On Generalized Quadrangles with Some Concurrent Axes of Symmetry

Koen Thas

Abstract

Let \mathcal{S} be a finite Generalized Quadrangle (GQ) of order $(s, t), s \neq 1 \neq t$, and suppose L is a line of \mathcal{S}. A symmetry about L is an automorphism of \mathcal{S} which fixes every line concurrent with L. A line L is an axis of symmetry if there is a full group of size s of symmetries about L. A point of a generalized quadrangle is a translation point if every line through it is an axis of symmetry. If there is a point p in a GQ $\mathcal{S}=(P, B, I)$ for which there is a group G of automorphisms of the GQ which fixes p linewise, and such that G acts regularly on the points of $P \backslash p^{\perp}$, then \mathcal{S} is called an elation generalized quadrangle, and instead of \mathcal{S}, often the notations $\left(\mathcal{S}^{(p)}, G\right)$ or $\mathcal{S}^{(p)}$ are used. If G is abelian, then $\left(\mathcal{S}^{(p)}, G\right)$ is a translation generalized quadrangle (TGQ), and a GQ is a TGQ $\mathcal{S}^{(p)}$ if and only if p is a translation point, see [9]. We study the following two problems. (1) Suppose \mathcal{S} is a GQ of order (s, t), $s \neq 1 \neq t$. How many distinct axes of symmetry through the same point p are needed to conclude that every line through p is an axis of symmetry, and hence that $\mathcal{S}^{(p)}$ is a TGQ? (2) Given a TGQ $\left(\mathcal{S}^{(p)}, G\right)$, what is the minimum number of distinct lines through p such that G is generated by the symmetries about these lines?

[^0]
1 Introduction and Statement of the Main Results

In the monograph Finite Generalized Quadrangles, S. E. Payne and J. A. Thas, Research Notes in Mathematics 110, Pitman it was proved that a GQ \mathcal{S} is a TGQ $\left(\mathcal{S}^{(p)}, G\right)$ with translation point p if and only if every line through p is an axis of symmetry, that is, if p is a translation point, and then G is precisely the group generated by all symmetries about the lines incident with p. In [25] we noted that their proof was also valid for all lines through p minus one. This observation is one of the main motivations of the present paper: what is - in general - the minimal number of distinct axes of symmetry through a point p of a $G Q \mathcal{S}$ forcing $\mathcal{S}^{(p)}$ to be a $T G Q$?
In order to study the generalized quadrangles which have some distinct axes of symmetry through the point p, we will introduce Property (T) as follows. An ordered flag (L, p) satisfies Property (T) with respect to L_{1}, L_{2}, L_{3}, where L_{1}, L_{2}, L_{3} are three distinct lines incident with p and distinct from L, if the following condition is satisfied: if (i, j, k) is a permutation of $(1,2,3)$, if $M \sim L$ and $M \not x p$, and if $N \sim L_{i}$ and $N \not \leq p$ with $M \nsim N$, then the triads $\left\{M, N, L_{j}\right\}$ and $\left\{M, N, L_{k}\right\}$ are not both centric. TGQ's which satisfy Property (T) for some ordered flag always have order $\left(s, s^{2}\right)$ for some s, and every TGQ of order (s, t) which has a subGQ of order s through the translation point satisfies Property (T) for some ordered flag(s) containing the translation point. Suppose that the GQ \mathcal{S} satisfies Property (T) for the ordered flag (L, p) w.r.t. the distinct lines L_{1}, L_{2}, L_{3}, all incident with p. Moreover, suppose that L, L_{1}, L_{2}, L_{3} are axes of symmetry. Then we will show that $\mathcal{S}^{(p)}$ is a TGQ and that the translation group G is generated by the symmetries about L, L_{1}, L_{2}, L_{3}.
We will also study the following related problem: given a general $T G Q \mathcal{S}^{(p)}$, what is the minimal number of lines through p such that the translation group is generated by the symmetries about these lines? We will show that there is a connection between the minimal number of lines through a translation point of a TGQ such that the translation group is generated by the symmetries about these lines, and the kernel of the TGQ; in particular, if $\left(\mathcal{S}^{(p)}, G\right)$ is a TGQ of order $(s, t), 1 \neq s \neq t \neq 1$, with $(s, t)=\left(q^{n a}, q^{n(a+1)}\right)$ where a is odd and where $\mathbf{G F}(q)$ is the kernel of the TGQ, and if $k+3$ is the minimum number of distinct lines through p such that G is generated by the symmetries about these lines, then we will show that $k \leq n$.
Another main result reads as follows: let \mathcal{S} be a thick GQ of order $(s, t), t-s \geq 1$, and let p be a point of \mathcal{S} incident with more than $t-s+2$ axes of symmetry. Then $\mathcal{S}^{(p)}$ is a translation generalized quadrangle.
We will also introduce Property (T ') as follows. An ordered flag (L, p) satisfies Property (T') with respect to L_{1}, L_{2}, L_{3}, where L_{1}, L_{2}, L_{3} are distinct lines incident with p and distinct from L, if the following condition holds: if $M \sim L$ and $M X p$, and if q and q^{\prime} are distinct arbitrary points on M which are not incident with L, then there is a permutation (i, j, k) of $(1,2,3)$ such that there are lines M_{i}, M_{j}, M_{k}, with $M_{r} \sim L_{r}$ and $r \in\{i, j, k\}$, for which $M \in\left\{M_{i}, M_{k}, L\right\}^{\perp}$ and $M_{j} \in\left\{M_{i}, M_{k}, L_{j}\right\}^{\perp}$, and such that $q I M_{i}$ and $q^{\prime} I M_{k}$.
It is a main goal of the present paper to state elementary combinatorial and group theoretical conditions for a GQ \mathcal{S} such that \mathcal{S} arises from a flock, see J. A. Thas [16], [18], [22], [20], [23] and also K. Thas [29]. We will show that a combination of

it is possible to prove that such a TGQ \mathcal{S} is related to a flock by the main theorem of [22], see further. A classification result is eventually obtained.
Many other results will be proved, including a new divisibility condition for GQ's which have a point incident with at least three axes of symmetry, see Section 4.
Finally, in an appendix we will provide a new short proof of the following theorem of Payne and Thas [9]: 'If p is a point of the thick GQ \mathcal{S} of order s which is incident with three distinct axes of symmetry L_{1}, L_{2}, L_{3}, then $\mathcal{S}^{(p)}$ is a translation generalized quadrangle for which the translation group is generated by all symmetries about $L_{1}, L_{2}, L_{3}{ }^{\prime}$.

2 Introducing Generalities and Notation

2.1 Some basics

A (finite) generalized quadrangle ($G Q$) of order (s, t) is an incidence structure $\mathcal{S}=$ (P, B, I) in which P and B are disjoint (nonempty) sets of objects called points and lines respectively, and for which I is a symmetric point-line incidence relation satisfying the following axioms.
(GQ1) Each point is incident with $t+1$ lines $(t \geq 1)$ and two distinct points are incident with at most one line.
(GQ2) Each line is incident with $s+1$ points $(s \geq 1)$ and two distinct lines are incident with at most one point.
(GQ3) If p is a point and L is a line not incident with p, then there is a unique point-line pair (q, M) such that $p I M I q I L$.

Generalized quadrangles were introduced by J.Tits [30] in his celebrated work on triality, in order to have a better understanding of the Chevalley groups of rank 2. The main results, up to 1983, on finite generalized quadrangles are contained in the monograph Finite Generalized Quadrangles by S. E. Payne and J. A. Thas (FGQ, [9]). A survey of some 'new' developments on this subject in the period 1984-1992, can be found in the article Recent developments in the theory of finite generalized quadrangles [15]. We should also mention [21].
Let $\mathcal{S}=(P, B, I)$ be a (finite) generalized quadrangle of order $(s, t), s \neq 1 \neq t$. Then $|P|=(s+1)(s t+1)$ and $|B|=(t+1)(s t+1)$. Also, $s \leq t^{2}$ and, dually, $t \leq s^{2}$, and $s+t$ divides $s t(s+1)(t+1)$.
There is a point-line duality for GQ's of order (s, t) for which in any definition or theorem the words "point" and "line" are interchanged and also the parameters. Normally, we assume without further notice that the dual of a given theorem or definition has also been given. Also, sometimes a line will be identified with the set of points incident with it without further notice.
A GQ is called thick if every point is incident with more than two lines and if every line is incident with more than two points. A flag of a GQ is an incident point-line pair. Let p and q be (not necessarily distinct) points of the GQ \mathcal{S}; we write $p \sim q$
and say that p and q are collinear, provided that there is some line L such that $p I L I q$ (so $p \nsim q$ means that p and q are not collinear). Dually, for $L, M \in B$, we write $L \sim M$ or $L \nsim M$ according as L and M are concurrent or nonconcurrent. If $p \neq q \sim p$, the line incident with both is denoted by $p q$, and if $L \sim M \neq L$, the point which is incident with both is sometimes denoted by $L \cap M$.
For $p \in P$, put $p^{\perp}=\{q \in P \| q \sim p\}$ (note that $p \in p^{\perp}$). For a pair of distinct points $\{p, q\}$, the trace of $\{p, q\}$ is defined as $p^{\perp} \cap q^{\perp}$, and we denote this set by $\{p, q\}^{\perp}$. Then $\left|\{p, q\}^{\perp}\right|=s+1$ or $t+1$, according as $p \sim q$ or $p \nsim q$. More generally, if $A \subset P, A^{\perp}$ is defined by $A^{\perp}=\bigcap\left\{p^{\perp} \| p \in A\right\}$. For $p \neq q$, the span of the pair $\{p, q\}$ is $s p(p, q)=\{p, q\}^{\perp \perp}=\left\{r \in P \| r \in s^{\perp}\right.$ for all $\left.s \in\{p, q\}^{\perp}\right\}$. When $p \nsim q$, then $\{p, q\}^{\perp \perp}$ is also called the hyperbolic line defined by p and q, and $\left|\{p, q\}^{\perp \perp}\right|=s+1$ or $\left|\{p, q\}^{\perp \perp}\right| \leq t+1$ according as $p \sim q$ or $p \nsim q$.
A triad of points (respectively lines) is a triple of pairwise noncollinear points (respectively pairwise disjoint lines). Given a triad T, a center of T is just an element of T^{\perp}. If $p \sim q, p \neq q$, or if $p \nsim q$ and $\left|\{p, q\}^{\perp \perp}\right|=t+1$, we say that the pair $\{p, q\}$ is regular. The point p is regular provided $\{p, q\}$ is regular for every $q \in P \backslash\{p\}$. Regularity for lines is defined dually. One easily proves that either $s=1$ or $t \leq s$ if \mathcal{S} has a regular pair of noncollinear points.
If (p, L) is a nonincident point-line pair of a GQ, then by $[p, L]$ we denote the unique line of the GQ which is incident with p and concurrent with L. Finally, if \mathcal{S} is a GQ of order (s, t) with $s=t$, then \mathcal{S} is also said to be of order s.

2.2 Elation generalized quadrangles and translation generalized quadrangles

A whorl about the point p of \mathcal{S} is a collineation of \mathcal{S} which fixes each line through p. An elation about the point p is a whorl about p that fixes no point of $P \backslash p^{\perp}$. By definition, the identical permutation is an elation (about every point). If p is a point of the GQ \mathcal{S}, for which there exists a group of elations G about p which acts regularly on the points of $P \backslash p^{\perp}$, then \mathcal{S} is said to be an elation generalized quadrangle ($E G Q$) with elation point p and elation group (or base group) G, and we sometimes write $\left(\mathcal{S}^{(p)}, G\right)$ for \mathcal{S}. A symmetry about a point p of the GQ \mathcal{S} (of order (s, t) with $s, t \neq 1$) is an elation about p which fixes any point of p^{\perp} (in fact, a nontrivial whorl about p which fixes every element of p^{\perp} automatically is a symmetry about p). A group of symmetries about a point can have at most t elements, and if this bound is reached, the point is called a center of symmetry. Dually, we define the notion axis of symmetry. Any center (respectively axis) of symmetry is regular; see FGQ [9]. If a GQ $\left(\mathcal{S}^{(p)}, G\right)$ is an EGQ with elation point p, and if any line incident with p is an axis of symmetry, then we say that \mathcal{S} is a translation generalized quadrangle ($T G Q$) with translation point p and translation group (or base group) G. In such a case, G is uniquely defined; G is generated by all symmetries about every line incident with p, and G is the set of all elations about p, see FGQ [9].
TGQ's were introduced by J. A. Thas in [13] for the case $s=t$ and, in the general case, by S. E. Payne and J. A. Thas in FGQ.

Theorem 2.1 (FGQ, 8.1.3). Let \mathcal{S} be a $G Q$ of order $(s, t), s \neq 1 \neq t$, and suppose that L and M are distinct concurrent lines. If α is a symmetry about L and if β is a symmetry about M, then $\alpha \beta=\beta \alpha$.

Theorem 2.2 (FGQ, 8.3.1). Let $\mathcal{S}=(P, B, I)$ be a $G Q$ of order $(s, t), s, t \geq 2$. Suppose each line through some point p is an axis of symmetry, and let G be the group generated by the symmetries about the lines through p. Then G is elementary abelian and $\left(\mathcal{S}^{(p)}, G\right)$ is a $T G Q$.

For the case $s=t$, we have the following result of [9], see also [25] and the appendix for several shorter proofs.

Theorem 2.3 (FGQ, 11.3.5). Let $\mathcal{S}=(P, B, I)$ be a $G Q$ of order s, with $s \neq 1$. Suppose that there are at least three axes of symmetry through a point p, and let G be the group generated by the symmetries about these lines. Then G is elementary abelian and $\left(\mathcal{S}^{(p)}, G\right)$ is a $T G Q$.

Theorem 2.4 (FGQ, 8.2.3 and 8.5.2). Suppose $\left(\mathcal{S}^{(x)}, G\right)$ is an $E G Q$ of order $(s, t), s \neq 1 \neq t$. Then $\left(\mathcal{S}^{(x)}, G\right)$ is a $T G Q$ if and only if G is an (elementary) abelian group. Also in such a case there is a prime p and there are natural numbers n and k, where k is odd, such that either $s=t=p^{n}$ or $s=p^{n k}$ and $t=p^{n(k+1)}$. It follows that G is a p-group.

Remark 2.5. We have classified the GQ's with two distinct translation points in [29].

2.3 4-Gonal families and some useful theorems

Suppose $\left(\mathcal{S}^{(p)}, G\right)$ is an EGQ of order $(s, t), s, t \neq 1$, with elation point p and elation group G, and let q be a point of $P \backslash p^{\perp}$. Let $L_{0}, L_{1}, \ldots, L_{t}$ be the lines incident with p, and define r_{i} and M_{i} by $L_{i} I r_{i} I M_{i} I q, 0 \leq i \leq t$. Put $A_{i}=\left\{\theta \in G \| M_{i}^{\theta}=M_{i}\right\}$, $A_{i}^{*}=\left\{\theta \in G \| r_{i}^{\theta}=r_{i}\right\}$, and $\mathcal{J}=\left\{A_{i} \| 0 \leq i \leq t\right\}$. Then $|G|=s^{2} t$ and \mathcal{J} is a set of $t+1$ subgroups of G, each of order s. Also, for each i, A_{i}^{*} is a subgroup of G of order st containing A_{i} as a subgroup. Moreover, the following two conditions are satisfied:
(K1) $A_{i} A_{j} \cap A_{k}=\mathbf{1}$ for distinct i, j and k;
(K2) $A_{i}^{*} \cap A_{j}=\mathbf{1}$ for distinct i and j.
Conversely, if G is a group of order $s^{2} t$, where $s \neq 1 \neq t$, and \mathcal{J} (respectively \mathcal{J}^{*}) is a set of $t+1$ (respectively $t+1$) subgroups A_{i} (respectively A_{i}^{*}) of G of order s (respectively of order $s t$), and if the conditions (K1) and (K2) are satisfied, then the A_{i}^{*} are uniquely defined by the A_{i}, and $\left(\mathcal{J}, \mathcal{J}^{*}\right)$ is said to be a 4-gonal family of type (s, t) in G.
Let $\left(\mathcal{J}, \mathcal{J}^{*}\right)$ be a 4 -gonal family of type (s, t) in the group G of order $s^{2} t$. For any $h \in G$ let us define θ_{h} by

$$
g^{\theta_{h}}=g h, \quad\left(A_{i} g\right)^{\theta_{h}}=A_{i} g h,
$$

$$
\left(A_{i}^{*} g\right)^{\theta_{h}}=A_{i}^{*} g h,\left[A_{i}\right]^{\theta_{h}}=\left[A_{i}\right],(\infty)^{\theta_{h}}=(\infty)
$$

with $g \in G, A_{i} \in \mathcal{J}, A_{i}^{*} \in \mathcal{J}^{*}$. Then θ_{h} is an automorphism of $\mathcal{S}(G, \mathcal{J})$ which fixes the point (∞) and all lines of type (b). If $G^{\prime}=\left\{\theta_{h} \| h \in G\right\}$, then clearly $G^{\prime} \cong G$ and G^{\prime} acts regularly on the points of type (1). Hence, a group of order $s^{2} t$ admitting a 4-gonal family can be represented as a general elation group of a suitable elation generalized quadrangle. This was first noted by Kantor [7].

The following two results (and their generalizations, see Theorem 2.8 and Theorem 2.9) will appear to be very useful for the sequel.

Theorem 2.6 (X. Chen and D. Frohardt [3]). Let G be a group of order $s^{2} t$ admitting a 4-gonal family $\left(\mathcal{J}, \mathcal{J}^{*}\right)$ of type $(s, t), s \neq 1 \neq t$. If there exist two distinct members in \mathcal{J} which are normal subgroups of G, then s and t are powers of the same prime number p and G is an elementary abelian p-group.

Theorem 2.7 (D. Hachenberger [4]). Let G be a group of order $s^{2} t$ admitting a 4-gonal family $\left(\mathcal{J}, \mathcal{J}^{*}\right)$ of type $(s, t), s \neq 1 \neq t$. If G is a group of even order, and if there exists a member of \mathcal{J} which is a normal subgroup of G, then s and t are powers of 2 and G is an elementary abelian 2-group.

In geometrical terms, Theorem 2.6 reads as follows: Let $\left(\mathcal{S}^{(x)}, G\right)$ be an $E G Q$ of order $(s, t), s, t \neq 1$, and suppose that there are at least two axes of symmetry L and M through the elation point x, such that the full groups of symmetries about L and M are completely contained in G. Then s and t are powers of the same prime number p and G is an elementary abelian p-group. Hence, by Theorem $2.4, \mathcal{S}^{(x)}$ is a translation generalized quadrangle. In geometrical terms, we have the following for Theorem 2.7: Let $\left(\mathcal{S}^{(x)}, G\right)$ be an $E G Q$ of order (s, t), with $s, t \neq 1$ and s or t even, and suppose that there is at least one axis of symmetry L through the elation point x, such that the full group of symmetries about L is completely contained in G. Then s and t are powers of 2 and G is an elementary abelian 2-group. Thus, $\mathcal{S}^{(x)}$ is a translation generalized quadrangle.

In Theorem 2.6 and Theorem 2.7, the group theoretical descriptions have one major restriction; they demand that the groups of symmetries about the lines must be completely contained in the elation group. In [26], we improved these theorems as follows.

Theorem $2.8\left(\mathbf{K}\right.$. Thas [26]). Let $\left(\mathcal{S}^{(x)}, G\right)$ be an $E G Q$ of order $(s, t), s, t \neq 1$. If there are two distinct regular lines through the point x, then s and t are powers of the same prime number p, G is an elementary abelian p-group and hence $\mathcal{S}^{(x)}$ is a $T G Q$ with translation group G.

Theorem 2.9 (K. Thas [26]). Let $\left(\mathcal{S}^{(x)}, G\right)$ be an $E G Q$ of order $(s, t), s, t \neq 1$. If there is a regular line through the point x, and G is a group of even order, then s and t are powers of $2, G$ is an elementary abelian 2 -group and hence $\mathcal{S}^{(x)}$ is a $T G Q$ with translation group G.

3 Generalized Quadrangles with Concurrent Axes of Symmetry

In Payne and Thas [9] it was proved that a GQ \mathcal{S} is a TGQ $\left(\mathcal{S}^{(p)}, G\right)$ with translation point p if and only if every line through p is an axis of symmetry, that is, if p is a translation point, and G is precisely the group generated by all symmetries about the lines incident with p. In [25] we noted that their proof was also valid for all lines through p minus one. Here, we will study the following natural problem: what is in general - the minimal number of distinct axes of symmetry through a point p of a GQ \mathcal{S} such that $\mathcal{S}^{(p)}$ is a TGQ? There are only such results known for (thick) GQ's of order s, and there, three axes of symmetries appears to be sufficient. In the appendix, we will give a short new geometrical proof of this theorem without using the coordinatization method for GQ's - the only known proof of this theorem is contained in Chapter 11 of [9], is rather long and complicated and uses this method. For thick GQ's of order (s, t) with $s \neq t$, the problem is a lot harder; we will show that $t-s+3$ axes of symmetry are sufficient in the general case, see Section 7. In the next paragraph we will introduce a purely combinatorial property, namely Property (T), involving four concurrent axes of symmetry. Property (T) is closely related to Property (G), see Section 6, and seems to be more general in the case of the translation generalized quadrangles. Moreover, every known translation generalized quadrangle of order $(s, t), 1 \neq s \neq t \neq 1$, or its translation dual has Property (T). TGQ's which satisfy Property (T) for some ordered flag always have order $\left(s, s^{2}\right)$ for some s, see MAIN THEOREM 1 , and every TGQ of order (s, t) which has a subGQ of order s through the translation point satisfies Property (T) for some ordered flags containing the translation point, see Theorem 3.3. In § 3.2 we will also introduce Property (T^{\prime}), which, in combination with Property (T), leads to Property (G) for TGQ's, and hence to flock generalized quadrangles in the odd case by [22, 7.3.4], see § 6.3. In the even case, a slightly different statement will be proved.
We start with defining Property (T).

3.1 Property (T)

Suppose \mathcal{S} is a GQ of order $(s, t), s, t \neq 1$, and let p be a point of the GQ. We introduce Property (T) as follows.

Property (T). An ordered flag (L, p) satisfies Property (T) with respect to L_{1}, L_{2}, L_{3}, where L_{1}, L_{2}, L_{3} are three distinct lines incident with p and distinct from L, if the following condition holds: if (i, j, k) is a permutation of $(1,2,3)$, if $M \sim L$ and $M \nsubseteq p$, and if $N \sim L_{i}$ and $N \not \backslash p$ with $M \nsim N$, then the triads $\left\{M, N, L_{j}\right\}$ and $\left\{M, N, L_{k}\right\}$ are not both centric.
If the ordered flag (L, p) satisfies Property (T) with respect to L_{1}, L_{2}, L_{3}, then we also say that \mathcal{S} satisfies Property (T) for the ordered flag (L,p) w.r.t. L_{1}, L_{2}, L_{3}.

The following theorem will appear to be very useful for the sequel.
Theorem 3.1. Suppose \mathcal{S} is a thick $G Q$ of order (s, t), and let p be a point of \mathcal{S} incident with three distinct axes of symmetry. If G is the group generated by the
symmetries about these axes, then G is a group of elations with center p of order s^{3}.
Proof. Suppose that L_{1}, L_{2}, L_{3} are three distinct axes of symmetry incident with p, and let G_{i} be the full group of symmetries about L_{i}. With α_{1}, α_{2} and β contained in respectively G_{1}, G_{2} and G_{3} (and none of these collineations trivial), suppose that the following holds:

$$
\alpha_{1} \alpha_{2}=\beta .
$$

If q is not collinear with p, then $\left(q, q^{\beta}, q^{\alpha_{1}}\right)$ are the points of a triangle, contradiction. This observation shows us that $|G|=s^{3}$, and that each element of G is an elation (because no two elements of G have the same action on a point of $P \backslash p^{\perp}$), and so G is a group of elations about p.

MAIN THEOREM 1. Suppose $\mathcal{S}=(P, B, I)$ is a thick $G Q$ of order (s, t), and let $p \in P$ be a point incident with four distinct axes of symmetry L_{1}, L_{2}, L_{3} and L_{4}. Moreover, suppose that Property (T) holds for the ordered flag $\left(L_{4}, p\right)$ w.r.t. the lines L_{1}, L_{2}, L_{3}. Then $t=s^{2}$, every line through p is an axis of symmetry, and if G is the group generated by all symmetries about $L_{1}, L_{2}, L_{3}, L_{4}$, then $\left(\mathcal{S}^{(p)}, G\right)$ is a $T G Q$.

Proof. Suppose that G_{i} is the full group of symmetries about the line $L_{i}, i \in$ $\{1,2,3,4\}$, and consider the group G generated by all symmetries about the lines L_{1}, L_{2}, L_{3} and L_{4}. We define G^{\prime} as the group generated by the symmetries about the axes L_{j} with $j=1,2,3$. A general element of G^{\prime} always can be written in the form $\phi_{k} \phi_{j} \phi_{i}$, with $(i, j, k)=(1,2,3)$ and ϕ_{i} a symmetry about the line L_{i}, see Theorem 2.1. Also, because of Theorem $3.1 G^{\prime}$ is an elation group with center p and of size s^{3}.
Suppose, for a non-trivial symmetry $g \in G_{4}$ and an elation $\alpha=\alpha_{1} \alpha_{2} \alpha_{3}$ of G^{\prime}, with $\alpha_{i} \in G_{i}$, that g and α have the same action on a point q of $P \backslash p^{\perp}$. Then $q^{g}=q^{\alpha}=: q^{\prime}$, and thus we have that $q^{\prime} \in\left[q, L_{4}\right]^{1}$. It is clear that none of the symmetries α_{i} are identical $(i=1,2,3)$, otherwise we would have a composition of at most three symmetries about distinct axes of symmetry with a common intersection point which acts trivially on a point of $P \backslash p^{\perp}$, a contradiction. If we now consider the triads of lines $\left\{\left[q, L_{4}\right],\left[q^{\alpha_{1}}, L_{2}\right], L_{3}\right\}$ and $\left\{\left[q, L_{4}\right],\left[q^{\alpha_{1}}, L_{2}\right], L_{1}\right\}$, then the assumption we just made implies that they are both centric, in contradiction with Property (T). Thus we have proved that an element of G^{\prime} and an element of G_{4} can never have the same action on a point of $P \backslash p^{\perp}$. Therefore, we have that $|G|=s^{4}$ and that every element of G is an elation with center p. Since $\left|P \backslash p^{\perp}\right|=s^{2} t$ and since $t \leq s^{2}$ by Theorem 1.2.3 of [9], there follows that $t=s^{2}$. Also, there follows that G acts regularly on the points of $P \backslash p^{\perp}$, and hence that $\left(\mathcal{S}^{(p)}, G\right)$ is an EGQ with elation point p. Since the lines L_{i} are regular, the proof is complete by Theorem 2.8.

The following property is well-known.
Observation 3.2. Let \mathcal{S} be a thick $G Q$ of order $\left(s, s^{2}\right)$, and suppose \mathcal{S}^{\prime} is a subquadrangle of \mathcal{S} of order s. Then every line of \mathcal{S} is either contained in \mathcal{S}^{\prime}, or intersects \mathcal{S}^{\prime} in exactly one point.

Proof. Easy counting.

[^1]Theorem 3.3. 1. Suppose \mathcal{S} is a thick $G Q$ of order (s, t), and let p be a point incident with four distinct axes of symmetry, three of which are contained in a proper subquadrangle \mathcal{S}^{\prime} of \mathcal{S} of order $\left(s, t^{\prime}\right), t^{\prime} \neq 1$, but not the fourth. Suppose G is the group generated by all symmetries about these four axes. Then $t=s^{2}$ and $\left(\mathcal{S}^{(p)}, G\right)$ is a $T G Q$. Also, \mathcal{S}^{\prime} is a $T G Q$.
2. Suppose \mathcal{S} is a thick $G Q$ of order (s, t), and let p be a point incident with four distinct axes of symmetry L_{1}, L_{2}, L_{3}, L three of which are contained in a proper subquadrangle \mathcal{S}^{\prime} of \mathcal{S} of order $\left(s, t^{\prime}\right), t^{\prime} \neq 1$, but not the fourth, say L. Then (L, p) satisfies Property (T) w.r.t. L_{1}, L_{2}, L_{3}.

Proof. It is clear that an axis of symmetry of a GQ of order (s, t) also is an axis of symmetry of a proper subGQ of order $\left(s, t^{\prime}\right)$ which contains this line. An axis of symmetry of a GQ is a regular line, and since $t^{\prime} \neq 1$, there follows by $[9,2.2 .2]$ that $s \leq t^{\prime}$ and by the same theorem that $t^{\prime}=s$. Hence $t=s^{2}$. By Theorem 2.3 there holds that \mathcal{S}^{\prime} is a TGQ.
Let L_{1}, L_{2}, L_{3} be three distinct axes of symmetry through the point p which are contained in \mathcal{S}^{\prime}, and let L_{4} be an axis of symmetry through p which is not contained in \mathcal{S}^{\prime}. Suppose $L \sim L_{4} \neq L$ is arbitrary, $L \nmid p$, and let L^{\prime} be an arbitrary line of $L_{i}^{\perp} \backslash\left\{L_{i}\right\}$ not through p for a fixed i in $\{1,2,3\}$. Suppose that the triads of lines $\left\{L, L^{\prime}, L_{j}\right\}$ and $\left\{L, L^{\prime}, L_{k}\right\}$ are both centric, with $\{j, k\}=\{1,2,3\} \backslash\{i\}$. First suppose that $L^{\prime} \in \mathcal{S}^{\prime}$. If M is a center of $\left\{L, L^{\prime}, L_{j}\right\}$, then $\left|M \cap \mathcal{S}^{\prime}\right| \geq 2$, and hence M is a line of \mathcal{S}^{\prime}. There follows that $\left|L \cap \mathcal{S}^{\prime}\right| \geq 2$, and hence L is also a line of \mathcal{S}^{\prime}. This immediately leads to the fact that L_{4} is a line of \mathcal{S}^{\prime}, contradiction. The same holds for $\left\{L, L^{\prime}, L_{k}\right\}$.
Next, suppose that $L^{\prime} \notin \mathcal{S}^{\prime}$, that $M \in\left\{L, L^{\prime}, L_{j}\right\}^{\perp}$ and $N \in\left\{L, L^{\prime}, L_{k}\right\}^{\perp}$. The line L intersects \mathcal{S}^{\prime} in one point q. Consider a symmetry θ about L_{4} which maps the point $q^{\prime}=L \cap M$ onto q. Then the line M^{θ} is contained in \mathcal{S}^{\prime}, and hence also $L^{\prime \theta}$. By the first part of this proof, we get a contradiction. Hence, Property (T) is satisfied for the ordered flag $\left(L_{4}, p\right)$ w.r.t. the lines L_{1}, L_{2}, L_{3}, and the theorem follows from MAIN THEOREM 1.

3.2 Property (${ }^{\prime}$ ')

Suppose \mathcal{S} is a GQ of order $(s, t), s, t \neq 1$, and let p be a point of the GQ.
Property (\mathbf{T}^{\prime}). An ordered flag (L, p) satisfies Property (T^{\prime}) with respect to the lines L_{1}, L_{2}, L_{3}, where L_{1}, L_{2}, L_{3} are different lines incident with p and distinct from L, with the following condition: if $M \sim L$ and $M \Psi p$, and if q and q^{\prime} are distinct arbitrary points on M which are not incident with L, then there is a permutation (i, j, k) of $(1,2,3)$, such that there are lines M_{i}, M_{j}, M_{k}, with $M_{r} \sim L_{r}$ and $r \in\{i, j, k\}$, for which $M \in\left\{M_{i}, M_{k}, L\right\}^{\perp}, M_{j} \in\left\{M_{i}, M_{k}, L_{j}\right\}^{\perp}$ and such that $q I M_{i}$ and $q^{\prime} I M_{k}$.
If the ordered flag (L, p) satisfies Property (T') w.r.t. the lines L_{1}, L_{2}, L_{3}, then we also say that \mathcal{S} satisfies Property (T^{\prime}) for the ordered flag (L, p) w.r.t. L_{1}, L_{2}, L_{3}.

Theorem 3.4. Suppose that $\mathcal{S}=(P, B, I)$ is a thick $G Q$ of order (s, t), and let p be a point of P which is incident with four distinct axes of symmetry L, L_{1}, L_{2}, L_{3} such that Property $\left(T^{\prime}\right)$ is satisfied w.r.t. the lines L_{1}, L_{2}, L_{3}. If $G_{L}, G_{1}, G_{2}, G_{3}$ are the full groups of symmetries about these lines, then $G_{L} \subseteq\left\langle G_{1}, G_{2}, G_{3}\right\rangle$.

Proof. Put $G=\left\langle G_{1}, G_{2}, G_{3}\right\rangle$. Suppose $M \sim L$ is arbitrary with $M \not\langle p$, and suppose q and q^{\prime} are distinct arbitrary points on M which are not incident with L. Since Property (T^{\prime}) is satisfied for the ordered flag (L, p) w.r.t. the lines L_{1}, L_{2}, L_{3}, there is a permutation (i, j, k) of $(1,2,3)$, such that there are lines M_{i}, M_{j}, M_{k}, with $q I M_{i}$ and $q^{\prime} I M_{k}$, for which $M \in\left\{M_{i}, M_{k}, L\right\}^{\perp}$ and $M_{j} \in\left\{M_{i}, M_{k}, L_{j}\right\}^{\perp}$, and such that $M_{r} \sim L_{r}$ with $r \in\{i, j, k\}$. For convenience, put $(i, j, k)=(1,2,3)$. By the considerations above, the following collineations exist:

1. θ_{1} is the symmetry about L_{1} which sends $q=M \cap M_{1}$ to $M_{1} \cap M_{2}$;
2. θ_{2} is the symmetry about L_{2} which sends $M_{1} \cap M_{2}$ to $M_{2} \cap M_{3}$;
3. θ_{3} is the symmetry about L_{3} which maps $M_{2} \cap M_{3}$ to $q^{\prime}=M \cap M_{3}$.

Define the following collineation of $\mathcal{S}: \theta:=\theta_{1} \theta_{2} \theta_{3}$. Then θ is an automorphism of \mathcal{S} which is contained in G, and hence θ is an elation about p by Theorem 3.1. Also, θ fixes M and maps q onto q^{\prime}. Now by K. Thas [26], there follows that θ is a symmetry about L. It follows now easily that $G_{L} \subseteq G$ since q and q^{\prime} were arbitrary.

Remark 3.5. By K. Thas [26] it is sufficient to ask that L is a regular line to conclude it is an axis of symmetry.

Note. We emphasize the fact that Property (T) and Property (T') are purely combinatorial properties which are defined without the use of collineations.

4 A Divisibility Condition for GQ's with Three Distinct Concurrent Axes of Symmetry

Theorem 4.1 (FGQ, 8.1.2). If a thick $G Q \mathcal{S}$ has a nonidentity symmetry θ about some line, then $s t(1+s) \equiv 0 \bmod s+t$.

Theorem 4.2. Suppose \mathcal{S} is a $G Q$ of order $(s, t), s \neq 1 \neq t$, and let L, M and N be three different axes of symmetry incident with the same point p. Then $s \mid t$ and $\left.\frac{t}{s}+1 \right\rvert\,(s+1) t$.

Proof. Define G^{\prime} as the group generated by the symmetries about the lines L, M and N. By Theorem 3.1 we have that G^{\prime} is a group of elations with center p, and the size of G^{\prime} is s^{3}. If we consider the permutation group ($P \backslash p^{\perp}, G^{\prime}$), then there follows that $\left|G^{\prime}\right|$ divides $\left|P \backslash p^{\perp}\right|$, or that $s^{3} \mid s^{2} t$. So t is divisible by s. By Theorem 4.1, the theorem now follows.

5 Property (SUB) and Property (T)

Property (SUB). Suppose \mathcal{S} is a thick GQ of order (s, t), and suppose M_{1}, M_{2}, M_{3}, M_{4} are four distinct lines of \mathcal{S}, incident with the same point. Then these four lines satisfy Property $(S U B)$ if \mathcal{S} does not have a subGQ of order s containing these four lines.

Theorem 5.1. Suppose \mathcal{S} is a $G Q$ of order $(s, t), s \neq 1 \neq t$, and let M_{1}, M_{2}, M_{3} and M_{4} be four distinct axes of symmetry through a point p such that there is a line $M \in\left\{M_{1}, \ldots, M_{4}\right\}=\mathcal{M}$ for which Property (T) is satisfied for the ordered flag (M,p) w.r.t. the lines of $\mathcal{M} \backslash M$. Then these four lines also satisfy Property (SUB).

Proof. Suppose that the lines M_{1}, M_{2}, M_{3} and M_{4} are contained in a proper subGQ \mathcal{S}^{\prime} of order s and suppose that $M=M_{4}$ is such that (M, p) satisfies Property (T) w.r.t. the lines M_{1}, M_{2}, M_{3}. Consider lines L with $L I M_{4}$ and L^{\prime} with $L^{\prime} I M_{1}$, both contained in \mathcal{S}^{\prime}. The lines M_{i} are axes of symmetry in the quadrangle \mathcal{S}^{\prime}, so they are regular. There follows now that each triad of lines in \mathcal{S}^{\prime} which contains one of those axes, is centric. This leads to a contradiction.

Theorem 5.2. Suppose that $\left(\mathcal{S}^{(p)}, G\right)$ is a $T G Q$ of order $\left(s, s^{2}\right), s>1$, and suppose that \mathcal{S} has a subquadrangle \mathcal{S}^{\prime} of order s which contains the point p. Then there exist four lines incident with p, such that G is the group generated by the symmetries about these lines.

Proof. The quadrangle \mathcal{S}^{\prime} is a TGQ of order s with translation point p, and so there exist three lines in \mathcal{S}^{\prime} incident with p, such that the translation group G^{\prime} of \mathcal{S}^{\prime} is generated by all symmetries about these three lines. Consider an axis of symmetry L of \mathcal{S} incident with p and not contained in \mathcal{S}^{\prime}. This line intersects \mathcal{S}^{\prime} only in p. Take an arbitrary line M of \mathcal{S} intersecting L and not incident with p. This line is not contained in \mathcal{S}^{\prime}, and thus it intersects \mathcal{S}^{\prime} in just one point. Since L is an axis of symmetry, the group G_{L} of symmetries about L acts transitively on the points of $M \backslash\{L \cap M\}$; it follows now that every G^{\prime}-orbit intersects M in exactly one point. Also, there follows that $G^{\prime \prime}=\left\langle G^{\prime}, G_{L}\right\rangle$ has size s^{4}. Since $G^{\prime \prime}$ is a group of elations with center p, the theorem is proved.

Remark 5.3. It is clear that four is the minimum number of lines such that the translation group of a TGQ of order $(s, t), 1<s \neq t$, is generated by the symmetries about these lines, see e.g. the proof of MAIN THEOREM 1.

Suppose that \mathcal{S} is a thick TGQ of order (s, t) which satisfies property (T) for some ordered flag (L, p) w.r.t. the lines L_{1}, L_{2}, L_{3}. Then by MAIN THEOREM 1 we have that $t=s^{2}$. Now suppose that C is the class of all thick TGQ's $\mathcal{S}^{(p)}$, with p fixed, for which the following condition holds:
(C) If $L_{1}, L_{2}, L_{3}, L_{4}$ are different lines through p for which Property (SUB) is satisfied, then there is a line $L \in\left\{L_{1}, L_{2}, L_{3}, L_{4}\right\}=\mathcal{L}$ such that $\mathcal{S}^{(p)}$ satisfies property (T) for the ordered flag (L, p) w.r.t. the lines of $\mathcal{L} \backslash\{L\}$.

Note that by Theorem 5.1, C is exactly the class of TGQ's for which Property (T) and Property (SUB) are 'equivalent' (with respect to certain lines incident with $p)$. If $\mathcal{S}^{(p)} \in \mathrm{C}$ is a TGQ of order (s, t) not satisfying Property (T$)$ for every ordered flag (L, p) (w.r.t. every three distinct lines through p and different from L), then Property (SUB) does not hold, and so there is a subGQ of order s. It follows that $t=s$ or $t=s^{2}$ by [9, 2.2.2]. Hence we have the following.

Observation 5.4. Every element of C has classical order, that is, is either of order s or of order $\left(s, s^{2}\right)$.

Let $\mathcal{S}^{(p)} \in \mathrm{C}$. Suppose that there are four distinct axes of symmetry incident with the translation point p such that for one of these lines M Property (T) is satisfied for the ordered flag (M, p) w.r.t. the other three lines. Then the translation group is generated by all symmetries about these four lines by MAIN THEOREM 1. If no ordered flag satisfies Property (T) w.r.t. every three distinct lines through p, then neither Property (SUB) will be satisfied for every four lines, hence there is a subquadrangle \mathcal{S}^{\prime} of \mathcal{S} of order s. If \mathcal{S} is of order s, then every three axes through the translation point will determine the translation group. If $t>s$, then $t=s^{2}$, and by Theorem 5.2, there exist four axes such that the translation group is generated by the symmetries about the four axes. We have the following observation.

Observation 5.5. If $\mathcal{S} \in \mathrm{C}$, then there always exist four axes which 'determine' the translation group, that is, the translation group is generated by the symmetries about the four axes.

6 Property (T), Property (T^{\prime}) and Property (G)

6.1 3-Regularity

Suppose \mathcal{S} is a GQ of order $\left(s, s^{2}\right), s \neq 1$. Then for any triad of points $\{p, q, r\}$, $\left|\{p, q, r\}^{\perp}\right|=s+1$, see 1.2 .4 of $[9]$. Evidently $\left|\{p, q, r\}^{\perp \perp}\right| \leq s+1$. We say that $\{p, q, r\}$ is 3-regular provided that $\left|\{p, q, r\}^{\perp \perp}\right|=s+1$. A point p is 3-regular if each triad of points containing p is 3 -regular. Let \mathcal{S} be a generalized quadrangle of order $\left(s, s^{2}\right), s \neq 1$. Let x_{1}, y_{1} be distinct collinear points. We say that the pair $\left\{x_{1}, y_{1}\right\}$ has Property (G), or that \mathcal{S} has Property (G) at $\left\{x_{1}, y_{1}\right\}$, if every triad $\left\{x_{1}, x_{2}, x_{3}\right\}$ of points for which $y_{1} \in\left\{x_{1}, x_{2}, x_{3}\right\}^{\perp}$ is 3 -regular.

6.2 T(n,m,q)'s

Suppose $H=\mathbf{P G}(2 n+m-1, q)$ is the finite projective $(2 n+m-1)$-space over $\mathbf{G F}(q)$, and let H be embedded in a $\mathbf{P G}(2 n+m, q)$, say H^{\prime}. Now define a set $\mathcal{O}=\mathcal{O}(n, m, q)$ of subspaces as follows: \mathcal{O} is a set of $q^{m}+1(n-1)$-dimensional subspaces of H, say $\mathbf{P G}(n-1, q)^{(i)}$, every three of which generate a $\mathbf{P G}(3 n-1, q)$, and such that the following condition is satisfied: for every i there is a subspace $\mathbf{P G}(n+m-1, q)^{(i)}$ of H of dimension $n+m-1$, which contains $\mathbf{P G}(n-1, q)^{(i)}$ and which is disjoint from any other $\operatorname{PG}(n-1, q)^{(j)}$ if $j \neq i$. If \mathcal{O} satisfies all these conditions, then it is called a generalized ovoid, or an egg. The spaces PG $(n+m-1, q)^{(i)}$
are the tangent spaces of the egg, or just the tangents.
Generalized ovoids were introduced by J. A. Thas in [12].
Now let $\mathcal{O}(n, m, q)$ be an egg of $H=\mathbf{P G}(2 n+m-1, q)$, and define a point-line incidence structure $T(n, m, q)$ as follows.

- The POINTS are of three types.

1. A symbol (∞).
2. The subspaces $\mathbf{P G}(n+m, q)$ of H^{\prime} which intersect H in a $\mathbf{P G}(n+m-$ $1, q)^{(i)}$.
3. The points of $H^{\prime} \backslash H$.

- The LINES are of two types.

1. The elements of the $\operatorname{egg} \mathcal{O}(n, m, q)$.
2. The subspaces $\mathbf{P G}(n, q)$ of $\mathbf{P G}(2 n+m, q)$ which intersect H in an element of the egg.

- INCIDENCE is defined as follows: the point (∞) is incident with all the lines of type (1) and with no other lines; the points of type (2) are incident with the unique line of type (1) contained in it and with all the lines of type (2) which they contain (as subspaces), and finally, a point of type (3) is incident with the lines of type (2) that contain it.

Then S. E. Payne and J. A. Thas, and J. A. Thas, prove in [13, 9] that $T(n, m, q)$ is a TGQ of order $\left(q^{n}, q^{m}\right)$, and that, conversely, any TGQ can be seen in this way. Hence, the study of translation generalized quadrangles is equivalent to the study of the generalized ovoids.

If $n \neq m$, then by 8.7.2 of [9] the $q^{m}+1$ tangent spaces of $\mathcal{O}(n, m, q)$ form an $\mathcal{O}^{*}(n, m, q)$ in the dual space of $\mathbf{P G}(2 n+m-1, q)$. So in addition to $T(n, m, q)$ there arises a TGQ $T\left(\mathcal{O}^{*}\right)$, also denoted $T^{*}(n, m, q)$, or $T^{*}(\mathcal{O})$. The TGQ $T^{*}(\mathcal{O})$ is called the translation dual of the TGQ $T(\mathcal{O})$.
Each TGQ \mathcal{S} of order $\left(s, s^{\frac{a+1}{a}}\right)$, with translation point (∞), where a is odd and $s \neq 1$, has a kernel \mathbb{K}, which is a field with a multiplicative group isomorphic to the group of all collineations of \mathcal{S} fixing the point (∞), and any given point not collinear with (∞), linewise. We have $|\mathbb{K}| \leq s$, see [9]. The field $\mathbf{G F}(q)$ is a subfield of \mathbb{K} if and only if \mathcal{S} is of type $T(n, m, q)$, see [9]. The TGQ \mathcal{S} is isomorphic to a $T_{3}(\mathcal{O})$ of Tits with \mathcal{O} an ovoid of $\operatorname{PG}(3, s)$ if and only if $|\mathbb{K}|=s$. It is well-known that the TGQ $T(\mathcal{O})$ and its translation dual $T\left(\mathcal{O}^{*}\right)$ have isomorphic kernels. An $\operatorname{egg} \mathcal{O}=\mathcal{O}(n, m, q), n \neq m$, is called good at an element $\pi \in \mathcal{O}$ if for every two distinct elements π^{*} and $\pi^{\prime \prime}$ of $\mathcal{O} \backslash\{\pi\}$ the (3n-1)-space $\pi \pi^{*} \pi^{\prime \prime}$ contains exactly $q^{n}+1$ elements of \mathcal{O} (and is disjoint from the other elements). If the egg \mathcal{O} contains a good element, then the egg is subconsequently called good, and for a good egg $\mathcal{O}(n, m, q)$ there holds that $m=2 n$. For convenience, we will sometimes say that
the TGQ $T(\mathcal{O})$ is good at its element π if \mathcal{O} is good at its element π. If a TGQ $\mathcal{S}^{(\infty)}$ contains a good element π, then its translation dual satisfies Property (G) for the corresponding flag $\left((\infty)^{\prime}, \pi^{\prime}\right)$, with π^{\prime} the tangent space of \mathcal{O} at π.

Theorem 6.1 (J. A. Thas [16]). If the $T G Q \mathcal{S}^{(\infty)}$ contains a good element π, then its translation dual satisfies Property (G) for the corresponding flag $\left((\infty)^{\prime}, \pi^{\prime}\right)$.

Theorem 6.2. Let $\mathcal{S}=T(n, m, q)$ be a $T G Q$ for which there exist four distinct elements $\pi_{i}, i=1,2,3,4$, of $\mathcal{O}=\mathcal{O}(n, m, q)$ which generate a $(4 n-1)$-space. Then \mathcal{S} is a $G Q$ of order $\left(q^{n}, q^{2 n}\right)$ and \mathcal{S} satisfies Property (T) for every ordered flag $\left(\pi_{r},(\infty)\right), r \in\{1,2,3,4\}$, w.r.t. $\pi_{i}, \pi_{j}, \pi_{k}$, where $\{i, j, k\}=\{1,2,3,4\} \backslash\{r\}$.

Proof. Since $4 n-1 \leq 2 n+m-1$, there follows immediately that \mathcal{S} is a GQ of order $\left(q^{n}, q^{2 n}\right)$. Now, let $L_{k} \sim \pi_{k}$ be lines of \mathcal{S} such that $\bigvee_{3}=\left\{L_{1}, L_{2}, \pi_{3}\right\}$ and $\mathrm{V}_{4}=\left\{L_{1}, L_{2}, \pi_{4}\right\}$ are centric triads with $L_{3} \in \mathrm{~V}_{3}^{\perp}$ and $L_{4} \in \mathrm{~V}_{4}^{\perp}$. Note that we assume that $L_{1} \nsucc L_{2}$. It follows that the n-spaces L_{3} and L_{4} intersect the $(2 n+1)$ dimensional space generated by the n-spaces L_{1} and L_{2} in a space of minimum dimension 1 , thus, if π is the space generated by the n-spaces $L_{k}, 1 \leq k \leq 4$, then π has dimension at most $4 n-1$. If we intersect π with $\mathbf{P G}(4 n-1, q)$, then we obtain a space with maximal dimension $4 n-2$ which contains the π_{k} 's, a contradiction. Hence, for every ordered flag $\left(\pi_{r},(\infty)\right)$, Property (T) is satisfied w.r.t. $\pi_{i}, \pi_{j}, \pi_{k}$, where $\{i, j, k\}=\{1,2,3,4\} \backslash\{r\}$.

The following theorem is a converse of Theorem 6.2.
Theorem 6.3. Suppose $\mathcal{S}^{(p)}$ is the thick $T G Q$ of order $\left(q^{n}, q^{2 n}\right)$ which corresponds to the generalized ovoid \mathcal{O} of $\mathbf{P G}(4 n-1, q)$. If LIp is a line such that Property (T) is satisfied for the ordered flag (L, p) with respect to the lines L_{1}, L_{2}, L_{3} through p, and if π, respectively π_{i}, is the element of \mathcal{O} which corresponds to L, respectively L_{i}, $i=1,2,3$, then $\left\langle\pi, \pi_{1}, \pi_{2}, \pi_{3}\right\rangle=\operatorname{PG}(4 n-1, q)$.

Proof. Immediate from the proof of MAIN THEOREM 1 and the interpretation in the projective model $T(n, 2 n, q)$.

Theorem 6.4. A $T G Q \mathcal{S}^{(\infty)}=T(\mathcal{O})$ which is good at an element $\pi \in \mathcal{O}$ satisfies Property (T) for the ordered flag $(\pi,(\infty)$).

Proof. If \mathcal{O} is good at some element π, then there are always four elements including π - of the corresponding egg, which generate the projective ($4 n-1$)-space $\mathbf{P G}(4 n-1, q)$.

Thus, if $\mathcal{S}=T(\mathcal{O})$ is a TGQ for which \mathcal{O} has a good element, then there are always four lines such that the translation group is generated by the symmetries about these lines.

Corollary 6.5. The $T_{3}(\mathcal{O})$ of Tits (see Chapter 3 of $F G Q$) satisfies Property (T).
Proof. \mathcal{O} is good at every point by $[9,8.7 .4]$.

Lemma 6.6. Suppose $\left(\mathcal{S}^{(p)}, G\right)$ is a thick $T G Q$ of order $(s, t), t \geq 3$. Then \mathcal{S} is of order s if and only if there are lines $L_{1} I p, L_{2} I p, L_{3} I p$ such that for every other line LIp, with G_{i} the full group of symmetries about L_{i} and G_{L} the full group of symmetries about L, the group $\left\langle G_{1}, G_{2}, G_{3}, G_{L}\right\rangle$ has size s ${ }^{3}$.

Proof. It is clear that a TGQ $\left(\mathcal{S}^{(p)}, G\right)$ of order $s, s>1$, has the desired property, since $|G|=s^{3}$ and since by Theorem $2.3 G$ is generated by the symmetries about three arbitrary distinct lines through p.
Let $\left(\mathcal{S}^{(p)}, G\right)$ be a TGQ, and suppose that the required conditions are satisfied. Suppose that G_{i} is the full group of symmetries about the line L_{i}, with $i \in\{1,2, \ldots, t+1\}$ and $L_{i} I p$. If $t=3$, then for any thick TGQ of order (s, t) we have $s=3$ and so $|G|=s^{3}$. Hence, let $t \geq 4$. Define the group H_{j} as $H_{j}=\left\langle G_{1}, G_{2}, G_{3}, \ldots, G_{j}\right\rangle$ with $j \in\{4,5, \ldots, t+1\}$. Then $\left|H_{4}\right|=s^{3}$. Considering that a group generated by the symmetries about three concurrent axes of symmetry is a group of elations of order s^{3} about their intersection point by Theorem 3.1, we have that $H_{4}=\left\langle G_{1}, G_{2}, G_{3}\right\rangle$. But $H_{5}=\left\langle H_{4}, G_{5}\right\rangle$, so $H_{5}=H_{4}$, and thus also $H_{4}=H_{5}=\ldots=H_{t+1}$. Since $H_{t+1}=G$ there follows that $|G|=s^{3}$, and hence \mathcal{S} is of order s.

The following theorem implies that Property (T^{\prime}) is a characteristic property for TGQ's of order s.

Theorem 6.7. Suppose $\left(\mathcal{S}^{(p)}, G\right)$ is a thick $T G Q$ of order $(s, t), t \geq 3$. Then \mathcal{S} is of order s if and only if there is a line LIp such that \mathcal{S} satisfies Property (T^{\prime}) for the ordered flag (L, p) w.r.t. every three distinct lines L_{1}, L_{2}, L_{3} through p which are different from L.

Proof. Immediately by Lemma 6.6 and Theorem 3.4.
Theorem 6.8. Suppose that $\mathcal{S}^{(p)}=T(\mathcal{O})$ is a thick $T G Q$ of order (s, t) with $s \neq$ $1 \neq t$, such that there is a line LIp so that for every three distinct lines L_{1}, L_{2}, L_{3} through p and different from L, either Property (T) or Property (T^{\prime}) is satisfied for the ordered flag (L, p) w.r.t. L_{1}, L_{2}, L_{3}, and suppose that there is at least one 3-tuple (M, N, U) such that (L, p) satisfies Property (T) w.r.t. (M, N, U).
Then $T(\mathcal{O})$ is good at its element L.
Proof. Since there is at least one 3 -tuple (M, N, U) such that (L, p) satisfies Property (T) w.r.t. (M, N, U), there follows by MAIN THEOREM 1 that $t=s^{2}$. By Theorem 6.3, the definitions of Property (T) and Property (T '), Lemma 6.6 and Theorem 6.7, there follows that the generalized ovoid \mathcal{O} satisfies the condition that for every three distinct lines L_{1}, L_{2}, L_{3} through p and different from L, the projective space generated by the four corresponding elements of \mathcal{O} is either a $\operatorname{PG}(4 n-1, q)$ or a $\mathrm{PG}(3 n-1, q)$. Thus every $(3 n-1)$-space which is generated by the element π of \mathcal{O} which corresponds to L and two other elements of \mathcal{O}, has the property that it either is disjoint with any other element of \mathcal{O} or completely contains it. Suppose that we denote the elements of \mathcal{O} by $\pi, \pi^{1}, \ldots, \pi^{q^{2 n}}$, where π corresponds to L, and fix for instance π^{i}, i arbitrary. Then all the $(3 n-1)$-spaces of $\mathbf{P G}(4 n-1, q)$ which contain π, π^{i} and an element of $\mathcal{O} \backslash\left\{\pi, \pi^{i}\right\}$ intersect two by two in $\pi \pi^{i}$ and cover $\operatorname{PG}(4 n-1, q)$. By the preceding remarks, every element of $\mathcal{O} \backslash\left\{\pi, \pi^{i}\right\}$ is completely contained in one of these $(3 n-1)$-spaces, and is disjoint with any other of the
($3 n-1$)-spaces. Since the number of these spaces is $q^{n}+1$, there follows that every of these $(3 n-1)$-spaces contains exactly $q^{n}+1$ elements of \mathcal{O}. The theorem now follows since i was arbitrary.

Note. It is also possible to easily prove Theorem 6.8 with the use of 8.7 .2 of FGQ [9].

Theorem 6.9. Suppose that $\mathcal{S}^{(p)}=T(\mathcal{O})$ is a thick $T G Q$ of order (s, t) with $s \neq t$, such that there is a line LIp so that for every three distinct lines L_{1}, L_{2}, L_{3} through p and different from L, either Property (T) or Property (T^{\prime}) is satisfied for the ordered flag (L, p) w.r.t. L_{1}, L_{2}, L_{3}. Then $t=s^{2}$ and the translation dual $\mathcal{S}^{*\left(p^{\prime}\right)}=T\left(\mathcal{O}^{*}\right)$ satisfies Property (G) for the flag $\left(p^{\prime}, L^{\prime}\right)$, where (p^{\prime}, L^{\prime}) corresponds to (p, L).

Proof. Immediate by Theorem 6.8 and Theorem 6.1.

6.3 Flocks, Property (T) and Property (T^{\prime})

Let \mathcal{F} be a flock of a quadratic cone \mathcal{K} with vertex v of $\mathbf{P G}(3, q)$, that is, a partition of $\mathcal{K} \backslash\{v\}$ into q disjoint irreducible conics. Then we have the following theorem.

Theorem 6.10 (J. A. Thas [14]). To any flock of the quadratic cone of $\mathbf{P G}(3, q)$ corresponds a $G Q$ of order $\left(q^{2}, q\right)$.

The following important theorem on flock GQ's is due to Payne (for notations not explicitly given here, see e.g. [22]).

Theorem 6.11 (S. E. Payne [10]). Any flock $G Q$ satisfies Property (G) at its point (∞).

Now we come to the main theorem of the masterful sequence of papers [16], [18], [22], [20]; it is a converse of the previous theorem and the solution of a longstanding conjecture.

Theorem 6.12 (J. A. Thas [22]). Let $\mathcal{S}=(P, B, I)$ be a $G Q$ of order $\left(q^{2}, q\right)$, $q>1$, and assume that \mathcal{S} satisfies Property (G) at the flag (x, L). If q is odd then \mathcal{S} is the dual of a flock $G Q$. If q is even and all ovoids \mathcal{O}_{z} (see Section 5 of [22]) are elliptic quadrics, then we have the same conclusion.

Finally, we recall the following.
Theorem 6.13 (J. A. Thas [16]). Suppose $\mathcal{S}^{(p)}=T(\mathcal{O})$ is a $T G Q$ of order $\left(s, s^{2}\right)$, $s>1$, for which \mathcal{O} is good at its element π. Then \mathcal{S} contains at least $s^{3}+s^{2}$ subGQ's of order s (all containing the point p). For s odd these subGQ's are isomorphic to the classical $G Q \mathcal{Q}(4, s)$ (which arises from a nonsingular quadric in $\operatorname{PG}(4, s)$).

Theorem 6.14 (J. A. Thas [24]). Let $\mathcal{S}^{(p)}=T(\mathcal{O})$ be a TGQ of order $\left(s, s^{2}\right)$, s even, such that \mathcal{O} is good at its element $\pi I p$. If \mathcal{S} contains at least one sub $G Q$ of order s which is isomorphic to the $G Q \mathcal{Q}(4, s)$, then \mathcal{S} is isomorphic to $\mathcal{Q}(5, s)$ (which arises from a nonsingular elliptic quadric in $\mathbf{P G}(5, s)$).

There is a very nice corollary of Theorem 6.12 and Theorem 6.8.
Corollary 6.15. Suppose that $\mathcal{S}^{(p)}=T(\mathcal{O})$ is a thick $T G Q$ of order (s, t) with $s \neq t$ and s odd, such that there is a line LIp so that for every three distinct lines L_{1}, L_{2}, L_{3} through p and different from L, either Property (T) or Property (T^{\prime}) for the ordered flag (L, p) is satisfied w.r.t. L_{1}, L_{2}, L_{3}. Then $t=s^{2}$ and the translation dual $\mathcal{S}^{*\left(p^{\prime}\right)}=T\left(\mathcal{O}^{*}\right)$ of \mathcal{S} is the point-line dual of a flock $G Q$.

Proof. By Theorem 6.9 we have that $t=s^{2}$, and that the translation dual $\mathcal{S}^{*\left(p^{\prime}\right)}$ satisfies Property (G) at its flag $\left(p^{\prime}, L^{\prime}\right)$ which corresponds with (p, L). By Theorem 6.12, the proof is complete.

If the flock GQ $\mathcal{S}(\mathcal{F})$ is the classical GQ $H\left(3, q^{2}\right)$, then it is a TGQ with base line L, L any line of $\mathcal{S}(\mathcal{F})$. The dual $\mathcal{S}(\mathcal{F})^{D}$ of $\mathcal{S}(\mathcal{F})$ is isomorphic to $T_{3}(\mathcal{O}), \mathcal{O}$ an elliptic quadric of $\operatorname{PG}(3, q)$. Hence the kernel \mathbb{K} is the field $\mathbf{G F}(q)$. Also, $\mathcal{S}(\mathcal{F})^{D}$ is isomorphic to its translation dual $\left(\mathcal{S}(\mathcal{F})^{D}\right)^{*}$. Let \mathcal{K} be the quadratic cone with equation $X_{0} X_{1}=X_{2}^{2}$ of $\mathbf{P G}(3, q), q$ odd. Then the q planes π_{t} with equation $t X_{0}-m t^{\sigma} X_{1}+X_{3}=0, t \in \mathbf{G F}(q), m$ a given non-square in $\mathbf{G F}(q)$ and σ a given automorphism of $\mathbf{G F}(q)$, define a flock \mathcal{F} of \mathcal{K}; see [14]. All the planes π_{t} contain the exterior point $(0,0,1,0)$ of \mathcal{K}. This flock is linear, that is, all the planes π_{t} contain a common line, if and only if $\sigma=1$. Conversely, every nonlinear flock \mathcal{F} of \mathcal{K} for which the planes of the q conics share a common point, is of the type just described, see [14].
The corresponding GQ $\mathcal{S}(\mathcal{F})$ was first discovered by W. M. Kantor, and is therefore called the Kantor (flock) generalized quadrangle. This quadrangle is a TGQ for some baseline, and the following was shown by Payne in $[10]^{2}$.

Theorem 6.16 (S. E. Payne [10]). Suppose a $T G Q \mathcal{S}=T(\mathcal{O})$ is the point-line dual of a $G Q \mathcal{S}(\mathcal{F})$ which arises from a Kantor flock \mathcal{F}. Then $T(\mathcal{O})$ is isomorphic to its translation dual $T^{*}(\mathcal{O})$.

The kernel \mathbb{K} is the fixed field of σ, see [11].
The following recent and very interesting theorem classifies TGQ's arising from flocks in the odd case.

Theorem 6.17 (Blokhuis, Lavrauw and Ball [2]). Let $T(\mathcal{O})$ be a $T G Q$ of order $\left(q^{n}, q^{2 n}\right)$, where $\mathbf{G F}(q)$ is the kernel, and suppose $T(\mathcal{O})$ is the translation dual of the point-line dual of a flock $G Q \mathcal{S}(\mathcal{F})$, with the additional condition that $q \geq 4 n^{2}-8 n+2$ and q is odd. Then $T(\mathcal{O})$ is isomorphic to the point-line dual of a Kantor flock $G Q$.

We are now able to classify the thick TGQ's for which there is a line LIp so that for every three distinct lines L_{1}, L_{2}, L_{3} through p and different from L, either Property (T) or Property (T^{\prime}) is satisfied for the ordered flag (L, p) w.r.t. L_{1}, L_{2}, L_{3}.

[^2]Corollary 6.18. Suppose that $\mathcal{S}^{(p)}$ is a thick $T G Q$ of order $(s, t), s \neq 1 \neq t$, such that there is a line LIp so that for every three distinct lines L_{1}, L_{2}, L_{3} through p and different from L, either Property (T) or Property (T^{\prime}) is satisfied for the ordered flag (L, p) w.r.t. L_{1}, L_{2}, L_{3}. Then we have the following classification.

1. $s=t$ and \mathcal{S} is a TGQ with no further restrictions.
2. $t=s^{2}, s$ is an even prime power, and \mathcal{O} is good at its element π which corresponds to L, where $\mathcal{S}=T(\mathcal{O})$. Also, \mathcal{S} has precisely $s^{3}+s^{2}$ subGQ's of order s which contain the line L, and if one of these subquadrangles is classical, i.e. isomorphic to the $G Q \mathcal{Q}(4, s)$, then \mathcal{S} is classical, that is, isomorphic to the $G Q \mathcal{Q}(5, s)$.
3. $t=s^{2}$ and $s=q^{n}, q$ odd, where $\mathbf{G F}(q)$ is the kernel of the $T G Q \mathcal{S}^{(p)}$, with $q \geq 4 n^{2}-8 n+2$, and \mathcal{S} is the point-line dual of a flock $G Q \mathcal{S}(\mathcal{F})$ where \mathcal{F} is a Kantor flock.
4. $t=s^{2}$ and $s=q^{n}$, q odd, where $\mathbf{G F}(q)$ is the kernel of the $T G Q \mathcal{S}^{(p)}$, with $q<4 n^{2}-8 n+2$, and \mathcal{S} is the translation dual of the point-line dual of a flock $G Q \mathcal{S}(\mathcal{F})$ for some flock \mathcal{F}.

Proof. If for every three distinct lines L_{1}, L_{2}, L_{3} through p and different from L, Property (T') is always satisfied for the ordered flag (L, p) w.r.t. L_{1}, L_{2}, L_{3}, then by Lemma 6.7 there follows that \mathcal{S} is a TGQ of order s with no further restrictions. Suppose this is not the case. Then there is a 3-tuple (M, N, U) of distinct lines through p such that Property (T) is satisfied for the ordered flag (L, p) w.r.t. M, N, U. Hence by MAIN THEOREM 1 there follows that $t=s^{2}$, and if $\mathcal{S}=T(\mathcal{O})$, then \mathcal{O} is good at its element π which corresponds to L by Theorem 6.8. Suppose that s is even. Then (2) follows from Theorem 6.13 and Theorem 6.14. Next suppose that s is odd. By Theorem $6.12 T^{*}(\mathcal{O})$ is the point-line dual of a flock GQ $\mathcal{S}(\mathcal{F})$. Then (3) and (4) follow from Theorem 6.17.

7 The General Problem

We start this section with the following result.
Theorem 7.1 (FGQ, 9.4.2). Suppose that $L_{0}, L_{1}, \ldots, L_{r}, r \geq 1$, are $r+1$ lines incident with a certain point p in the $G Q \mathcal{S}$ of order $(s, t), s \neq 1 \neq t$. Suppose that \mathcal{O} is the set of points different from p, which are on the lines of $L_{0}, L_{1}, \ldots, L_{r}$, and denote $P \backslash p^{\perp}$ by Ω. Suppose that G is a group of elations with center p, and suppose G has the property that, if M is an arbitrary line which intersects \mathcal{O} in one point m, then G acts transitively on the points of Ω lying on M. If $r>t / s$, then G acts transitively - and so also regularly - on the points of Ω.

Corollary 7.2. Suppose that $\left(\mathcal{S}^{(p)}, G\right)$ is a $T G Q$ of order $(s, t), s, t \neq 2$, and suppose $k>t / s, k \in \mathbb{N}$. Then the translation group G is generated by the symmetries about $k+1$ arbitrary lines through the translation point p.

Corollary 7.3. Let \mathcal{S} be a thick $G Q$ of order (s, t) with the property that there is a point p incident with at least $s+2$ distinct axes of symmetry, and suppose that the group G generated by all symmetries about some $s+2$ axes of symmetry through p is a group of elations. Then $\left(\mathcal{S}^{(p)}, G\right)$ is a $T G Q$.

Proof. From the inequality of Higman [9] there follows that $t / s \leq s$, hence $s+1>t / s$. So, the conditions of Theorem 7.1 for the group G and the $s+2$ lines $L_{i} I p$ are satisfied. Hence, the group G acts regularly on the points of $P \backslash p^{\perp}$, and $\left(\mathcal{S}^{(p)}, G\right)$ is an EGQ. There are at least two regular lines through the elation point p, and by Theorem 2.8 the proof is complete.

Theorem 7.4 (FGQ, 8.2.4). Let $\mathcal{S}=(P, B, I)$ be a $G Q$ of order (s, t) with $s \leq t$ and $s>1$, and let p be a point for which $\{p, x\}^{\perp \perp}=\{p, x\}$ for all $x \in P \backslash p^{\perp}$. Let G be a group of whorls about p.

1. If $y \sim p, y \neq p$, and if θ is a nonidentity whorl about p and y, then all points fixed by θ lie on $p y$ and all lines fixed by θ meet $p y$.
2. If θ is a nonidentity whorl about p, then θ fixes at most one point of $P \backslash p^{\perp}$.
3. If G is generated by elations about p, then G is a group of elations, i.e. the set of elations about p is a group.
4. If G acts transitively on $P \backslash p^{\perp}$ and $|G|>s^{2} t$, then G is a Frobenius group on $P \backslash p^{\perp}$, so that the set of all elations about p is a normal subgroup of G of order $s^{2} t$ acting regularly on $P \backslash p^{\perp}$, i.e. $\mathcal{S}^{(p)}$ is an $E G Q$ with some normal subgroup of G as elation group.
5. If G is transitive on $P \backslash p^{\perp}$ and G is generated by elations about p, then $\left(\mathcal{S}^{(p)}, G\right)$ is an $E G Q$.

Theorem 7.5. Suppose \mathcal{S} is a $G Q$ of order $(s, t), t>s^{2} / 2$ and $s \neq 1$, with x a point incident with $r+1$ axes of symmetry, $r \geq s+1$. If G is the group generated by all symmetries about these $r+1$ lines, then $\left(\mathcal{S}^{(x)}, G\right)$ is a $T G Q$.

Proof. By $[9,1.4 .2]$ and Theorem 7.4 the conditions of Theorem 7.1 are satisfied, which implies that $\left(\mathcal{S}^{(x)}, G\right)$ is an EGQ. Theorem 2.8 finishes the proof.

Theorem 7.6. Suppose $\mathcal{S}=\left(\mathcal{S}^{(p)}, G\right)$ is a thick $T G Q$ of order (s, t), and let $\mathbf{G F}(q)$ be the kernel of the $T G Q$. Next, suppose that $L_{1}, L_{2}, \ldots, L_{t+1}$ are the lines incident with p, and let G_{i} be the group of all symmetries about the line $L_{i}, i \in\{1,2, \ldots, t+$ 1\}. Define k as the minimum number such that $G=\left\langle G_{i_{1}}, G_{i_{2}}, \ldots, G_{i_{(3+k)}}\right\rangle$, with $\left\{i_{1}, i_{2}, \ldots, i_{(3+k)}\right\} \subseteq\{1,2, \ldots, t+1\}$. Then we have the following inequality:

$$
k \leq \log _{q} \frac{t}{s}
$$

Proof. Denote the groups $\left\langle G_{i_{1}}, G_{i_{2}}, G_{i_{3}}\right\rangle$ and $\left\langle G_{i_{1}}, G_{i_{2}}, G_{i_{3}}, \ldots, G_{i_{(j+3)}}\right\rangle$ respectively by G_{0}^{\prime} and G_{j}^{\prime}, with $j \in\{1,2, \ldots, k\}$. By Theorem 3.1 we have that $\left|G_{0}^{\prime}\right|=s^{3}$. Since k is defined as a minimum, we have the following strict chain of groups:

$$
G_{0}^{\prime}<G_{1}^{\prime}<\ldots<G_{k}^{\prime}=G
$$

Now fix a point $y \in P \backslash p^{\perp}$, where $\mathcal{S}=(P, B, I)$. The groups G_{i}^{\prime} are all groups of elations about p, and hence for the G_{i}^{\prime}-orbits $G_{i}^{* *}$ which contain y, there holds that $\left|G_{i}^{\prime *}\right|=\left|G_{i}^{\prime}\right|, i=0,1, \ldots, k$, and that

$$
G_{0}^{\prime *} \subset G_{1}^{\prime *} \subset \ldots \subset G_{k}^{* *}=P \backslash p^{\perp}
$$

The TGQ \mathcal{S} is a $T(\mathcal{O})$ for some egg \mathcal{O} in $\mathbf{P G}(2 n+m-1, q) \subset \mathbf{P G}(2 n+m, q)$, where $\mathbf{G F}(q)$ is the kernel of the TGQ. If we interpret the strict chain of orbits in $\mathbf{P G}(2 n+m-1, q)$, then we obtain a strict chain of affine spaces over $\mathbf{G F}(q)$:

$$
\mathbf{A G}_{0}^{\prime} \subset \mathbf{A G}_{1}^{\prime} \subset \ldots \subset \mathbf{A G}_{k}^{\prime}=\mathbf{A G}(2 n+m, q),
$$

and we have that $\left|\mathbf{A G}_{j}^{\prime}\right| \geq q\left|\mathbf{A G}_{j-1}^{\prime}\right|$ for every $j \in\{1,2, \ldots, k\}$, which implies that $|G| \geq q^{k} s^{3}$. Since $|G|=s^{2} t$, the theorem follows.

This leads to one of our main theorems, which is a considerable improvement of the best known (general) result.

MAIN THEOREM 2. Let $\left(\mathcal{S}^{(p)}, G\right)$ be a $T G Q$ of $\operatorname{order}(s, t), 1 \neq s \neq t \neq 1$, with $(s, t)=\left(q^{n a}, q^{n(a+1)}\right)$, where $\mathbf{G F}(q)$ is the kernel of the TGQ and where a is odd. If $k+3$ is the minimum number of distinct lines through p such that G is generated by the symmetries about these lines, then

$$
k \leq n .
$$

Remark 7.7 (An alternative approach for $T_{3}(\mathcal{O})$). Suppose $\left(\mathcal{S}^{(p)}, G\right)$ is a TGQ of order $(s, t), s \neq 1 \neq t$. Then the kernel \mathbb{K} of the TGQ is isomorphic to $\mathbf{G F}(s)$ if and only if \mathcal{S} is a $T_{3}(\mathcal{O})$ with \mathcal{O} some ovoid of $\operatorname{PG}(3, s)$, and $t=s^{2}$, see [9, 8.7.4]. There immediately follows from MAIN THEOREM 2 that there are four distinct lines incident with p such that G is generated by all symmetries about these four lines. Hence, the knowledge of the size of the kernel is already sufficient to completely solve problem (2) for the $T_{3}(\mathcal{O})$ of Tits.

The following is an analogue of MAIN THEOREM 2 in a more general context.
Theorem 7.8. Suppose \mathcal{S} is a thick $G Q$ of order (s, t), and let x be a point of \mathcal{S} incident with $r+1$ axes of symmetry L_{0}, \ldots, L_{r}. Suppose G is the group generated by all symmetries about the lines L_{i}. We denote the full group of symmetries about L_{i} by $G_{i}, 0 \leq i \leq r$. Define k as the smallest natural number such that $|G| \leq s^{3} k$, and suppose $r \geq 2$. Then there are at least $m=r-2-\log _{p} k$ groups of $G_{0}, G_{1}, \ldots, G_{r}$ which are abelian, and G is generated by the symmetries about at most $3+\log _{p} k$ elements of $\left\{L_{0}, L_{1}, \ldots, L_{r}\right\}$. Here p is the smallest prime number dividing s.

Proof. By Theorem 3.1 we have that s^{3} divides $|G|$, and hence $|G|=s^{3} k$. Suppose $r+1-m$ is the minimal number of groups of $\left\{G_{0}, G_{1}, \ldots, G_{r}\right\}$ which generate G. Then we have by the proof of Theorem 4.2 that

$$
s^{3} p^{r-2-m} \leq|G|=s^{3} k
$$

and hence

$$
p^{r-2-m} \leq k \quad \Longrightarrow \quad m \geq r-2-\log _{p} k .
$$

Next, suppose that $L_{0}, L_{1}, \ldots, L_{r}$ are axes of symmetry through p, indexed in such a way that $G=\left\langle G_{j} \| m \leq j \leq r\right\rangle$ (recall that G is generated by all symmetries about $r+1-m$ axes of symmetry incident with x), and define H_{i} as $H_{i}=\left\langle G_{j} \|\right.$ $j \neq i, 0 \leq j \leq r\rangle, i \in\{0,1, \ldots, r\}$. Then we have that $G=H_{i} G_{i}=G_{i} H_{i}$ for every $i, i \in\{0,1, \ldots, r\}$, since symmetries about different concurrent axes commute, and if $j \in\{0,1, \ldots, m-1\}$, it follows that $G=H_{j} G_{j}=H_{j}\left(G_{j} \leq H_{j}=G\right)$. Also, since symmetries about different concurrent axes commute, there follows that every group G_{j}, with $j \in\{0,1, \ldots, m-1\}$, is abelian, see the proof of [9, 8.3.1]. This proves the result.

The next (related) theorem generalizes the fact that if \mathcal{S} is a (thick) TGQ of order (s, t), then s and t are powers of the same prime.

Theorem 7.9. Suppose \mathcal{S} is a $G Q$ of order $(s, t), t>s^{2} / 2$ and $s \neq 1$, and let x be a point which is incident with $r+1$ axes of symmetry $L_{0}, L_{1}, \ldots, L_{r}, r \geq 2$, such that the following condition is satisfied.

- If G_{i} is the full group of symmetries about $L_{i}, i=0,1, \ldots, r$, and $H_{i}=\left\langle G_{j} \|\right.$ $j \neq i, 0 \leq j \leq r\rangle$, then $G_{i} \nsubseteq H_{i}$.

If $r+1 \geq 3+\log _{p} \frac{t}{s}$, then $r+1=3+\log _{p} \frac{t}{s}$ and $\left(\mathcal{S}^{(x)}, G\right)$ is a TGQ. Here p is the smallest prime number dividing s, and $G=\left\langle G_{0}, G_{1}, \ldots, G_{r}\right\rangle$. Also, $\frac{t}{s}$ is a power of p, and s and t are powers of p if $t=s^{2}$.

Proof. From Theorem 7.8 and Theorem 4.2, there follows that $|G| \geq p^{r-2} s^{3}$. Since $r+1 \geq 3+\log _{p} \frac{t}{s}$, there follows that $|G| \geq s^{2} t$. Since $t>s^{2} / 2$, it follows by Theorem 7.4 that G is a group of elations with center x, hence $|G|=s^{2} t$ and $r=2+\log _{p} \frac{t}{s}$. The equality implies that $\frac{t}{s}$ is a power of p, and in particular, if $t=s^{2}$, there holds that s is a power of p, and then also t. Since $|G|=s^{2} t$, there also follows that $\left(\mathcal{S}^{(x)}, G\right)$ is an EGQ, and by Theorem 2.8 and the fact that $r \geq 2$, we also know that $\mathcal{S}^{(x)}$ is a TGQ.

Theorem 7.10 (FGQ, 8.1.1). Let θ be a nonidentity whorl about the point p of the $G Q \mathcal{S}=(P, B, I)$ of order $(s, t), s \neq 1 \neq t$. Then one of the following must hold for the fixed elements structure $\mathcal{S}_{\theta}=\left(P_{\theta}, B_{\theta}, I_{\theta}\right)$:

1. $y^{\theta} \neq y$ for each $y \in P \backslash p^{\perp}$.
2. There is a point $y, y \nsim p$, for which $y^{\theta}=y$. Put $V=\{p, y\}^{\perp}$ and $U=V^{\perp}$. Then $V \cup\{p, y\} \subseteq P_{\theta} \subseteq V \cup U$, and $L \in B_{\theta}$ if and only if L joins a point of V with a point of $U \cap P_{\theta}$.
3. \mathcal{S}_{θ} is a subGQ of order $\left(s^{\prime}, t\right)$, where $2 \leq s^{\prime} \leq s / t \leq t$, and hence $t<s$.

Theorem 7.11. Suppose that $\mathcal{S}=(P, B, I)$ is a thick $G Q$, with x a point which is incident with at least $r+1$ axes of symmetry, $L_{0}, \ldots, L_{r}, r \geq 3$. Let G_{i} be the full group of symmetries about L_{i}. Define $G=\left\langle G_{i} \| i=0,1, \ldots, r\right\rangle$, and put $H_{i}=\left\langle G_{j} \| j \neq i, i, j \in\{0,1, \ldots, r\}\right\rangle$. Suppose that G_{*} is an arbitrary G-orbit in $P \backslash x^{\perp}$. If $\forall i=0,1, \ldots, r$ there holds that H_{i} acts transitively on the points of G_{*}, then G acts regularly on the points of G_{*}, G is abelian and G is a group of elations about x. The same properties hold immediately for every G-orbit in $P \backslash x^{\perp}$.

Proof. Suppose $\left|G_{*}\right|=m$; then $m \geq s^{3}$ by Theorem 3.1, and it follows that $|G|=m k$, with $k=\left|G_{y}\right|$ for an arbitrary point $y \in G_{*}$. In the following y will be fixed, as well as $i \in\{0,1, \ldots, r\}$. There holds that $\left|H_{i}\right|=m k^{\prime}$ with $k^{\prime}=\left|\left(H_{i}\right)_{y}\right|$, and clearly that $k^{\prime} \mid k$, say $k=k^{\prime} n$.

So we have that:

$$
\begin{equation*}
|G|=m k=\left|G_{i} H_{i}\right|=\frac{\left|G_{i}\right| \times\left|H_{i}\right|}{\left|G_{i} \cap H_{i}\right|}=\frac{s m k^{\prime}}{\left|G_{i} \cap H_{i}\right|} \tag{1}
\end{equation*}
$$

There follows that $s=n\left|G_{i} \cap H_{i}\right|$, and thus that $n \mid s$. Suppose now that p is a prime which divides n; then there exists a $\theta \in G_{y}$ of order p. Suppose M is a line through y meeting L_{i} in x_{i}. The orbits of $\langle\theta\rangle$ on M (seen as a point set) are cycles of length p, and since p is a divisor of n and of s, we have that there are at least $p+1$ points incident with M which are fixed by θ. By Theorem 7.4θ has to be the identity, since $s \leq t$ and since every axis of symmetry is regular. It follows that $n=1$, and that $H_{i}=G$. Every two symmetries about distinct concurrent lines commute, and since we proved that $G_{j} H_{j}=H_{j}=G$, with $i=0,1, \ldots, r, G_{j}$ is commutative for every j. Hence G is abelian, and since G acts transitively on G_{*}, G also acts regularly on G_{*}, see e.g. [5]. Finally suppose that H_{*} is an arbitrary G-orbit in $P \backslash x^{\perp}$. Since G is abelian and since G acts transitively on this orbit, we can again conclude that G acts regularly on H_{*}. This proves the assertion.

Theorem 7.12. Suppose $\mathcal{S}=(P, B, I)$ is a generalized quadrangle with parameters $(s, t), s \neq 1 \neq t$, and that p is a point which is incident with at least three axes of symmetry. Also, suppose that G is the group generated by the symmetries about every axis of symmetry through p. Suppose G_{*} is an arbitrary G-orbit of the permutation group $\left(P \backslash p^{\perp}, G\right)$. Now define the incidence structure $\mathcal{S}^{\prime}\left(G_{*}\right)=\mathcal{S}^{\prime}=\left(P^{\prime}, B^{\prime}, I^{\prime}\right)$ as follows. The elements of P^{\prime} are of three types: (1) the point p; (2) the points of G_{*}; (3) any point which is incident with an axis of symmetry through p. We have two types of lines: (a) the axes of symmetry through p; (b) the lines of \mathcal{S} which intersect a line of the first type and contain at least one point of G_{*}. The incidence relation $I^{\prime} \subseteq I$ is the restriction of I to $\left(P^{\prime} \times B^{\prime}\right) \cup\left(B^{\prime} \times P^{\prime}\right)$.
Then we have the following properties.

1. There are constants l and k such that any point of the first two types is incident with $l+1$ lines of \mathcal{S}^{\prime}, and every point of the last type is incident with $k+1$ lines;
2. A line of \mathcal{S}^{\prime} contains $s+1$ points of \mathcal{S}^{\prime};
3. $\left|G_{*}\right|=s^{2} k$;
4. k is divisible by s, and in particular we have that $s \leq k$. Also, $l \leq k$;
5. The number of points of \mathcal{S}^{\prime} is $k s^{2}+(l+1) s+1$, and the number of lines of \mathcal{S}^{\prime} is $(l+1)(s k+1)$.

Proof.
(i) Let L be an arbitrary line through p, and consider an arbitrary point $q I L$, $q \neq p$. Suppose that q is incident with $k+1$ lines of \mathcal{S}^{\prime}. Since G acts transitively on the points of $L \backslash\{p\}$ (p is incident with at least one axis of symmetry), and since G_{*} is fixed by G, we can conclude that every point of $L \backslash\{p\}$ is incident with $k+1$ lines of \mathcal{S}^{\prime}. Next consider an arbitrary line L^{\prime} such that $L^{\prime} \neq L$, and an arbitrary point $q^{\prime} I L^{\prime}, q^{\prime} \neq p$ (so q^{\prime} is a point of \mathcal{S}^{\prime}). If $k^{\prime}+1$ is the number of lines of \mathcal{S}^{\prime} incident with q^{\prime}, then we can easily see that $k^{\prime} \geq k$ (the $k+1$ lines through q^{\prime} of \mathcal{S}, meeting the $k+1$ lines through q of \mathcal{S}^{\prime} are also lines of \mathcal{S}^{\prime}), and conversely we have that $k \geq k^{\prime}$. It follows that there exists a $k \in \mathbb{N}$ such that each point of \mathcal{S}^{\prime} of type (3) is incident with $k+1$ lines of \mathcal{S}^{\prime}. Suppose that p is incident with $l+1$ lines of \mathcal{S}^{\prime}, and consider a point p^{\prime} of G_{*}. From the definition of \mathcal{S}^{\prime}, we can immediately see that p^{\prime} is also incident with $l+1$ lines of \mathcal{S}^{\prime}. This proves part (1) of the theorem.
(ii) Immediately by the definition of \mathcal{S}^{\prime}.
(iii) Consider an arbitrary line $L \in B^{\prime}$ of type (a); then each point of G_{*} is incident with a unique line of \mathcal{S}^{\prime} (of type (b)) which is concurrent with L. Then the statement follows easily by part (1).
(iv) If G^{\prime} is a group generated by all symmetries about three distinct axes of symmetry through a point p in a GQ \mathcal{S}, then $\left|G^{\prime}\right|=s^{3}$ by Theorem 3.1, and G^{\prime} is a group of elations with center p. Thus s^{3} is a divisor of $\left|G_{*}\right|=s^{2} k$. Now
suppose that M is a fixed line of \mathcal{S}^{\prime} of type (b). Counting the number of pairs (q, M), with $q I M$ a point of G_{*} lying on a line of \mathcal{S}^{\prime} not through p, we obtain that

$$
s+s l(s-1)+(k-1) s \leq\left|G_{*}\right|=s^{2} k,
$$

or that

$$
s l-l \leq s k-k .
$$

Hence part (4) of the theorem follows.
(v) The numbers of points and lines of \mathcal{S}^{\prime} follow immediately by (1) and (2).

Remark 7.13. Theorem 7.12 is taken from K. Thas [25], and was one of the main motivations for introducing semi quadrangles, see [28].

We are now ready to state the following (main) result.
MAIN THEOREM 3. Suppose \mathcal{S} is a $G Q$ of order $(s, t), t \geq s \neq 1$, and let p be a point of \mathcal{S} which is incident with more than $t-s+2$ axes of symmetry. Then $\mathcal{S}^{(p)}$ is a translation quadrangle. If $s \neq t$, and G is the group generated by $t-s+2$ arbitrary axes of symmetry through p, then G is the translation group.

Proof. If $s=t$, then the theorem follows from Theorem 2.3, so suppose that $s \neq t$. Consider $r+1$ axes of symmetry through p, with $r=t-s+1$, and suppose that G_{*} is an arbitrary G-orbit in $P \backslash p^{\perp}$, with G as above. Since p is incident with at least three axes of symmetry, we have by Theorem 4.2 that t is divisible by s, and since $r \geq 2$, we can use Theorem 7.12 (in the following we use the same notations as in Theorem 7.12). If \mathcal{S}^{\prime} is the incidence structure associated to G_{*} as defined in Theorem 7.12, then there follows that $k \geq t-s+1$ since $k \geq l \geq r$. However, by Theorem 7.12 it follows that $s \mid k$, and we already remarked that $s \mid t$. Since $k \leq t$, there holds that $k=t$, thus $\left|G_{*}\right|=s^{2} k=s^{2} t$, so G acts transitively on $P \backslash p^{\perp}$. Since the $t-s+2$ axes were arbitrary chosen, the conditions of Theorem 7.11 hold. Hence we can conclude that the group G acts regularly on $P \backslash p^{\perp}$, and the theorem follows by Theorem 2.8.

Remark 7.14. Regarding GQ's which have nonconcurrent axes of symmetry (the so-called span-symmetric generalized quadrangles), we refer to [27] and [29].

Appendix: a New Short Proof of a Theorem of Payne and Thas

Theorem 7.15. Suppose $\mathcal{S}=(P, B, I)$ is a thick $G Q$ of order s, and let p be a point of P incident with three distinct axes of symmetry L_{1}, L_{2}, L_{3}. Then every line through p is an axis of symmetry, and so \mathcal{S} is a $T G Q$.

The proof of this theorem, mentioned in Chapter 11 of FGQ [9] is not easy, and uses a coordinatization method for GQ's of order s and the theory of planar ternary rings. We will give a new geometrical proof without the use of coordinatization.

In the following we define G as the group generated by all symmetries about L_{1}, L_{2} and L_{3}. Furthermore, G_{i} will be the full group of symmetries about the axis L_{i}.

Proof of the theorem. By Theorem 3.1 there follows that G is a group of elations with center p of order s^{3}, thus, $\left(\mathcal{S}^{(p)}, G\right)$ is an EGQ since \mathcal{S} is of order s. Since an axis of symmetry is a regular line, the theorem now follows from Theorem 2.8.

Acknowledgements. The author wishes to show his gratitude to Nathalie De Pauw for helping to type the manuscript.
The author also would like to thank J. A. Thas for thorough proof reading.
The author is a research fellow supported by the Flemish Institute for the promotion of Scientific and Technological Research in Industry (IWT), grant no. IWT/SB/991254/Thas.

References

[1] L. Bader, G. Lunardon and I. Pinneri. A new semifield flock, J. Combin. Theory Ser. A 86 (1999), 49-62.
[2] A. Blokhuis, M. Lavrauw and S. Ball. On the classification of semifield flocks, in preparation.
[3] X. Chen and D. Frohardt. Normality in a Kantor family, J. Combin. Theory Ser. A 64 (1993), 130-136.
[4] D. Hachenberger. On finite elation generalized quadrangles with symmetries, J. London Math. Soc. (2) 53 (1996), 397-406.
[5] D. R. Hughes and F. C. Piper. Projective Planes, Springer-Verlag, New York/Heidelberg/Berlin (1973).
[6] N. Jacobson. Basic Algebra II, W. H. Freeman and Company (1980).
[7] W. M. Kantor. Generalized quadrangles associated with $G_{2}(q)$, J. Combin. Theory Ser. A 29 (1980), 212-219.
[8] S. E. Payne. Span-symmetric generalized quadrangles, The Geometric Vein, Springer, New York-Berlin (1981), 231-242.
[9] S. E. Payne and J. A. Thas. Finite generalized quadrangles, Research Notes in Mathematics 110, Pitman Advanced Publishing Program, Boston/London/Melbourne (1984).
[10] S. E. Payne. An essay on skew translation generalized quadrangles, Geom. Dedicata 32 (1989), 93-118.
[11] L. A. Rogers. Characterization of the kernel of certain translation generalized quadrangles, Simon Stevin 64 (1990), 319-328.
[12] J. A. Thas. The m-dimensional projective space $S_{m}\left(M_{n}(\mathrm{GF}(q))\right)$ over the total matrix algebra $M_{n}(\mathrm{GF}(q))$ of the $n \times n$-matrices with elements in the Galois field GF(q), Rend. Mat. (6) 4 (1971), 459-532.
[13] J. A. Thas. Translation 4-gonal configurations, Rend. Accad. Naz. Lincei 56 (1974), 303-314.
[14] J. A. Thas. Generalized quadrangles and flocks of cones, Europ. J. Combinatorics 8 (1987), 441-452.
[15] J. A. Thas. Recent developments in the theory of finite generalized quadrangles, Acad. Analecta, Med. Kon. Acad. Wet. Lett. Sch. K. Belg., Kl. Wet. (1994), 99-113.
[16] J. A. Thas. Generalized quadrangles of order $\left(s, s^{2}\right)$, I, J. Combin. Theory Ser. A 67 (1994), 140-160.
[17] J. A. Thas. Generalized Polygons, Chapter 9 of 'Handbook of Incidence Geometry', Edited by F. Buekenhout, Amsterdam, North-Holland (1995), 383-431.
[18] J. A. Thas. Generalized quadrangles of order $\left(s, s^{2}\right)$, II, J. Combin. Theory Ser. A 79 (1997), 223-254.
[19] J. A. Thas and H. Van Maldeghem. Generalized quadrangles and the Axiom of Veblen, Geometry, Combinatorial Designs and Related Structures, Edited by J. W. P. Hirschfeld, Cambridge University Press, London Math. Soc. Lecture Note Ser. 245 (1997), 241-253.
[20] J. A. Thas. 3-Regularity in generalized quadrangles: a survey, recent results and the solution of a longstanding conjecture, Rend. Circ. Mat. Palermo Serie II, Suppl. 53 (1998), 199-218.
[21] J. A. Thas. Generalized quadrangles of order $\left(s, s^{2}\right)$: recent results, Discrete Mathematics 208/209 (1999), 577-587.
[22] J. A. Thas. Generalized quadrangles of order (s, s^{2}), III, J. Combin. Theory Ser. A 87 (1999), 247-272.
[23] J. A. Thas. Geometrical constructions of flock generalized quadrangles, J. Combin. Theory Ser. A, to appear.
[24] J. A. Thas. Translation generalized quadrangles of order $\left(s, s^{2}\right)$ with s even (2000), private communication.
[25] K. Thas. Symmetrieën in Eindige Veralgemeende Vierhoeken, Master thesis, Ghent University (1999), 1-186.
[26] K. Thas. On symmetries and translation generalized quadrangles, Finite Geometries, Proceedings of the Fourth Isle of Thorns Conference, 16-21 July 2000, Kluwer Academic Publishers, to appear.
[27] K. Thas. Span-symmetric generalized quadrangles: the solution of a longstanding open problem, Adv. Geom., to appear.
[28] K. Thas. On semi quadrangles, Ars Combin., to appear.
[29] K. Thas. The classification of generalized quadrangles with two translation points, Beiträge Algebra Geom. (Contributions to Algebra and Geometry), to appear.
[30] J. Tits. Sur la trialité et certains groupes qui s'en déduisent, Inst. Hautes Etudes Sci. Publ. Math. 2 (1959), 13-60.

Ghent University,
Department of Pure Mathematics and Computer Algebra,
Galglaan 2, B-9000 Ghent, Belgium
E-mail: kthas@cage.rug.ac.be

[^0]: Received by the editors april 2001.
 Communicated by J. Doyen.
 2000 Mathematics Subject Classification : 51 E 12.
 Key words and phrases : generalized quadrangle, axis of symmetry, translation generalized quadrangle.

[^1]: ${ }^{1}$ Remark that $q^{\prime} \neq q$.

[^2]: ${ }^{2}$ Recently, Bader, Lunardon and Pinneri [1] proved that a TGQ which arises from a flock is isomorphic to its translation dual if and only if it is the point-line dual of a Kantor flock GQ. It should be noted however that their proof relies heavily on results of J. A. Thas and H. Van Maldeghem [19] and J. A. Thas [18].

