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Abstract

The aim of this paper is to prove that (a) Lw∗ (X∗, Y ) contains a copy of
c0 if and only if either X or Y contains a copy of c0, or Lw∗ (X∗, Y ) contains
a copy of `∞, and (b) If both X and Y contain a copy of c0, then Lw∗(X∗, Y )
contains a copy of `∞. From these facts we extract some consequences.

1 Preliminaries

If X and Y are two Banach spaces over the same field K (R or C), we denote
by L (X, Y ) the Banach space of all bounded linear operators from X into Y

equipped with the operator norm and by Lw∗ (X∗, Y ) the closed linear subspace of
L (X∗, Y ) formed by all weak∗-weakly continuous linear operators. The closed sub-
space of Lw∗ (X∗, Y ) consisting of all those compact operators will be designed by
Kw∗ (X∗, Y ), whereas W (X, Y ) will stand for the closed linear subspace of L (X, Y )
consisting of all weakly compact operators. If (Ω,Σ, µ) is a non-trivial positive finite
measure space and X a Banach space, we will denote by P1(µ,X) the linear space
over the field K of all X-valued [classes of scalarly equivalent] weakly µ-measurable
Pettis integrable functions f defined on Ω, equipped with the norm

‖f‖
1

= sup
{
∫

Ω

|x∗f (ω)| dµ (ω) : x∗ ∈ X∗, ‖x∗‖ ≤ 1
}

.

In what follow we will shorten the sentence ‘weakly unconditionally Cauchy’ by
‘wuC’. Three relevant results concerning copies of c0 and `∞ in Lw∗ (X∗, Y ) and
Kw∗ (X∗, Y ) are in order.
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Theorem 1.1. ([1, main Thm.]) Kw∗ (X∗, Y ) contains a copy of `∞ if and only if
either X contains a copy of `∞ or Y contains a copy of `∞.

Theorem 1.2. ([2, main Thm.]) Assuming Lw∗ (X∗, Y ) contains a complemented
copy of c0, then either X contains a copy of c0 or Y contains a copy of c0.

Theorem 1.3. ([3, main Thm.]) If c0 embeds into Kw∗ (X∗, Y ), either Kw∗(X∗, Y ) =
Lw∗ (X∗, Y ) or Kw∗ (X∗, Y ) is uncomplemented in Lw∗ (X∗, Y ).

The aim of this paper is to complete the study of copies of c0 in Lw∗ (X∗, Y ) by
proving the two theorems below, from which we will obtain several consequences;
among them, Theorem 1.2.

Theorem 1.4. Lw∗ (X∗, Y ) contains a copy of c0 if and only if either (a) X or Y
contains a copy of c0, or (b) Lw∗ (X∗, Y ) contains a copy of `∞.

Theorem 1.5. If both X and Y contain a copy of c0, then Lw∗(X∗, Y ) contains a
copy of `∞.

2 Proof of Theorem 1.4

We will show the nontrivial ‘only if’ part, which is essentially contained in [2]. So
assume that c0 embeds into Lw∗ (X∗, Y ) but neither X nor Y contain a copy of
c0. Let {Tn} be a normalized sequence in Lw∗ (X∗, Y ) equivalent to the unit vector
basis {en} of c0, and let J be a topological isomorphism from c0 into Lw∗ (X∗, Y )
such that Jen = Tn for each n ∈ N. Since the formal series

∑

∞

n=1 Tn is wuC and
the linear form on Lw∗ (X∗, Y ) given by T → y∗Tx∗ is continuous for each x∗ ∈ X∗

and y∗ ∈ Y ∗, it follows that
∑

∞

n=1 |y
∗Tnx

∗| < ∞. Hence, the series
∑

∞

n=1 Tnx
∗ in

Y is wuC for each x∗ ∈ X∗ and, as Y contains no copy of c0, this implies that the
series

∑

∞

n=1 ξnTnx
∗ converges [in norm] in Y for each ξ ∈ `∞ and x∗ ∈ X∗. This fact

allows us to consider the linear map ϕ : `∞ → L (X∗, Y ) defined by

(ϕξ)x∗ =
∞
∑

n=1

ξnTnx
∗

for each x∗ ∈ X∗. This linear operator is well-defined and bounded. Indeed, choosing
C > 0 such that

sup
n∈N

∥

∥

∥

∥

∥

n
∑

i=1

ξiTix
∗

∥

∥

∥

∥

∥

Y

≤ C ‖x∗‖ ‖ξ‖
∞

for each ξ ∈ `∞ and x∗ ∈ X∗, for each fixed pair (ξ, x∗) ∈ `∞ × X∗ there exists

n0 ∈ N with
∥

∥

∥

∑

∞

i=n0+1 ξiTix
∗

∥

∥

∥

Y
< ε, which implies that

‖(ϕξ)x∗‖
Y
≤ C ‖x∗‖ ‖ξ‖

∞
+ ε.

This shows at the same time that ϕξ ∈ L (X∗, Y ) and that ϕ is bounded. Now let
us prove that ϕ (`∞) ⊆ Lw∗ (X∗, Y ).

Let ξ be a fixed non null element of `∞. We are going to see that ϕξ is weak*-
weakly continuous. Since T → x∗ (T ∗y∗) = y∗Tx∗ is a continuous linear form
on L (X∗, Y ), then

∑

∞

n=1 |x
∗ (T ∗

n
y∗)| < ∞ and thus the series

∑

∞

n=1 T
∗

n
y∗ in X is



On copies of c0 and `∞ in Lw∗(X∗, Y ) 261

wuC for each y∗ ∈ Y ∗. Given that c0 is not embedded into X, then
∑

∞

n=1 T
∗

n
y∗ is

unconditionally convergent in norm for each y∗ ∈ Y ∗. In particular,
∑

∞

n=1 ξnT
∗

n
y∗

converges in X for each y∗ ∈ Y ∗. Let {x∗
d

: d ∈ D} be a net in X∗ which converges
to some x∗ ∈ X∗ under the weak* topology of X∗. Working from now onwards with
some concrete y∗ ∈ Y ∗ and given ε > 0, there is k ∈ D such that

∣

∣

∣

∣

∣

〈

x∗
d
− x∗,

∞
∑

n=1

ξnT
∗

n
y∗
〉∣

∣

∣

∣

∣

< ε

for each d > k. On the other hand, since
∑

∞

n=1 ξnT
∗

n
y∗ converges in norm in X, then

lim
n→∞

n
∑

i=1

ξi (x
∗

d
− x∗)T ∗

i
y∗ =

∣

∣

∣

∣

∣

〈

x∗
d
− x∗,

∞
∑

n=1

ξnT
∗

n
y∗
〉∣

∣

∣

∣

∣

for each d ∈ D, and due to the fact that
∑

∞

n=1 ξnTn (x∗
d
− x∗) converges in norm in

Y to (ϕξ) (x∗
d
− x∗) for each d ∈ D, one has that

y∗ (ϕξ) (x∗
d
− x∗) = lim

n→∞

n
∑

i=1

ξiy
∗Ti (x

∗

d
− x∗) = lim

n→∞

n
∑

i=1

ξi (x
∗

d
− x∗)T ∗

i
y∗

=

∣

∣

∣

∣

∣

〈

x∗
d
− x∗,

∞
∑

n=1

ξnT
∗

n
y∗
〉∣

∣

∣

∣

∣

for each d ∈ D. Therefore,

|y∗ (ϕξ) (x∗
d
− x∗)| < ε

for each d > k, i.e. y∗ (ϕξ)x∗
d
→ y∗ (ϕξ)x∗. Since this is true for every y∗ ∈ Y ∗,

it follows that (ϕξ)x∗
d
→ (ϕξ)x∗ under the weak topology of Y . Consequently, we

have that ϕ (`∞) ⊆ Lw∗ (X∗Y ) as stated. Finally, since

‖ϕen‖ = sup {‖(ϕen)x∗‖
Y

: x∗ ∈ X∗, ‖x∗‖ ≤ 1}

= sup {‖Tnx
∗‖

Y
: x∗ ∈ X∗, ‖x∗‖ ≤ 1} = ‖Tn‖ = 1

for each n ∈ N, Rosenthal’s `∞ theorem implies that `∞ embeds into Lw∗ (X∗Y ).

3 Proof of Theorem 1.5

Let {xn} and {yn} be two normalized basic sequences in X and Y , respectively,
equivalent to the unit vector basis {en} of c0. Since the formal series

∑

∞

n=1 xn and
∑

∞

n=1 yn are wuC, it follows that xn → 0 under the weak topology of X and yn → 0
under the weak topology of Y . Consider the linear mapping ψ : `∞ → L (X∗, Y )
defined by

(ψξ)x∗ =
∞
∑

n=1

ξnx
∗xn · yn

for each x∗ ∈ X∗. This linear operator is well-defined and bounded. Indeed, first
note that ξnx

∗xn → 0, so
∑

∞

n=1 ξnx
∗xn · yn converges in Y in norm. On the other

hand, if C > 0 satisfies that

sup
n∈N

∥

∥

∥

∥

∥

n
∑

i=1

ξix
∗xi · yi

∥

∥

∥

∥

∥

Y

≤ C sup
n∈N

|ξnx
∗xn| ≤ C ‖ξ‖

∞
‖x∗‖
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for each ξ ∈ `∞ and x∗ ∈ X∗, then

‖(ψξ)x∗‖
Y

=

∥

∥

∥

∥

∥

∞
∑

i=1

ξix
∗xi · yi

∥

∥

∥

∥

∥

Y

≤ C ‖ξ‖
∞
‖x∗‖

for each ξ ∈ `∞ and x∗ ∈ X∗. Hence, ψξ ∈ L (X∗, Y ) for each ξ ∈ `∞ and ψ

is bounded. Now, let us show that ψ (`∞) ⊆ Lw∗ (X∗, Y ). So, choose some fixed
ξ ∈ `∞ and consider a net {x∗

d
: d ∈ D} in X∗ converging to some x∗ ∈ X∗ under

the weak* topology of X∗. We have to prove that y∗ (ψξ)x∗
d
→ y∗ (ψξ)x∗ for each

y∗ ∈ Y ∗. Thus, let us work with some concrete y∗ ∈ Y ∗. Since
∑

∞

n=1 ξny
∗yn ·xn ∈ X,

we have

x∗
d

(

∞
∑

n=1

ξny
∗yn · xn

)

→ x∗
(

∞
∑

n=1

ξny
∗yn · xn

)

But, since
∞
∑

n=1

ξny
∗yn · x

∗

d
xn = x∗

d

(

∞
∑

n=1

ξny
∗yn · xn

)

for each d ∈ D and

∞
∑

n=1

ξny
∗yn · x

∗xn = x∗
(

∞
∑

n=1

ξny
∗yn · xn

)

,

we obtain that
∞
∑

n=1

ξny
∗yn · x

∗

d
xn →

∞
∑

n=1

ξny
∗yn · x

∗xn. (3.1)

On the other hand, since
∑

∞

n=1 ξnx
∗xn · yn converges in Y , we have

∞
∑

n=1

ξnx
∗

d
xn · y

∗yn = y∗
(

∞
∑

n=1

ξnx
∗

d
xn · yn

)

= y∗ (ψξ)x∗
d

(3.2)

and
∞
∑

n=1

ξnx
∗xn · y

∗yn = y∗
(

∞
∑

n=1

ξnx
∗xn · yn

)

= y∗ (ψξ)x∗ (3.3)

Therefore, from (3.1), (3.2) and (3.3), we conclude that

y∗ (ψξ)x∗
d
→ y∗ (ψξ)x∗

as required.
Finally, since ‖ψen‖ = sup {‖x∗xn · yn‖ : ‖x∗‖ ≤ 1} = ‖xn‖ ‖yn‖ = 1 for each

n ∈ N, Rosenthal’s `∞ theorem guarantees that `∞ is embedded into Lw∗ (X∗, Y ).
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4 Some consequences

Corollary 4.1. If P1(µ,X) contains a copy of c0, then either X contains a copy of
c0 or Lw∗(X∗, L1(µ)) contains a copy of `∞.

Proof. According to a result of Huff [4], P1(µ,X) is embedded into Lw∗(X∗, L1(µ)).
Since L1 (µ) contains no copy of c0, the statement of the corollary is an obvious
consequence of Theorem 1.4. �

Corollary 4.2. (Theorem 1.2) Assuming Lw∗ (X∗, Y ) contains a complemented copy
of c0, then either X contains a copy of c0 or Y contains a copy of c0.

Proof. Looking at the proof of Theorem 1.4, assuming by contradiction that neither
X or Y contains a copy of c0 and denoting by P a bounded projection operator from
Lw∗ (X∗, Y ) onto J (c0), then J−1 ◦ P ◦ ϕ is a bounded quotient map from `∞ onto
c0, a contradiction. �

Corollary 4.3. Assume that W (X, Y ) contains a copy of c0. If c0 is not embedded
into X∗ or Y , then W (X, Y ) contains a copy of `∞.

Proof. This is due to Theorem 1.4 and to the fact that W (X, Y ) is isomorphic to
Lw∗ (X∗∗, Y ). �

Corollary 4.4. Assume that Lw∗(X∗, Y ) contains a copy of c0. If Kw∗(X∗, Y ) =
Lw∗ (X∗, Y ), then either X contains a copy of c0 or Y contains a copy of c0.

Proof. Assume Lw∗(X∗, Y ) contains a copy of c0. If neither X or Y contains a copy
of c0, according to Theorem 1.4, Lw∗ (X∗, Y ) must contain a copy of `∞. Since
Kw∗(X∗, Y ) = Lw∗ (X∗, Y ), applying Theorem 1.1, either X or Y contains a copy
of `∞, a contradiction. �

Corollary 4.5. Assume that both X and Y contain a copy of c0. If neither X nor
Y contain a copy of `∞, then Kw∗(X∗, Y ) is not complemented in Lw∗(X∗, Y ).

Proof. According to Theorem 1.5, Lw∗ (X∗, Y ) must contain a copy of `∞. But since
neither X nor Y contain a copy of `∞, Theorem 1.1 implies that Kw∗(X∗, Y ) 6=
Lw∗ (X∗, Y ). Since c0 is embedded into Kw∗(X∗, Y ), Theorem 1.3 guarantees that
Kw∗(X∗, Y ) is uncomplemented in Lw∗(X∗, Y ). �
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