On copies of c_{0} and ℓ_{∞} in $L_{w^{*}}\left(X^{*}, Y\right)$

J.C. Ferrando *

Abstract

The aim of this paper is to prove that (a) $L_{w^{*}}\left(X^{*}, Y\right)$ contains a copy of c_{0} if and only if either X or Y contains a copy of c_{0}, or $L_{w^{*}}\left(X^{*}, Y\right)$ contains a copy of ℓ_{∞}, and (b) If both X and Y contain a copy of c_{0}, then $L_{w^{*}}\left(X^{*}, Y\right)$ contains a copy of ℓ_{∞}. From these facts we extract some consequences.

1 Preliminaries

If X and Y are two Banach spaces over the same field $\mathbb{K}(\mathbb{R}$ or $\mathbb{C})$, we denote by $L(X, Y)$ the Banach space of all bounded linear operators from X into Y equipped with the operator norm and by $L_{w^{*}}\left(X^{*}, Y\right)$ the closed linear subspace of $L\left(X^{*}, Y\right)$ formed by all weak*-weakly continuous linear operators. The closed subspace of $L_{w^{*}}\left(X^{*}, Y\right)$ consisting of all those compact operators will be designed by $K_{w^{*}}\left(X^{*}, Y\right)$, whereas $W(X, Y)$ will stand for the closed linear subspace of $L(X, Y)$ consisting of all weakly compact operators. If (Ω, Σ, μ) is a non-trivial positive finite measure space and X a Banach space, we will denote by $\mathcal{P}_{1}(\mu, X)$ the linear space over the field K of all X -valued [classes of scalarly equivalent] weakly μ-measurable Pettis integrable functions f defined on Ω, equipped with the norm

$$
\|f\|_{1}=\sup \left\{\int_{\Omega}\left|x^{*} f(\omega)\right| d \mu(\omega): x^{*} \in X^{*},\left\|x^{*}\right\| \leq 1\right\} .
$$

In what follow we will shorten the sentence 'weakly unconditionally Cauchy' by 'wuC'. Three relevant results concerning copies of c_{0} and ℓ_{∞} in $L_{w^{*}}\left(X^{*}, Y\right)$ and $K_{w^{*}}\left(X^{*}, Y\right)$ are in order.

[^0]Theorem 1.1. ([1, main Thm.]) $K_{w^{*}}\left(X^{*}, Y\right)$ contains a copy of ℓ_{∞} if and only if either X contains a copy of ℓ_{∞} or Y contains a copy of ℓ_{∞}.

Theorem 1.2. ([2, main Thm.]) Assuming $L_{w^{*}}\left(X^{*}, Y\right)$ contains a complemented copy of c_{0}, then either X contains a copy of c_{0} or Y contains a copy of c_{0}.

Theorem 1.3. ([3, main Thm.]) If c_{0} embeds into $K_{w^{*}}\left(X^{*}, Y\right)$, either $K_{w^{*}}\left(X^{*}, Y\right)=$ $L_{w^{*}}\left(X^{*}, Y\right)$ or $K_{w^{*}}\left(X^{*}, Y\right)$ is uncomplemented in $L_{w^{*}}\left(X^{*}, Y\right)$.

The aim of this paper is to complete the study of copies of c_{0} in $L_{w^{*}}\left(X^{*}, Y\right)$ by proving the two theorems below, from which we will obtain several consequences; among them, Theorem 1.2.

Theorem 1.4. $L_{w^{*}}\left(X^{*}, Y\right)$ contains a copy of c_{0} if and only if either (a) X or Y contains a copy of c_{0}, or (b) $L_{w^{*}}\left(X^{*}, Y\right)$ contains a copy of ℓ_{∞}.

Theorem 1.5. If both X and Y contain a copy of c_{0}, then $L_{w^{*}}\left(X^{*}, Y\right)$ contains a copy of ℓ_{∞}.

2 Proof of Theorem 1.4

We will show the nontrivial 'only if' part, which is essentially contained in [2]. So assume that c_{0} embeds into $L_{w^{*}}\left(X^{*}, Y\right)$ but neither X nor Y contain a copy of c_{0}. Let $\left\{T_{n}\right\}$ be a normalized sequence in $L_{w^{*}}\left(X^{*}, Y\right)$ equivalent to the unit vector basis $\left\{e_{n}\right\}$ of c_{0}, and let J be a topological isomorphism from c_{0} into $L_{w^{*}}\left(X^{*}, Y\right)$ such that $J e_{n}=T_{n}$ for each $n \in \mathbb{N}$. Since the formal series $\sum_{n=1}^{\infty} T_{n}$ is wuC and the linear form on $L_{w^{*}}\left(X^{*}, Y\right)$ given by $T \rightarrow y^{*} T x^{*}$ is continuous for each $x^{*} \in X^{*}$ and $y^{*} \in Y^{*}$, it follows that $\sum_{n=1}^{\infty}\left|y^{*} T_{n} x^{*}\right|<\infty$. Hence, the series $\sum_{n=1}^{\infty} T_{n} x^{*}$ in Y is wuC for each $x^{*} \in X^{*}$ and, as Y contains no copy of c_{0}, this implies that the series $\sum_{n=1}^{\infty} \xi_{n} T_{n} x^{*}$ converges [in norm] in Y for each $\xi \in \ell_{\infty}$ and $x^{*} \in X^{*}$. This fact allows us to consider the linear map $\varphi: \ell_{\infty} \rightarrow L\left(X^{*}, Y\right)$ defined by

$$
(\varphi \xi) x^{*}=\sum_{n=1}^{\infty} \xi_{n} T_{n} x^{*}
$$

for each $x^{*} \in X^{*}$. This linear operator is well-defined and bounded. Indeed, choosing $C>0$ such that

$$
\sup _{n \in \mathbb{N}}\left\|\sum_{i=1}^{n} \xi_{i} T_{i} x^{*}\right\|_{Y} \leq C\left\|x^{*}\right\|\|\xi\|_{\infty}
$$

for each $\xi \in \ell_{\infty}$ and $x^{*} \in X^{*}$, for each fixed pair $\left(\xi, x^{*}\right) \in \ell_{\infty} \times X^{*}$ there exists $n_{0} \in \mathbb{N}$ with $\left\|\sum_{i=n_{0}+1}^{\infty} \xi_{i} T_{i} x^{*}\right\|_{Y}<\epsilon$, which implies that

$$
\left\|(\varphi \xi) x^{*}\right\|_{Y} \leq C\left\|x^{*}\right\|\|\xi\|_{\infty}+\epsilon
$$

This shows at the same time that $\varphi \xi \in L\left(X^{*}, Y\right)$ and that φ is bounded. Now let us prove that $\varphi\left(\ell_{\infty}\right) \subseteq L_{w^{*}}\left(X^{*}, Y\right)$.

Let ξ be a fixed non null element of ℓ_{∞}. We are going to see that $\varphi \xi$ is weak*weakly continuous. Since $T \rightarrow x^{*}\left(T^{*} y^{*}\right)=y^{*} T x^{*}$ is a continuous linear form on $L\left(X^{*}, Y\right)$, then $\sum_{n=1}^{\infty}\left|x^{*}\left(T_{n}^{*} y^{*}\right)\right|<\infty$ and thus the series $\sum_{n=1}^{\infty} T_{n}^{*} y^{*}$ in X is
wuC for each $y^{*} \in Y^{*}$. Given that c_{0} is not embedded into X, then $\sum_{n=1}^{\infty} T_{n}^{*} y^{*}$ is unconditionally convergent in norm for each $y^{*} \in Y^{*}$. In particular, $\sum_{n=1}^{\infty} \xi_{n} T_{n}^{*} y^{*}$ converges in X for each $y^{*} \in Y^{*}$. Let $\left\{x_{d}^{*}: d \in D\right\}$ be a net in X^{*} which converges to some $x^{*} \in X^{*}$ under the weak* topology of X^{*}. Working from now onwards with some concrete $y^{*} \in Y^{*}$ and given $\epsilon>0$, there is $k \in D$ such that

$$
\left|\left\langle x_{d}^{*}-x^{*}, \sum_{n=1}^{\infty} \xi_{n} T_{n}^{*} y^{*}\right\rangle\right|<\epsilon
$$

for each $d>k$. On the other hand, since $\sum_{n=1}^{\infty} \xi_{n} T_{n}^{*} y^{*}$ converges in norm in X, then

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \xi_{i}\left(x_{d}^{*}-x^{*}\right) T_{i}^{*} y^{*}=\left|\left\langle x_{d}^{*}-x^{*}, \sum_{n=1}^{\infty} \xi_{n} T_{n}^{*} y^{*}\right\rangle\right|
$$

for each $d \in D$, and due to the fact that $\sum_{n=1}^{\infty} \xi_{n} T_{n}\left(x_{d}^{*}-x^{*}\right)$ converges in norm in Y to $(\varphi \xi)\left(x_{d}^{*}-x^{*}\right)$ for each $d \in D$, one has that

$$
\begin{aligned}
y^{*}(\varphi \xi)\left(x_{d}^{*}-x^{*}\right) & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \xi_{i} y^{*} T_{i}\left(x_{d}^{*}-x^{*}\right)=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \xi_{i}\left(x_{d}^{*}-x^{*}\right) T_{i}^{*} y^{*} \\
& =\left|\left\langle x_{d}^{*}-x^{*}, \sum_{n=1}^{\infty} \xi_{n} T_{n}^{*} y^{*}\right\rangle\right|
\end{aligned}
$$

for each $d \in D$. Therefore,

$$
\left|y^{*}(\varphi \xi)\left(x_{d}^{*}-x^{*}\right)\right|<\epsilon
$$

for each $d>k$, i.e. $y^{*}(\varphi \xi) x_{d}^{*} \rightarrow y^{*}(\varphi \xi) x^{*}$. Since this is true for every $y^{*} \in Y^{*}$, it follows that $(\varphi \xi) x_{d}^{*} \rightarrow(\varphi \xi) x^{*}$ under the weak topology of Y. Consequently, we have that $\varphi\left(\ell_{\infty}\right) \subseteq L_{w^{*}}\left(X^{*} Y\right)$ as stated. Finally, since

$$
\begin{aligned}
\left\|\varphi e_{n}\right\| & =\sup \left\{\left\|\left(\varphi e_{n}\right) x^{*}\right\|_{Y}: x^{*} \in X^{*},\left\|x^{*}\right\| \leq 1\right\} \\
& =\sup \left\{\left\|T_{n} x^{*}\right\|_{Y}: x^{*} \in X^{*},\left\|x^{*}\right\| \leq 1\right\}=\left\|T_{n}\right\|=1
\end{aligned}
$$

for each $n \in \mathbb{N}$, Rosenthal's ℓ_{∞} theorem implies that ℓ_{∞} embeds into $L_{w^{*}}\left(X^{*} Y\right)$.

3 Proof of Theorem 1.5

Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be two normalized basic sequences in X and Y, respectively, equivalent to the unit vector basis $\left\{e_{n}\right\}$ of c_{0}. Since the formal series $\sum_{n=1}^{\infty} x_{n}$ and $\sum_{n=1}^{\infty} y_{n}$ are wuC, it follows that $x_{n} \rightarrow 0$ under the weak topology of X and $y_{n} \rightarrow 0$ under the weak topology of Y. Consider the linear mapping $\psi: \ell_{\infty} \rightarrow L\left(X^{*}, Y\right)$ defined by

$$
(\psi \xi) x^{*}=\sum_{n=1}^{\infty} \xi_{n} x^{*} x_{n} \cdot y_{n}
$$

for each $x^{*} \in X^{*}$. This linear operator is well-defined and bounded. Indeed, first note that $\xi_{n} x^{*} x_{n} \rightarrow 0$, so $\sum_{n=1}^{\infty} \xi_{n} x^{*} x_{n} \cdot y_{n}$ converges in Y in norm. On the other hand, if $C>0$ satisfies that

$$
\sup _{n \in \mathbb{N}}\left\|\sum_{i=1}^{n} \xi_{i} x^{*} x_{i} \cdot y_{i}\right\|_{Y} \leq C \sup _{n \in \mathbb{N}}\left|\xi_{n} x^{*} x_{n}\right| \leq C\|\xi\|_{\infty}\left\|x^{*}\right\|
$$

for each $\xi \in \ell_{\infty}$ and $x^{*} \in X^{*}$, then

$$
\left\|(\psi \xi) x^{*}\right\|_{Y}=\left\|\sum_{i=1}^{\infty} \xi_{i} x^{*} x_{i} \cdot y_{i}\right\|_{Y} \leq C\|\xi\|_{\infty}\left\|x^{*}\right\|
$$

for each $\xi \in \ell_{\infty}$ and $x^{*} \in X^{*}$. Hence, $\psi \xi \in L\left(X^{*}, Y\right)$ for each $\xi \in \ell_{\infty}$ and ψ is bounded. Now, let us show that $\psi\left(\ell_{\infty}\right) \subseteq L_{w^{*}}\left(X^{*}, Y\right)$. So, choose some fixed $\xi \in \ell_{\infty}$ and consider a net $\left\{x_{d}^{*}: d \in D\right\}$ in X^{*} converging to some $x^{*} \in X^{*}$ under the weak* topology of X^{*}. We have to prove that $y^{*}(\psi \xi) x_{d}^{*} \rightarrow y^{*}(\psi \xi) x^{*}$ for each $y^{*} \in Y^{*}$. Thus, let us work with some concrete $y^{*} \in Y^{*}$. Since $\sum_{n=1}^{\infty} \xi_{n} y^{*} y_{n} \cdot x_{n} \in X$, we have

$$
x_{d}^{*}\left(\sum_{n=1}^{\infty} \xi_{n} y^{*} y_{n} \cdot x_{n}\right) \rightarrow x^{*}\left(\sum_{n=1}^{\infty} \xi_{n} y^{*} y_{n} \cdot x_{n}\right)
$$

But, since $\sum_{n=1}^{\infty} \xi_{n} y^{*} y_{n} \cdot x_{d}^{*} x_{n}=x_{d}^{*}\left(\sum_{n=1}^{\infty} \xi_{n} y^{*} y_{n} \cdot x_{n}\right)$ for each $d \in D$ and

$$
\sum_{n=1}^{\infty} \xi_{n} y^{*} y_{n} \cdot x^{*} x_{n}=x^{*}\left(\sum_{n=1}^{\infty} \xi_{n} y^{*} y_{n} \cdot x_{n}\right)
$$

we obtain that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \xi_{n} y^{*} y_{n} \cdot x_{d}^{*} x_{n} \rightarrow \sum_{n=1}^{\infty} \xi_{n} y^{*} y_{n} \cdot x^{*} x_{n} \tag{3.1}
\end{equation*}
$$

On the other hand, since $\sum_{n=1}^{\infty} \xi_{n} x^{*} x_{n} \cdot y_{n}$ converges in Y, we have

$$
\begin{equation*}
\sum_{n=1}^{\infty} \xi_{n} x_{d}^{*} x_{n} \cdot y^{*} y_{n}=y^{*}\left(\sum_{n=1}^{\infty} \xi_{n} x_{d}^{*} x_{n} \cdot y_{n}\right)=y^{*}(\psi \xi) x_{d}^{*} \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \xi_{n} x^{*} x_{n} \cdot y^{*} y_{n}=y^{*}\left(\sum_{n=1}^{\infty} \xi_{n} x^{*} x_{n} \cdot y_{n}\right)=y^{*}(\psi \xi) x^{*} \tag{3.3}
\end{equation*}
$$

Therefore, from (3.1), (3.2) and (3.3), we conclude that

$$
y^{*}(\psi \xi) x_{d}^{*} \rightarrow y^{*}(\psi \xi) x^{*}
$$

as required.
Finally, since $\left\|\psi e_{n}\right\|=\sup \left\{\left\|x^{*} x_{n} \cdot y_{n}\right\|:\left\|x^{*}\right\| \leq 1\right\}=\left\|x_{n}\right\|\left\|y_{n}\right\|=1$ for each $n \in \mathbb{N}$, Rosenthal's ℓ_{∞} theorem guarantees that ℓ_{∞} is embedded into $L_{w^{*}}\left(X^{*}, Y\right)$.

4 Some consequences

Corollary 4.1. If $\mathcal{P}_{1}(\mu, X)$ contains a copy of c_{0}, then either X contains a copy of c_{0} or $L_{w^{*}}\left(X^{*}, L_{1}(\mu)\right)$ contains a copy of ℓ_{∞}.

Proof. According to a result of Huff [4], $\mathcal{P}_{1}(\mu, X)$ is embedded into $L_{w^{*}}\left(X^{*}, L_{1}(\mu)\right)$. Since $L_{1}(\mu)$ contains no copy of c_{0}, the statement of the corollary is an obvious consequence of Theorem 1.4.

Corollary 4.2. (Theorem 1.2) Assuming $L_{w^{*}}\left(X^{*}, Y\right)$ contains a complemented copy of c_{0}, then either X contains a copy of c_{0} or Y contains a copy of c_{0}.

Proof. Looking at the proof of Theorem 1.4, assuming by contradiction that neither X or Y contains a copy of c_{0} and denoting by P a bounded projection operator from $L_{w^{*}}\left(X^{*}, Y\right)$ onto $J\left(c_{0}\right)$, then $J^{-1} \circ P \circ \varphi$ is a bounded quotient map from ℓ_{∞} onto c_{0}, a contradiction.

Corollary 4.3. Assume that $W(X, Y)$ contains a copy of c_{0}. If c_{0} is not embedded into X^{*} or Y, then $W(X, Y)$ contains a copy of ℓ_{∞}.

Proof. This is due to Theorem 1.4 and to the fact that $W(X, Y)$ is isomorphic to $L_{w^{*}}\left(X^{* *}, Y\right)$.

Corollary 4.4. Assume that $L_{w^{*}}\left(X^{*}, Y\right)$ contains a copy of c_{0}. If $K_{w^{*}}\left(X^{*}, Y\right)=$ $L_{w^{*}}\left(X^{*}, Y\right)$, then either X contains a copy of c_{0} or Y contains a copy of c_{0}.

Proof. Assume $L_{w^{*}}\left(X^{*}, Y\right)$ contains a copy of c_{0}. If neither X or Y contains a copy of c_{0}, according to Theorem 1.4, $L_{w^{*}}\left(X^{*}, Y\right)$ must contain a copy of ℓ_{∞}. Since $K_{w^{*}}\left(X^{*}, Y\right)=L_{w^{*}}\left(X^{*}, Y\right)$, applying Theorem 1.1, either X or Y contains a copy of ℓ_{∞}, a contradiction.

Corollary 4.5. Assume that both X and Y contain a copy of c_{0}. If neither X nor Y contain a copy of ℓ_{∞}, then $K_{w^{*}}\left(X^{*}, Y\right)$ is not complemented in $L_{w^{*}}\left(X^{*}, Y\right)$.

Proof. According to Theorem 1.5, $L_{w^{*}}\left(X^{*}, Y\right)$ must contain a copy of ℓ_{∞}. But since neither X nor Y contain a copy of ℓ_{∞}, Theorem 1.1 implies that $K_{w^{*}}\left(X^{*}, Y\right) \neq$ $L_{w^{*}}\left(X^{*}, Y\right)$. Since c_{0} is embedded into $K_{w^{*}}\left(X^{*}, Y\right)$, Theorem 1.3 guarantees that $K_{w^{*}}\left(X^{*}, Y\right)$ is uncomplemented in $L_{w^{*}}\left(X^{*}, Y\right)$.

References

[1] L. Drewnowski, Copies of ℓ_{∞} in an operator space. Math. Proc. Camb. Phil. Soc. 108 (1990), 523-526.
[2] G. Emmanuele, On complemented copies of c_{0} in spaces of operators II. Comment. Math. Univ. Carolinae 35 (1994), 259-261.
[3] G. Emmanuele, About the position of $K_{w^{*}}\left(E^{*}, F\right)$ inside $L_{w^{*}}\left(E^{*}, F\right)$. Atti Sem. Mat. Fis. Univ. Modena 42 (1994), 123-133.
[4] R. Huff, Remarks on Pettis integrability. Proc. Amer. Math. Soc. 96 (1986), 402-404.

Centro de Investigación Operativa, Universidad Miguel Hernández. E-03202 Elche (Alicante). Spain. email : jc.ferrando@umh.es

[^0]: *Supported by DGESIC grant PB97-0342 and Presidencia de la Generalitat Valenciana Received by the editors March 2001.
 Communicated by F. Bastin. 1991 Mathematics Subject Classification : 47L05, 46E30.
 Key words and phrases : Weak*-weakly continuous linear operator, copy of c_{0}, copy of ℓ_{∞}.

