_{i}\right) & f\left(p_{i}{ }^{2}\right) & f\left(p_{i}{ }^{3}\right) & \cdots \\
0 & 1 & f\left(p_{i}\right) & f\left(p_{i}{ }^{2}\right) & \ddots \\
0 & 0 & 1 & f\left(p_{i}\right) & \ddots \\
\vdots & \vdots & \ddots & \ddots & \ddots
\end{array}\right)
$$

ϕ is an isomorphism because, if $f, g \in \mathbf{F}^{p_{i}}$, then

$$
\begin{aligned}
\phi(f) \cdot \phi(g) & =\left(\begin{array}{cccc}
1 & f\left(p_{i}\right)+g\left(p_{i}\right) & f\left(p_{i}{ }^{2}\right)+f\left(p_{i}\right) g\left(p_{i}\right)+g\left(p_{i}{ }^{2}\right) & \cdots \\
0 & 1 & f\left(p_{i}\right)+g\left(p_{i}\right) & \ddots \\
0 & 0 & 1 & \ddots \\
\vdots & \vdots & & \ddots
\end{array}\right) \\
& =\left(\begin{array}{cccc}
1 & (f \star g)\left(p_{i}\right) & (f \star g)\left(p_{i}{ }^{2}\right) & \cdots \\
0 & 1 & (f \star g)\left(p_{i}\right) & \ddots \\
0 & 0 & 1 & \ddots \\
\vdots & \vdots & \ddots & \ddots
\end{array}\right) \\
& =\phi(f \star g) .
\end{aligned}
$$

The image of $\mathbf{F}^{p_{i}}$, i.e. the subset of \mathbf{M}^{1} consisting of all matrices in which all the entries on a descending diagonal are equal, will be denoted by \mathbf{D}^{1}.

The function ϕ immediately tells us that \mathbf{D}^{1}, \cdot is a group isomorphic to $\mathbf{F}^{p_{i}}, \star$ for every i, hence also that all the groups $\mathbf{F}^{p_{i}}, \star$ are pairwise isomorphic.

The following result is now a consequence of Theorem 4.1:
Theorem 5.3: $\mathrm{F}_{\mathbf{0}}, \star \cong \bar{\Pi} \mathbf{D}^{1}$.

6 Divisibility

Definition: A group G is said to be divisible if for every $x \in G$ and every integer $n \in \mathbb{N}_{0}$, there exists an element $y \in G$ such that $y^{n}=x$.

Lemma 6.1: If H, \star is divisible, then $\bar{\Pi} H, \diamond$ is also divisible.
Proof. We denote the i-th copy of H by $H_{(i)}$. For a given w in $\bar{\Pi} H$, define $\sqrt[n]{w}$ by

$$
(\sqrt[n]{w}) \cap H_{(i)}=\sqrt[n]{w \cap H_{(i)}}
$$

Lemma 6.2: If a multiplicative group G, \star is divisible and torsion-free, then $x, y \in G$ and $x^{n}=y^{n}$ imply $x=y$.

Proof.

$$
x^{n}=y^{n} \Leftrightarrow\left(x \star y^{-1}\right)^{n}=1 \Leftrightarrow x \star y^{-1}=1 \Leftrightarrow x=y
$$

Lemma 6.3: Every group $\mathbf{F}^{p_{i}}, \star$ is divisible.
Proof: For every $n \in \mathbb{N}_{0}$ and every $e \in \mathbb{N}$,

$$
\left(f^{n}\right)\left(p_{i}^{e}\right)=\sum_{\substack{e_{i} \in \mathbb{N} \\ e_{1}+\cdots+e_{n}=e}} \prod_{t=1}^{n} f\left(p_{i}^{e_{t}}\right) .
$$

This yields the following recursive definition of $\sqrt[n]{f}$:

$$
(\sqrt[n]{f})\left(p_{i}^{e}\right)=\frac{1}{n} \cdot\left\{f\left(p_{i}^{e}\right)-\sum_{\substack{e_{i} \in \mathbb{N} \backslash\{e\} \\ e_{1}+\ldots+e_{n}=e}} \prod_{t=1}^{n}\left[(\sqrt[n]{f})\left(p_{i}^{e^{e}}\right)\right]\right\} .
$$

We are now able to conclude:
Theorem 7.1: The group $\mathbf{F}_{\mathbf{0}}, \star$ is divisible.
Remark: For any $f \in \mathbf{F}_{0}$, we may define $\frac{f}{n}$ and $n f$ in a unique way as $\sqrt[n]{f}$ and f^{n}. It follows that $\mathbf{F}_{\mathbf{0}}$ has the structure of a vector space over \mathbb{Q}, the scalar product being defined by the convolution of multiplicative functions. It is an easy exercise to check all the required axioms (this is also explained in Kaplansky [3]).

References

[1] T.M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976
[2] L. Fuchs, Abelian Groups, Pergamon Press, Oxford, 1960.
[3] I. Kaplansky, Infinite Abelian Groups, University of Michigan Press, Ann Arbor, 1954.
[4] A.G. Kurosh, Theory of Groups, Chelsea Publishing Company, New York, 1955.
[5] I. Niven and H.S. Zuckerman, An Introduction to the Theory of Numbers, Wiley, New York, 1972
[6] M. Suzuki, Group Theory I, Springer-Verlag, Berlin, 1982.

Département de Mathématiques
Campus Plaine C.P. 216
Université Libre de Bruxelles
B-1050 Bruxelles
Belgium
Current address :
Department of Mathematics
Stanford University
CA 94305 U.S.A.
email : pdehaye@math.stanford.edu

[^0]: Received by the editors November 2000.
 Communicated by J. Doyen.

